1
|
Yoon SY, Kim M, Kim H, Bang DW, Park BW, Jeong SY, Lee MY, Kim KH, Lee N, Won JH, Moon I, Suh J, Kwon SS. Risk of Hematologic Malignancies in Patients With Acute Myocardial Infarction: A Nationwide Population-Based Cohort Study. JACC CardioOncol 2025:S2666-0873(25)00146-2. [PMID: 40434327 DOI: 10.1016/j.jaccao.2025.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/01/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) and cancer are leading causes of death worldwide. However, the relationship between AMI and hematologic malignancies remains unclear. OBJECTIVES The authors aimed to investigate the association between AMI and the subsequent risk of incident hematologic malignancies. METHODS This retrospective cohort study included 103,686 patients with AMI and no history of hematologic malignancies, and 103,686 age- and sex-matched individuals with no history of AMI or hematologic malignancies, diagnosed between January 1, 2003, and December 31, 2021. Data were obtained from the Korean National Health Insurance claims database. We compared the cumulative incidence of hematologic malignancies between groups using Gray's method. HRs and 95% CIs were calculated using Gray's competing risk regression model, with death treated as a competing risk. RESULTS During follow-up (AMI, 7.9 years [Q1-Q3: 5.2-11.4 years]; control group, 17.8 years [Q1-Q3: 14.8-17.9 years]), 1,043 and 1,479 individuals in the AMI and control groups, respectively, were newly diagnosed with hematologic malignancies (incidence rate per 1,000 person-years: 1.21 vs 0.93). Competing risk analysis revealed that the AMI group had a higher risk of hematologic malignancy than the control group (HR: 1.49; 95% CI: 1.31-1.69). Findings were consistent in sensitivity and standardized incidence ratio analyses. CONCLUSIONS Patients with AMI had a higher risk of hematologic malignancies than those without AMI. These findings suggest an association between AMI and hematologic malignancies, and underscore the importance of considering hematologic malignancy development in patients with AMI.
Collapse
Affiliation(s)
- Seug Yun Yoon
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Mina Kim
- Department of Data Science, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Hoseob Kim
- Department of Data Science, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Duk Won Bang
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Byoung-Won Park
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Sun Young Jeong
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Min-Young Lee
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Kyoung Ha Kim
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Namsu Lee
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Jong-Ho Won
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Inki Moon
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jon Suh
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seong Soon Kwon
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Beer SA, Went M, Hislop JM, Houlston R, Kaiser M. Appraising ascorbic acid as a chemoprevention agent for acute myeloid leukaemia using Mendelian Randomisation. Blood Cancer J 2024; 14:183. [PMID: 39424823 PMCID: PMC11489766 DOI: 10.1038/s41408-024-01168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Affiliation(s)
- Sina A Beer
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK.
| | - Molly Went
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Jessica M Hislop
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Martin Kaiser
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Cheng H, Liu Y, Cheng M, Li W, Sun M, Tang Q, Ma J, Li P, Gong T. IDH2 regulates U2AF1 expression and hydroxymethylation in MDS patients. Biotechnol Genet Eng Rev 2024; 40:788-799. [PMID: 36942631 DOI: 10.1080/02648725.2023.2190953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The expression of some genes regulated by their DNA methylation is involved in pathogenesis and disease progression of myelodysplastic syndrome (MDS), which is characterised by abnormal differentiation and development of myeloid cells. Therefore, it is significant for us to work on investigating what factors regulate U2AF1 expression and hydroxymethylation in MDS patients. However, the members of TET protein family can change 5-methylcytosine (5mC) into 5-hydroxymethylcytosine5-methyl cytosine (5hmC). In general, 5mC and 5hmC levels maintain dynamic equilibrium, and their imbalance is associated with the onset and progression of some tumors. In this study, the expression and 5mC and 5hmC levels of U2AF1 gene decreased significantly after the treatment by decitabine in Mutz-1 cells. The decreased degree of 5hmC is far greater than that of 5mC. IDH2 expression decreased significantly followed by U2AF1 5hmC levels. However, the expression of other hydroxymethylation-related genes such as IDH1, TET1 and TET2 also decreased, but the difference did not achieve significance. Compared with IDH2 or U2AF1 wild-type MDS patients, U2AF1 expression and 5hmC level in patients with these two gene mutations were both significantly reduced.
Collapse
Affiliation(s)
- Huanchen Cheng
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Yu Liu
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Mei Cheng
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Wei Li
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Meng Sun
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Qinghua Tang
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Jun Ma
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Pu Li
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Tiejun Gong
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Zhang X, Qian S, Wu P, Yu B, Yin D, Peng X, Li S, Xiao Z, Xie Z. Tumor-associated macrophage-derived itaconic acid contributes to nasopharyngeal carcinoma progression by promoting immune escape via TET2. Cell Commun Signal 2024; 22:413. [PMID: 39192276 PMCID: PMC11348665 DOI: 10.1186/s12964-024-01799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor of epithelial origin in head and neck with high incidence rate in South China, Southeast Asia and North Africa. The intervention of tumor-associated macrophages (Mφs) (TAMs)-mediated immunosuppression is a potential therapeutic strategy against tumor metastasis, but the exact mechanisms of TAM-mediated immunosuppression in nasopharyngeal carcinoma are unclear. Furthermore, how TAM affects the occurrence and development of nasopharyngeal carcinoma through metabolism is rarely involved. In this work, we revealed that NPC cells promoted M2-type Mφ polarization and elevated itaconic acid (ITA) release. Also, TAMs facilitated NPC cell proliferation, migration, and invasion through immune response gene 1 (IRG1)-catalyzed ITA production. Then, IRG1-mediated ITA production in TAMs repressed the killing of CD8+ T cells, induced M2-type polarization of TAMs, and reduced the phagocytosis of TAMs. Moreover, we demonstrated ITA played a tumor immunosuppressive role by binding and dampening ten-eleven translocation-2 (TET2) expression. Finally, we proved that ITA promotes NPC growth by facilitating immune escape in CD34+ hematopoietic stem cell humanized mice. In Conclusion, TAM-derived ITA facilitated NPC progression by enhancing immune escape through targeting TET2, highlighting that interfering with the metabolic pathway of ITA may be a potential strategy for NPC treatment.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shen'er Qian
- Department of Otorhinolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping'an Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The University of Hongkong- Shenzhen Hospital, Shenzhen, Guangzhou, China
| | - Benquan Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xia Peng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Laboratory of Otorhinolaryngology Head and Neck Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Institute of Otology, Central South University, Changsha, Hunan Province, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Laboratory of Otorhinolaryngology Head and Neck Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Institute of Otology, Central South University, Changsha, Hunan Province, China
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Laboratory of Otorhinolaryngology Head and Neck Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- Institute of Otology, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
5
|
Liu H, Xue F, Zhou R, Tian H, Mao J, Wu T. Chidamide in combination with azacitidine for an elderly patient with peripheral T cell lymphoma‑not otherwise specified: A case report. Oncol Lett 2024; 28:341. [PMID: 38855506 PMCID: PMC11157661 DOI: 10.3892/ol.2024.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Peripheral T cell lymphoma (PTCL) is a type of aggressive non-Hodgkin's lymphoma with poor prognosis. PTCL-not otherwise specified (PTCL-NOS) is one of its most common pathological types. PTCL is not sensitive to conventional chemotherapy regimens and treatment is particularly limited in elderly patients due to their poor tolerance to chemotherapy. The present report shares the treatment experience of one elderly PTCL-NOS case, which achieved complete remission by reduced-intensity chemotherapy with chidamide in combination with azacitidine following the onset of organ failure and chemotherapy insensitivity. The 9-month follow-up showed sustained remission and the long-term efficacy of this regimen is also promising.
Collapse
Affiliation(s)
- Heng Liu
- Department of Hematology, The 940th Hospital of Joint Logistic Support Force of The Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Feng Xue
- Department of Hematology, The 940th Hospital of Joint Logistic Support Force of The Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Rui Zhou
- Department of Hematology, The 940th Hospital of Joint Logistic Support Force of The Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Hongjuan Tian
- Department of Hematology, The 940th Hospital of Joint Logistic Support Force of The Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Junfeng Mao
- Department of Nuclear Medicine, The 940th Hospital of Joint Logistic Support Force of The Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Tao Wu
- Department of Hematology, The 940th Hospital of Joint Logistic Support Force of The Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
6
|
Wang Y, Shtylla B, Chou T. Order-of-Mutation Effects on Cancer Progression: Models for Myeloproliferative Neoplasm. Bull Math Biol 2024; 86:32. [PMID: 38363386 PMCID: PMC10873249 DOI: 10.1007/s11538-024-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Statistics, Irving Institute for Cancer Dynamics, Columbia University, New York, NY, 10027, USA
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711, USA
- Pharmacometrics and Systems Pharmacology, Pfizer Research and Development, San Diego, CA, 92121, USA
| | - Tom Chou
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Mathematics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Wang Y, Shtylla B, Chou T. Order-of-mutation effects on cancer progression: models for myeloproliferative neoplasm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.16.23294177. [PMID: 37662184 PMCID: PMC10473807 DOI: 10.1101/2023.08.16.23294177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found, JAK2 V617F and one in the TET2 gene. Whether or not one mutation is present will influence how the other subsequent mutation affects the regulation of gene expression. When both mutations are present, the order of their occurrence has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation (ODE), Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. These observations consistently shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, NY 10027
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711
- Quantitative Systems Pharmacology, Oncology, Pfizer, San Diego, CA 92121
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095
| |
Collapse
|
8
|
Jeon SY, Lee NR, Cha S, Yhim HY, Kwak JY, Jang KY, Kim N, Cho YG, Lee CH. Acute myelomonocytic leukemia and T-lymphoblastic lymphoma as simultaneous bilineage hematologic malignancy treated with decitabine: A case report. World J Clin Cases 2023; 11:5129-5135. [PMID: 37583856 PMCID: PMC10424015 DOI: 10.12998/wjcc.v11.i21.5129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Simultaneous bilineage hematologic malignancies are rare; however, several cases of acute myeloid leukemia (AML) and T-lymphoblastic lymphoma (T-LBL) co-occurrence have been reported. A standard treatment for simultaneous AML and T-LBL has not yet been established, and its prognosis is very poor. Further studies to develop standard treatments are required to increase patient survival rates. CASE SUMMARY A 69-year-old man complaining of pleuritic chest pain visited the emergency room. Computed tomography revealed multiple enlarged lymph nodes (LNs) in the neck and groin and pulmonary thromboembolism with pulmonary infarction. Furthermore, a peripheral blood smear performed due to leukocytosis revealed circulating blasts. Acute myelomonocytic leukemia (AMML) was diagnosed after bone marrow examination, and T-LBL positivity for terminal deoxynucleotidyl transferase, cluster of differentiation (CD)34, and CD4 was confirmed by cervical LN biopsy. Decitabine and dexamethasone were administered because he could not receive intensive chemotherapy due to poor performance status. Complete remission of AMML and T-LBL was achieved after 4 cycles of decitabine plus dexamethasone. CONCLUSION We report the therapeutic effect of decitabine, a hypomethylating agent (HMA), in patients with concurrent bilineage hematologic malignancies and suggest that further studies are required to evaluate the therapeutic effect of HMAs on both lymphoid and bilineage hematologic malignancies.
Collapse
Affiliation(s)
- So-Yeon Jeon
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Na-Ri Lee
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Seungah Cha
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Ho-Young Yhim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Jae-Yong Kwak
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Namsu Kim
- Department of Laboratory Medicine, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Yong Gon Cho
- Department of Laboratory Medicine, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Chang-Hoon Lee
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| |
Collapse
|
9
|
Lang JY, Lyu R, Song YY, Zou DH, An G. [Dual epigenetic therapy in TET2 gene positive extranodal peripheral T-cell lymphoma with follicular helper T-cell (TFH) phenotype: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:590-593. [PMID: 37749042 PMCID: PMC10509630 DOI: 10.3760/cma.j.issn.0253-2727.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 09/27/2023]
Affiliation(s)
- J Y Lang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China Hematology Department of Jincheng People's Hospital, Jincheng 048000, China
| | - R Lyu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Y Y Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - D H Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - G An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
10
|
Oishi N, Feldman AL. Current Concepts in Nodal Peripheral T-Cell Lymphomas. Surg Pathol Clin 2023; 16:267-285. [PMID: 37149360 DOI: 10.1016/j.path.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
This review summarizes the current understanding of mature T-cell neoplasms predominantly involving lymph nodes, including ALK-positive and ALK-negative anaplastic large cell lymphomas, nodal T-follicular helper cell lymphoma, Epstein-Barr virus-positive nodal T/NK-cell lymphoma, and peripheral T-cell lymphoma (PTCL), not otherwise specified. These PTCLs are clinically, pathologically, and genetically heterogeneous, and the diagnosis is made by a combination of clinical information, morphology, immunophenotype, viral positivity, and genetic abnormalities. This review summarizes the pathologic features of common nodal PTCLs, highlighting updates in the fifth edition of the World Health Organization classification and the 2022 International Consensus Classification.
Collapse
|
11
|
Jain N, Zhao Z, Feucht J, Koche R, Iyer A, Dobrin A, Mansilla-Soto J, Yang J, Zhan Y, Lopez M, Gunset G, Sadelain M. TET2 guards against unchecked BATF3-induced CAR T cell expansion. Nature 2023; 615:315-322. [PMID: 36755094 PMCID: PMC10511001 DOI: 10.1038/s41586-022-05692-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2022] [Indexed: 02/10/2023]
Abstract
Further advances in cell engineering are needed to increase the efficacy of chimeric antigen receptor (CAR) and other T cell-based therapies1-5. As T cell differentiation and functional states are associated with distinct epigenetic profiles6,7, we hypothesized that epigenetic programming may provide a means to improve CAR T cell performance. Targeting the gene that encodes the epigenetic regulator ten-eleven translocation 2 (TET2)8 presents an interesting opportunity as its loss may enhance T cell memory9,10, albeit not cause malignancy9,11,12. Here we show that disruption of TET2 enhances T cell-mediated tumour rejection in leukaemia and prostate cancer models. However, loss of TET2 also enables antigen-independent CAR T cell clonal expansions that may eventually result in prominent systemic tissue infiltration. These clonal proliferations require biallelic TET2 disruption and sustained expression of the AP-1 factor BATF3 to drive a MYC-dependent proliferative program. This proliferative state is associated with reduced effector function that differs from both canonical T cell memory13,14 and exhaustion15,16 states, and is prone to the acquisition of secondary somatic mutations, establishing TET2 as a guardian against BATF3-induced CAR T cell proliferation and ensuing genomic instability. Our findings illustrate the potential of epigenetic programming to enhance T cell immunity but highlight the risk of unleashing unchecked proliferative responses.
Collapse
Affiliation(s)
- Nayan Jain
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Zeguo Zhao
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Judith Feucht
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
- University Children's Hospital, Tübingen, Germany
| | - Richard Koche
- Centre for Epigenetics Research, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Archana Iyer
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Anton Dobrin
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Jorge Mansilla-Soto
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Julie Yang
- Centre for Epigenetics Research, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Yingqian Zhan
- Centre for Epigenetics Research, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Michael Lopez
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Gertrude Gunset
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Michel Sadelain
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA.
| |
Collapse
|
12
|
Taira A, Palin K, Kuosmanen A, Välimäki N, Kuittinen O, Kuismin O, Kaasinen E, Rajamäki K, Aaltonen LA. Vitamin C boosts DNA demethylation in TET2 germline mutation carriers. Clin Epigenetics 2023; 15:7. [PMID: 36639817 PMCID: PMC9840351 DOI: 10.1186/s13148-022-01404-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/09/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Accurate regulation of DNA methylation is necessary for normal cells to differentiate, develop and function. TET2 catalyzes stepwise DNA demethylation in hematopoietic cells. Mutations in the TET2 gene predispose to hematological malignancies by causing DNA methylation overload and aberrant epigenomic landscape. Studies on mice and cell lines show that the function of TET2 is boosted by vitamin C. Thus, by strengthening the demethylation activity of TET2, vitamin C could play a role in the prevention of hematological malignancies in individuals with TET2 dysfunction. We recently identified a family with lymphoma predisposition where a heterozygous truncating germline mutation in TET2 segregated with nodular lymphocyte-predominant Hodgkin lymphoma. The mutation carriers displayed a hypermethylation pattern that was absent in the family members without the mutation. METHODS In a clinical trial of 1 year, we investigated the effects of oral 1 g/day vitamin C supplementation on DNA methylation by analyzing genome-wide DNA methylation and gene expression patterns from the family members. RESULTS We show that vitamin C reinforces the DNA demethylation cascade, reduces the proportion of hypermethylated loci and diminishes gene expression differences between TET2 mutation carriers and control individuals. CONCLUSIONS These results suggest that vitamin C supplementation increases DNA methylation turnover and provide a basis for further work to examine the potential benefits of vitamin C supplementation in individuals with germline and somatic TET2 mutations. TRIAL REGISTRATION This trial was registered at EudraCT with reference number of 2018-000155-41 (01.04.2019).
Collapse
Affiliation(s)
- Aurora Taira
- grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Anna Kuosmanen
- grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Outi Kuittinen
- grid.9668.10000 0001 0726 2490Department of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland ,grid.410705.70000 0004 0628 207XCancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Outi Kuismin
- grid.10858.340000 0001 0941 4873PEDEGO Research Unit, University of Oulu, Oulu, Finland ,grid.10858.340000 0001 0941 4873Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland ,grid.412326.00000 0004 4685 4917Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Eevi Kaasinen
- grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kristiina Rajamäki
- grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A. Aaltonen
- grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Chia YC, Siti Asmaa MJ, Ramli M, Woon PY, Johan MF, Hassan R, Islam MA. Molecular Genetics of Thrombotic Myeloproliferative Neoplasms: Implications in Precision Oncology. Diagnostics (Basel) 2023; 13:163. [PMID: 36611455 PMCID: PMC9818412 DOI: 10.3390/diagnostics13010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) include polycythaemia vera, essential thrombocythaemia, and primary myelofibrosis. Unlike monogenic disorders, a more complicated series of genetic mutations are believed to be responsible for MPN with various degrees of thromboembolic and bleeding complications. Thrombosis is one of the early manifestations in patients with MPN. To date, the driver genes responsible for MPN include JAK2, CALR, MPL, TET2, ASXL1, and MTHFR. Affords have been done to elucidate these mutations and the incidence of thromboembolic events. Several lines of evidence indicate that mutations in JAK2, MPL, TET2 and ASXL1 gene and polymorphisms in several clotting factors (GPIa, GPIIa, and GPIIIa) are associated with the occurrence and prevalence of thrombosis in MPN patients. Some polymorphisms within XRCC1, FBG, F2, F5, F7, F12, MMP9, HPA5, MTHFR, SDF-1, FAS, FASL, TERT, ACE, and TLR4 genes may also play a role in MPN manifestation. This review aims to provide an insightful overview on the genetic perspective of thrombotic complications in patients with MPN.
Collapse
Affiliation(s)
- Yuh Cai Chia
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mat Jusoh Siti Asmaa
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Marini Ramli
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Peng Yeong Woon
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Muhammad Farid Johan
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rosline Hassan
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Sung WY, Lin YZ, Hwang DY, Lin CH, Li RN, Tseng CC, Wu CC, Ou TT, Yen JH. Methylation of TET2 Promoter Is Associated with Global Hypomethylation and Hypohydroxymethylation in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Diagnostics (Basel) 2022; 12:diagnostics12123006. [PMID: 36553013 PMCID: PMC9776498 DOI: 10.3390/diagnostics12123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
(1) Background: It is widely accepted that aberrant methylation patterns contribute to the development of systemic lupus erythematosus (SLE). Ten-eleven translocation (TET) methylcytosine dioxygenase is an essential enzyme of which there are three members, TET1, 2, and 3, involved in hydroxymethylation, a newly uncovered mechanism of active DNA methylation. The epigenomes of gene transcription are regulated by 5-hydroxymethylcytocine (5-hmC) and TETs, leading to dysregulation of the immune system in SLE. The purpose of this study was to investigate the global hydroxymethylation status in SLE peripheral blood mononuclear cells (PBMCs) and to explore the role of TETs in changing the patterns of methylation. (2) Methods: We collected PBMCs from 101 SLE patients and 100 healthy donors. TaqMan real-time polymerase chain-reaction assay was performed for the detection of 5-methylcytosine (5-mC), 5-hmC, and TET2 mRNA expression and single-nucleotide polymorphism genotyping. The methylation rates in different CpG sites of TET2 promoters were examined using next-generation sequencing-based deep bisulfite sequencing. Putative transcription factors were investigated using the UCSC Genome Browser on the Human Dec. 2013 (GRCh38/hg38) Assembly. (3) Results: 5-mC and 5-hmC were both decreased in SLE. The mRNA expression level of TET2 was notably high and found to be correlated with the levels of immunologic biomarkers that are indicative of SLE disease activity. The analysis of methylation rates in the TET2 promoter revealed that SLE patients had significantly higher and lower rates of methylation in TET2 105146072-154 and TET2 105146218-331, respectively. (4) Conclusions: TET2 may play an important role in 5-mC/5-hmC dynamics in the PBMCs of SLE patients. The epigenetic modification of TET2 promoters could contribute to the pathogenesis of SLE and the intensity of the immunologic reaction.
Collapse
Affiliation(s)
- Wan-Yu Sung
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (W.-Y.S.); (J.-H.Y.)
| | - Yuan-Zhao Lin
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 350401, Taiwan
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chia-Hui Lin
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chia-Chun Tseng
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Jeng-Hsien Yen
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (W.-Y.S.); (J.-H.Y.)
| |
Collapse
|
15
|
Talarmain L, Clarke MA, Shorthouse D, Cabrera-Cosme L, Kent DG, Fisher J, Hall BA. HOXA9 has the hallmarks of a biological switch with implications in blood cancers. Nat Commun 2022; 13:5829. [PMID: 36192425 PMCID: PMC9530117 DOI: 10.1038/s41467-022-33189-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Blood malignancies arise from the dysregulation of haematopoiesis. The type of blood cell and the specific order of oncogenic events initiating abnormal growth ultimately determine the cancer subtype and subsequent clinical outcome. HOXA9 plays an important role in acute myeloid leukaemia (AML) prognosis by promoting blood cell expansion and altering differentiation; however, the function of HOXA9 in other blood malignancies is still unclear. Here, we highlight the biological switch and prognosis marker properties of HOXA9 in AML and chronic myeloproliferative neoplasms (MPN). First, we establish the ability of HOXA9 to stratify AML patients with distinct cellular and clinical outcomes. Then, through the use of a computational network model of MPN, we show that the self-activation of HOXA9 and its relationship to JAK2 and TET2 can explain the branching progression of JAK2/TET2 mutant MPN patients towards divergent clinical characteristics. Finally, we predict a connection between the RUNX1 and MYB genes and a suppressive role for the NOTCH pathway in MPN diseases.
Collapse
Affiliation(s)
- Laure Talarmain
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Matthew A Clarke
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - David Shorthouse
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Lilia Cabrera-Cosme
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
16
|
Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082568. [PMID: 35458763 PMCID: PMC9027183 DOI: 10.3390/molecules27082568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.
Collapse
|
17
|
Besaratinia A, Caceres A, Tommasi S. DNA Hydroxymethylation in Smoking-Associated Cancers. Int J Mol Sci 2022; 23:2657. [PMID: 35269796 PMCID: PMC8910185 DOI: 10.3390/ijms23052657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
5-hydroxymethylcytosine (5-hmC) was first detected in mammalian DNA five decades ago. However, it did not take center stage in the field of epigenetics until 2009, when ten-eleven translocation 1 (TET1) was found to oxidize 5-methylcytosine to 5-hmC, thus offering a long-awaited mechanism for active DNA demethylation. Since then, a remarkable body of research has implicated DNA hydroxymethylation in pluripotency, differentiation, neural system development, aging, and pathogenesis of numerous diseases, especially cancer. Here, we focus on DNA hydroxymethylation in smoking-associated carcinogenesis to highlight the diagnostic, therapeutic, and prognostic potentials of this epigenetic mark. We describe the significance of 5-hmC in DNA demethylation, the importance of substrates and cofactors in TET-mediated DNA hydroxymethylation, the regulation of TETs and related genes (isocitrate dehydrogenases, fumarate hydratase, and succinate dehydrogenase), the cell-type dependency and genomic distribution of 5-hmC, and the functional role of 5-hmC in the epigenetic regulation of transcription. We showcase examples of studies on three major smoking-associated cancers, including lung, bladder, and colorectal cancers, to summarize the current state of knowledge, outstanding questions, and future direction in the field.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA; (A.C.); (S.T.)
| | | | | |
Collapse
|
18
|
Elliott EK, Hopkins LN, Hensen R, Sutherland HG, Haupt LM, Griffiths LR. Epigenetic Regulation of miR-92a and TET2 and Their Association in Non-Hodgkin Lymphoma. Front Genet 2021; 12:768913. [PMID: 34899857 PMCID: PMC8661906 DOI: 10.3389/fgene.2021.768913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are well known for their ability to regulate the expression of specific target genes through degradation or inhibition of translation of the target mRNA. In various cancers, miRNAs regulate gene expression by altering the epigenetic status of candidate genes that are implicated in various difficult to treat haematological malignancies such as non-Hodgkin lymphoma by acting as either oncogenes or tumour suppressor genes. Cellular and circulating miRNA biomarkers could also be directly utilised as disease markers for diagnosis and monitoring of non-Hodgkin lymphoma (NHL); however, the role of DNA methylation in miRNA expression regulation in NHL requires further scientific inquiry. In this study, we investigated the methylation levels of CpGs in CpG islands spanning the promoter regions of the miR-17–92 cluster host gene and the TET2 gene and correlated them with the expression levels of TET2 mRNA and miR-92a-3p and miR-92a-5p mature miRNAs in NHL cell lines, tumour samples, and the whole blood gDNA of an NHL case control cohort. Increased expression of both miR-92a-3p and miR-92a-5p and aberrant expression of TET2 was observed in NHL cell lines and tumour tissues, as well as disparate levels of dysfunctional promoter CGI methylation. Both miR-92a and TET2 may play a concerted role in NHL malignancy and disease pathogenesis.
Collapse
Affiliation(s)
- Esther K Elliott
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia.,Icon Cancer Centre, Brisbane, QLD, Australia
| | - Lloyd N Hopkins
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | | | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| |
Collapse
|
19
|
Comprehensive Analysis of m 5C RNA Methylation Regulator Genes in Clear Cell Renal Cell Carcinoma. Int J Genomics 2021; 2021:3803724. [PMID: 34631874 PMCID: PMC8497170 DOI: 10.1155/2021/3803724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background Recent research found that N5-methylcytosine (m5C) was involved in the development and occurrence of numerous cancers. However, the function and mechanism of m5C RNA methylation regulators in clear cell renal cell carcinoma (ccRCC) remains undiscovered. This study is aimed at investigating the predictive and clinical value of these m5C-related genes in ccRCC. Methods Based on The Cancer Genome Atlas (TCGA) database, the expression patterns of twelve m5C regulators and matched clinicopathological characteristics were downloaded and analyzed. To reveal the relationships between the expression levels of m5C-related genes and the prognosis value in ccRCC, consensus clustering analysis was carried out. By univariate Cox analysis and last absolute shrinkage and selection operator (LASSO) Cox regression algorithm, a m5C-related risk signature was constructed in the training group and further validated in the testing group and the entire cohort. Then, the predictive ability of survival of this m5C-related risk signature was analyzed by Cox regression analysis and nomogram. Functional annotation and single-sample Gene Set Enrichment Analysis (ssGSEA) were applied to further explore the biological function and potential signaling pathways. Furthermore, we performed qRT-PCR experiments and measured global m5C RNA methylation level to validate this signature in vitro and tissue samples. Results In the TCGA-KIRC cohort, we found significant differences in the expression of m5C RNA methylation-related genes between ccRCC tissues and normal kidney tissues. Consensus cluster analysis was conducted to separate patients into two m5C RNA methylation subtypes. Significantly better outcomes were observed in ccRCC patients in cluster 1 than in cluster 2. m5C RNA methylation-related risk score was calculated to evaluate the prognosis of ccRCC patients by seven screened m5C RNA methylation regulators (NOP2, NSUN2, NSUN3, NSUN4, NSUN5, TET2, and DNMT3B) in the training cohort. The AUC for the 1-, 2-, and 3-year survival in the training cohort were 0.792, 0.675, and 0.709, respectively, indicating that the risk signature had an excellent prognosis prediction in ccRCC. Additionally, univariate and multivariate Cox regression analyses revealed that the risk signature could be an independent prognostic factor in ccRCC. The results of ssGSEA suggested that the immune cells with different infiltration degrees between the high-risk and low-risk groups were T cells including follicular helper T cells, Th1_cells, Th2_cells, and CD8+_T_cells, and the main differences in immune-related functions between the two groups were the interferon response and T cell costimulation. In addition, qRT-PCR experiments confirmed our results in renal cell lines and tissue samples. Conclusions According to the seven selected regulatory factors of m5C RNA methylation, a risk signature associated with m5C methylation that can independently predict prognosis in patients with ccRCC was developed and further verified the predictive efficiency.
Collapse
|
20
|
Xu H, Wang X, Zhang Y, Zheng W, Zhang H. GATA6-AS1 inhibits ovarian cancer cell proliferation and migratory and invasive abilities by sponging miR-19a-5p and upregulating TET2. Oncol Lett 2021; 22:718. [PMID: 34429758 PMCID: PMC8371982 DOI: 10.3892/ol.2021.12979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
GATA6 antisense RNA 1 (GATA6-AS1) has been reported to be involved in the progression of several types of cancer. In the present study, the role of GATA6-AS1 in ovarian cancer (OC) was explored. Reverse transcription quantitative PCR was used to detect the expression of GATA6-AS1, microRNA (miR)-19a-5p and tet methylcytosine dioxygenase 2 (TET2) in OC and adjacent normal tissues. Furthermore, OC cells with GATA-AS1 either knocked down or overexpressed were established. The Cell Counting Kit-8 assay was used to evaluate cell proliferation and a Transwell assay was used to assess the migratory and invasive abilities of OC cells. A dual luciferase reporter gene assay was used to determine whether GATA6-AS1 and miR-19a-5p, and miR-19a-5p and TET2, may interact with each other. The results demonstrated that GATA6-AS1 expression level was decreased in OC tissues and cells compared with control groups. In addition, GATA6-AS1 overexpression significantly inhibited the proliferation and migratory and invasive abilities of OC cells, whereas GATA6-AS1 downregulation had the opposite effects. Furthermore, GATA6-AS1 adsorbed miR-19a-5p to repress its expression and GTA6-AS1 indirectly upregulated TET2 expression. Taken together, the findings from this study suggested that GATA6-AS1 could inhibit the proliferation and migratory and invasive abilities of OC cells via regulation of the miR-19a-5p/TET2 axis.
Collapse
Affiliation(s)
- Hua Xu
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiao Wang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yinghong Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wei Zheng
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Huijie Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
21
|
Gurnari C, Pagliuca S, Visconte V. The Interactome between Metabolism and Gene Mutations in Myeloid Malignancies. Int J Mol Sci 2021; 22:ijms22063135. [PMID: 33808599 PMCID: PMC8003366 DOI: 10.3390/ijms22063135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
The study of metabolic deregulation in myeloid malignancies has led to the investigation of metabolic-targeted therapies considering that cells undergoing leukemic transformation have excessive energy demands for growth and proliferation. However, the most difficult challenge in agents targeting metabolism is to determine a window of therapeutic opportunities between normal and neoplastic cells, considering that all or most of the metabolic pathways important for cancer ontogeny may also regulate physiological cell functions. Targeted therapies have used the properties of leukemic cells to produce altered metabolic products when mutated. This is the case of IDH1/2 mutations generating the abnormal conversion of α-ketoglutarate (KG) to 2-hydroxyglutarate, an oncometabolite inhibiting KG-dependent enzymes, such as the TET family of genes (pivotal in characterizing leukemia cells either by mutations, e.g., TET2, or by altered expression, e.g., TET1/2/3). Additional observations derive from the high sensitivity of leukemic cells to oxidative phosphorylation and its amelioration using BCL-2 inhibitors (Venetoclax) or by disrupting the mitochondrial respiration. More recently, nicotinamide metabolism has been described to mediate resistance to Venetoclax in patients with acute myeloid leukemia. Herein, we will provide an overview of the latest research on the link between metabolic pathways interactome and leukemogenesis with a comprehensive analysis of the metabolic consequences of driver genetic lesions and exemplificative druggable pathways.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Correspondence:
| |
Collapse
|
22
|
Chia YC, Ramli M, Woon PY, Johan MF, Hassan R, Islam MA. WITHDRAWN: Molecular genetics of thrombotic myeloproliferative neoplasms: Implications in precision oncology. Genes Dis 2021. [DOI: 10.1016/j.gendis.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
23
|
Chebly A, Chouery E, Ropio J, Kourie HR, Beylot-Barry M, Merlio JP, Tomb R, Chevret E. Diagnosis and treatment of lymphomas in the era of epigenetics. Blood Rev 2020; 48:100782. [PMID: 33229141 DOI: 10.1016/j.blre.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Lymphomas represent a heterogeneous group of cancers characterized by clonal lymphoproliferation. Over the past decades, frequent epigenetic dysregulations have been identified in hematologic malignancies including lymphomas. Many of these impairments occur in genes with established roles and well-known functions in the regulation and maintenance of the epigenome. In hematopoietic cells, these dysfunctions can result in abnormal DNA methylation, erroneous chromatin state and/or altered miRNA expression, affecting many different cellular functions. Nowadays, it is evident that epigenetic dysregulations in lymphoid neoplasms are mainly caused by genetic alterations in genes encoding for enzymes responsible for histone or chromatin modifications. We summarize herein the recent epigenetic modifiers findings in lymphomas. We focus also on the most commonly mutated epigenetic regulators and emphasize on actual epigenetic therapies.
Collapse
Affiliation(s)
- Alain Chebly
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Porto University, Institute of Biomedical Sciences of Abel Salazar, 4050-313 Porto, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465 Porto, Portugal
| | - Hampig Raphael Kourie
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Hematology-Oncology Department, Beirut, Lebanon
| | - Marie Beylot-Barry
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Dermatology Department, 33000 Bordeaux, France
| | - Jean-Philippe Merlio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, 33600 Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France.
| |
Collapse
|
24
|
Peng B, Li C, He L, Tian M, Li X. miR-660-5p promotes breast cancer progression through down-regulating TET2 and activating PI3K/AKT/mTOR signaling. ACTA ACUST UNITED AC 2020; 53:e9740. [PMID: 33146288 PMCID: PMC7643928 DOI: 10.1590/1414-431x20209740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is a commonly diagnosed cancer in females. MicroRNA-660-5p (miR-660-5p) has been reported to be involved in the occurrence and development of BC. However, the regulatory network of miR-660-5p in BC has not been fully addressed. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the enrichment of miR-660-5p and tet-eleven translocation 2 (TET2) in BC tissues and cells. Cell counting kit-8 (CCK8), flow cytometry, and transwell migration and invasion assays were used to measure cell proliferation, apoptosis, migration, and invasion. The target relationship between miR-660-5p and TET2 was confirmed by dual luciferase reporter assay. Protein expression was measured by western blot. The expression of miR-660-5p was elevated in BC, and high expression of miR-660-5p was closely related to lymph node metastasis, advanced TNM stage, and vascular invasion of BC tumors. miR-660-5p silencing inhibited cell proliferation and metastasis, but induced apoptosis of BC cells. TET2 was identified as a direct target of miR-660-5p, and the interference of TET2 partly reversed the suppressive effects of miR-660-5p silencing on the malignant potential of BC cells. miR-660-5p promoted BC progression partly through modulating TET2 and PI3K/AKT/mTOR signaling. miR-660-5p/TET2 axis might be a promising target for BC treatment.
Collapse
Affiliation(s)
- Bing Peng
- Department of Oncology, The Second People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Chao Li
- Department of Oncology, The Second People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Lili He
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Mi Tian
- Institute of Forensic Medicine, Jingmen Public Security Bureau, Jingmen, Hubei, China
| | - Xin Li
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, Hubei, China
| |
Collapse
|
25
|
Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12102922. [PMID: 33050637 PMCID: PMC7600069 DOI: 10.3390/cancers12102922] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary By the virtue of targeting multiple genes, a microRNA (miRNA) can infer variable consequences on tumorigenesis by appearing as both a tumour suppressor and oncogene. miRNAs can regulate gene expression by modulating genome-wide epigenetic status of genes that are involved in various cancers. These miRNAs perform direct inhibition of key mediators of the epigenetic machinery, such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) genes. Along with miRNAs gene expression, similar to other protein-coding genes, miRNAs are also controlled by epigenetic mechanisms. Overall, this reciprocal interaction between the miRNAs and the epigenetic architecture is significantly implicated in the aberrant expression of miRNAs detected in various human cancers. Comprehensive knowledge of the miRNA-epigenetic dynamics in cancer is essential for the discovery of novel anticancer therapeutics. Abstract Initiation and progression of cancer are under both genetic and epigenetic regulation. Epigenetic modifications including alterations in DNA methylation, RNA and histone modifications can lead to microRNA (miRNA) gene dysregulation and malignant cellular transformation and are hereditary and reversible. miRNAs are small non-coding RNAs which regulate the expression of specific target genes through degradation or inhibition of translation of the target mRNA. miRNAs can target epigenetic modifier enzymes involved in epigenetic modulation, establishing a trilateral regulatory “epi–miR–epi” feedback circuit. The intricate association between miRNAs and the epigenetic architecture is an important feature through which to monitor gene expression profiles in cancer. This review summarises the involvement of epigenetically regulated miRNAs and miRNA-mediated epigenetic modulations in various cancers. In addition, the application of bioinformatics tools to study these networks and the use of therapeutic miRNAs for the treatment of cancer are also reviewed. A comprehensive interpretation of these mechanisms and the interwoven bond between miRNAs and epigenetics is crucial for understanding how the human epigenome is maintained, how aberrant miRNA expression can contribute to tumorigenesis and how knowledge of these factors can be translated into diagnostic and therapeutic tool development.
Collapse
|
26
|
Midic D, Rinke J, Perner F, Müller V, Hinze A, Pester F, Landschulze J, Ernst J, Gruhn B, Matziolis G, Heidel FH, Hochhaus A, Ernst T. Prevalence and dynamics of clonal hematopoiesis caused by leukemia-associated mutations in elderly individuals without hematologic disorders. Leukemia 2020; 34:2198-2205. [PMID: 32457355 PMCID: PMC7387320 DOI: 10.1038/s41375-020-0869-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Clonal hematopoiesis is frequently observed in elderly people. To investigate the prevalence and dynamics of genetic alterations among healthy elderly individuals, a cohort of 50 people >80 years was genotyped for commonly mutated leukemia-associated genes by targeted deep next-generation sequencing. A total of 16 somatic mutations were identified in 13/50 (26%) individuals. Mutations occurred at low variant allele frequencies (median 11.7%) and remained virtually stable over 3 years without development of hematologic malignancies in affected individuals. With DNMT3A mutations most frequently detected, another cohort of 160 healthy people spanning all age groups was sequenced specifically for DNMT3A revealing an overall mutation rate of 6.2% (13/210) and an age-dependent increase of mutation prevalence. A significant difference (p = 0.017) in the DNMT3A expression pattern was detected between younger and healthy elderly people as determined by qRT-PCR. To evaluate the selection of clonal hematopoietic stem cells (HSCs), bone marrow of two healthy individuals with mutant DNMT3A was transplanted in a humanized mouse model. Xenografts displayed stable kinetics of DNMT3A mutations over 8 months. These findings indicate that the appearance of low-level clones with leukemia-associated mutations is a common age-associated phenomenon, but insufficient to initiate clonal selection and expansion without the additional influence of other factors.
Collapse
Affiliation(s)
- Danica Midic
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Jenny Rinke
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Florian Perner
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Violetta Müller
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Anna Hinze
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | | | | | - Jana Ernst
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Jena, Jena, Germany
| | - Bernd Gruhn
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Jena, Jena, Germany
| | - Georg Matziolis
- Orthopädische Klinik der Waldkliniken Eisenberg, Eisenberg, Germany
| | - Florian H Heidel
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Thomas Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany.
| |
Collapse
|
27
|
High-throughput Sequencing of Subcutaneous Panniculitis-like T-Cell Lymphoma Reveals Candidate Pathogenic Mutations. Appl Immunohistochem Mol Morphol 2020; 27:740-748. [PMID: 31702703 DOI: 10.1097/pai.0000000000000683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a malignant primary cutaneous T-cell lymphoma that is challenging to distinguish from other neoplastic and reactive panniculitides. In an attempt to identify somatic variants in SPTCL that may be diagnostically or therapeutically relevant, we performed both exome sequencing on paired tumor-normal samples and targeted sequencing of hematolymphoid-malignancy-associated genes on tumor biopsies. Exome sequencing was performed on skin biopsies from 4 cases of skin-limited SPTCL, 1 case of peripheral T-cell lymphoma, not otherwise specified with secondary involvement of the panniculus, and 2 cases of lupus panniculitis. This approach detected between 1 and 13 high-confidence somatic variants that were predicted to result in a protein alteration per case. Variants of interest identified include 1 missense mutation in ARID1B in 1 case of SPTCL. To detect variants that were present at a lower level, we used a more sensitive targeted panel to sequence 41 hematolymphoid-malignancy-associated genes. The targeted panel was applied to 2 of the biopsies that were evaluated by whole exome sequencing as well as 5 additional biopsies. Potentially pathogenic variants were identified in KMT2D and PLCG1 among others, but no gene was altered in >2 of the 7 cases sequenced. One variant that was notably absent from the cases sequences is RHOA G17V. Further work will be required to further elucidate the genetic abnormalities that lead to this rare lymphoma.
Collapse
|
28
|
|
29
|
Liu X, Wang X, Liu N, Zhu K, Zhang S, Duan X, Huang Y, Jin Z, Jaypaul H, Wu Y, Chen H. TET2 is involved in DNA hydroxymethylation, cell proliferation and inflammatory response in keratinocytes. Mol Med Rep 2020; 21:1941-1949. [PMID: 32319620 PMCID: PMC7057829 DOI: 10.3892/mmr.2020.10989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
DNA methylation and hydroxymethylation are the most common epigenetic modifications associated with the cell cycle and the inflammatory response. The present study aimed to investigate the role of 5-hydroxymethyl-cytosine (5-hmC) and ten-eleven translocation-2 (TET2) in keratinocytes. Following TET2 knockdown, dot blot analysis was performed to assess the levels of 5-hmC in keratinocytes, using HaCaT cells. Subsequently, the viability and cell cycle of HaCaT cells were assessed by MTT, Cell Counting Kit-8 assay and flow cytometric assays. Cyclin-dependent kinase inhibitor 2A and proinflammatory cytokine protein and mRNA expression levels were also detected. The present results suggested that TET2 may play an important role in regulating cellular proliferation by mediating DNA hydroxymethylation in HaCaT cells. In addition, TET2 knockdown decreased the production of proinflammatory cytokines, including lipocalin 2, S100 calcium binding protein A7, matrix metallopeptidase 9, C-X-C motif chemokine ligand 1, interferon regulatory factor 7 and interleukin-7 receptor. The present study suggested that TET2 regulated cell viability, apoptosis and the expression of inflammatory mediators in keratinocytes. Collectively, the results indicated that TET2 knockdown may relieve inflammatory responses in the skin.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Nian Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Ke Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Xiaoru Duan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Yuqiong Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Zilin Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Himanshu Jaypaul
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| |
Collapse
|
30
|
Wang F, Zhang J, Qi J. Ten-eleven translocation-2 affects the fate of cells and has therapeutic potential in digestive tumors. Chronic Dis Transl Med 2020; 5:267-272. [PMID: 32055786 PMCID: PMC7004935 DOI: 10.1016/j.cdtm.2019.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Indexed: 02/07/2023] Open
Abstract
Ten-eleven translocation (TET) methylcytosine dioxygenases catalyze the oxidative reactions of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC), which are intermediate steps during DNA demethylation. It is reported that somatic mutations of TET2 gene are identified in a variety of human tumors, especially in hematological malignancies. The tendency and mechanism of cellular differentiation in different systems are affected by TET2 via regulation of associated gene expression or maintenance of demethylated state. TET2 acts as a critical driver of tumorigenesis through the conversion of 5-mC to 5-hmC and successive oxidation products. Sometimes, it requires special interactions and cofactors. Here, we reviewed recent advances in understanding the function of TET2 proteins in regulating cell differentiation, and its role in various tumors focusing on several digestive cancers.
Collapse
Affiliation(s)
- Feng Wang
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Jing Zhang
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Jian Qi
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
31
|
Saki N, Bagherpour S, Vosoughi T, Birgani M, Ehsanpour A. Coexistence of ten-eleven translocation 2 and calreticulin mutations in myeloproliferative neoplasms: Possible prognostic value. CLINICAL CANCER INVESTIGATION JOURNAL 2020. [DOI: 10.4103/ccij.ccij_114_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Martorana F, Vigneri P, Manzella L, Tirrò E, Soto Parra HJ. Delayed use of eribulin in a heavily pretreated liposarcoma patient, previously misdiagnosed as leiomyosarcoma. Future Oncol 2020; 16:9-13. [DOI: 10.2217/fon-2019-0596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Due to its low incidence, liposarcoma displays a limited number of therapeutic options. However, eribulin recently received approval for the treatment of advanced liposarcoma patients, progressing to at least two chemotherapy lines. We report herein the case of a man initially diagnosed with a leyomiosarcoma, subsequently reclassified as a dedifferentiated liposarcoma, who received eribulin after he failed several therapy lines. Eribulin provided our patient an 8-month disease control and a substantial clinical benefit with no relevant adverse effects, showing a good efficacy and safety profile despite its delayed employ. Additionally, this case strengthens the pivotal importance of molecular profiling in the management of soft tissue sarcomas.
Collapse
Affiliation(s)
- Federica Martorana
- Division of Medical Oncology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Center of Experimental Oncology & Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Paolo Vigneri
- Division of Medical Oncology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Center of Experimental Oncology & Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Department of Clinical & Experimental Medicine, University of Catania, Catania, Italy
| | - Livia Manzella
- Center of Experimental Oncology & Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Department of Clinical & Experimental Medicine, University of Catania, Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology & Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Department of Clinical & Experimental Medicine, University of Catania, Catania, Italy
| | - Héctor J. Soto Parra
- Division of Medical Oncology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| |
Collapse
|
33
|
|
34
|
Nagata Y, Maciejewski JP. The functional mechanisms of mutations in myelodysplastic syndrome. Leukemia 2019; 33:2779-2794. [PMID: 31673113 DOI: 10.1038/s41375-019-0617-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Overlapping spectrum of mutated genes affected in myelodysplastic syndrome (MDS) and primary acute myeloid leukemia suggest common pathogenic mechanisms. However, the frequencies of specific mutations are significantly different between them, which implies they might determine specific disease phenotype. For instance, there are overrepresentations of mutations in RNA splicing factors or epigenetic regulators in MDS. We provide an overview of recent advances in our understanding of the biology of MDS and related disorders. Our focus is how mutations of in splicing factors or epigenetic regulators identified in MDS patients demonstrate phenotypes in knockin/knockout mouse models. For instance, mutant Srsf2 mice could alter Srsf2's normal sequence-specific RNA binding activity. It exhibited changing in the recognition of specific exonic splicing enhancer motifs to drive recurrent missplicing of Ezh2, which reduces Ezh2 expression by promoting nonsense-mediated decay. Consistent with this, SRSF2 mutations are mutually exclusive with EZH2 loss-of-function mutations in MDS patients. We also review how gene editing technology identified unique associations between pathogenic mechanisms and targeted therapy using lenalidomide, including: (i) how haploinsufficiency of the genes located in the commonly deleted region in del(5q) MDS patients promotes MDS; (ii) how lenalidomide causes selective elimination of del(5q) MDS cells; and (iii) why del(5q) MDS patients become resistant to lenalidomide. Thus, this review describes our current understanding of the mechanistic and biological effects of mutations in spliceosome and epigenetic regulators by comparing wild-type normal to mutant function as well as a brief overview of the recent progresses in MDS biology.
Collapse
Affiliation(s)
- Yasunobu Nagata
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, USA.
| |
Collapse
|
35
|
Zeng H, He H, Guo L, Li J, Lee M, Han W, Guzman AG, Zang S, Zhou Y, Zhang X, Goodell MA, King KY, Sun D, Huang Y. Antibiotic treatment ameliorates Ten-eleven translocation 2 (TET2) loss-of-function associated hematological malignancies. Cancer Lett 2019; 467:1-8. [PMID: 31563562 DOI: 10.1016/j.canlet.2019.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022]
Abstract
TET2 is among the most frequently mutated genes in hematological malignancies, as well as in healthy individuals with clonal hematopoiesis. Inflammatory stress is known to promote the expansion of Tet2-deficient hematopoietic stem cells, as well as the initiation of pre-leukemic conditions. Infection is one of the most frequent complications in hematological malignancies and antibiotics are commonly used to suppress infection-induced inflammation, but their application in TET2 mutation-associated cancers remained underexplored. In this study, we discovered that Tet2 depletion led to aberrant expansion of myeloid cells, which was correlated with elevated serum levels of pro-inflammatory cytokines at the pre-malignant stage. Antibiotics treatment suppressed the growth of Tet2-deficient myeloid and lymphoid tumor cells in vivo. Transcriptomic profiling further revealed significant changes in the expression of genes involved in the TNF-α signaling and other immunomodulatory pathways in antibiotics-treated tumor cells. Pharmacological inhibition of TNF-α signaling partially attenuated Tet2-deficient tumor cell growth in vivo. Therefore, our findings establish the feasibility of targeting pro-inflammatory pathways to curtail TET2 inactivation-associated hematological malignancies.
Collapse
Affiliation(s)
- Hongxiang Zeng
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Hailan He
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA; Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lei Guo
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Minjung Lee
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wei Han
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Anna G Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shengbing Zang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Xiaotian Zhang
- Van Andel Institute, Center for Epigenetics, Grand Rapids, MI, 49503, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katherine Y King
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deqiang Sun
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Abstract
TET2 is a well-established tumor suppressor in the context of myeloid malignancies, but its role in lymphoma development has been less clear. In this issue of Cancer Discovery, Dominguez and colleagues report that TET2 function is critical for germinal center exit and plasma cell differentiation, and its deficiency can lead to B-cell lymphoma phenotypes.See related article by Dominguez et al., p. 1632.
Collapse
Affiliation(s)
- Jennifer R Shingleton
- Cancer Genetics and Genomics Program, Duke Cancer Institute, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Sandeep S Dave
- Cancer Genetics and Genomics Program, Duke Cancer Institute, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina.
| |
Collapse
|
37
|
Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med 2019; 25:403-418. [PMID: 30842676 DOI: 10.1038/s41591-019-0376-8] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic dysregulation is a common feature of most cancers, often occurring directly through alteration of epigenetic machinery. Over the last several years, a new generation of drugs directed at epigenetic modulators have entered clinical development, and results from these trials are now being disclosed. Unlike first-generation epigenetic therapies, these new agents are selective, and many are targeted to proteins which are mutated or translocated in cancer. This review will provide a summary of the epigenetic modulatory agents currently in clinical development and discuss the opportunities and challenges in their development. As these drugs advance in the clinic, drug discovery has continued with a focus on both novel and existing epigenetic targets. We will provide an overview of these efforts and the strategies being employed.
Collapse
|
38
|
Abstract
Epigenetic alterations such as DNA methylation defects and aberrant covalent histone modifications occur within all cancers and are selected for throughout the natural history of tumor formation, with changes being detectable in early onset, progression, and ultimately recurrence and metastasis. The ascertainment and use of these marks to identify at-risk patient populations, refine diagnostic criteria, and provide prognostic and predictive factors to guide treatment decisions are of growing clinical relevance. Furthermore, the targetable nature of epigenetic modifications provides a unique opportunity to alter treatment paradigms and provide new therapeutic options for patients whose malignancies possess these aberrant epigenetic modifications, paving the way for new and personalized medicine. DNA methylation has proven to be of significant clinical utility for its stability and relative ease of testing. The intent of this review is to elaborate upon well-supported examples of epigenetic precision medicine and how the field is moving forward, primarily in the context of aberrant DNA methylation.
Collapse
Affiliation(s)
- Rachael J Werner
- From the *Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | | | |
Collapse
|
39
|
Dysplastic features seen in a patient with acute myeloid leukemia harboring the KTM2A-TET1 fusion gene. Int J Hematol 2018; 108:1-2. [PMID: 29744807 DOI: 10.1007/s12185-018-2469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 10/16/2022]
|
40
|
Blastic plasmacytoid dendritic cell neoplasm arising from clonal hematopoiesis. Int J Hematol 2018; 108:447-451. [DOI: 10.1007/s12185-018-2461-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
|
41
|
|
42
|
Andersen GB, Tost J. A Summary of the Biological Processes, Disease-Associated Changes, and Clinical Applications of DNA Methylation. Methods Mol Biol 2018; 1708:3-30. [PMID: 29224136 DOI: 10.1007/978-1-4939-7481-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation at cytosines followed by guanines, CpGs, forms one of the multiple layers of epigenetic mechanisms controlling and modulating gene expression through chromatin structure. It closely interacts with histone modifications and chromatin remodeling complexes to form the local genomic and higher-order chromatin landscape. DNA methylation is essential for proper mammalian development, crucial for imprinting and plays a role in maintaining genomic stability. DNA methylation patterns are susceptible to change in response to environmental stimuli such as diet or toxins, whereby the epigenome seems to be most vulnerable during early life. Changes of DNA methylation levels and patterns have been widely studied in several diseases, especially cancer, where interest has focused on biomarkers for early detection of cancer development, accurate diagnosis, and response to treatment, but have also been shown to occur in many other complex diseases. Recent advances in epigenome engineering technologies allow now for the large-scale assessment of the functional relevance of DNA methylation. As a stable nucleic acid-based modification that is technically easy to handle and which can be analyzed with great reproducibility and accuracy by different laboratories, DNA methylation is a promising biomarker for many applications.
Collapse
Affiliation(s)
- Gitte Brinch Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
43
|
Coordinate Regulation of TET2 and EBNA2 Controls the DNA Methylation State of Latent Epstein-Barr Virus. J Virol 2017; 91:JVI.00804-17. [PMID: 28794029 DOI: 10.1128/jvi.00804-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) latency and its associated carcinogenesis are regulated by dynamic changes in DNA methylation of both virus and host genomes. We show here that the ten-eleven translocation 2 (TET2) gene, implicated in hydroxymethylation and active DNA demethylation, is a key regulator of EBV latency type DNA methylation patterning. EBV latency types are defined by DNA methylation patterns that restrict expression of viral latency genes. We show that TET2 mRNA and protein expression correlate with the highly demethylated EBV type III latency program permissive for expression of EBNA2, EBNA3s, and LMP transcripts. We show that short hairpin RNA (shRNA) depletion of TET2 results in a decrease in latency gene expression but can also trigger a switch to lytic gene expression. TET2 depletion results in the loss of hydroxymethylated cytosine and a corresponding increase in cytosine methylation at key regulatory regions on the viral and host genomes. This also corresponded to a loss of RBP-jκ binding and decreased histone H3K4 trimethylation at these sites. Furthermore, we show that the TET2 gene itself is regulated in a fashion similar to that of the EBV genome. Chromatin immunoprecipitation high-throughput sequencing (ChIP-seq) revealed that the TET2 gene contains EBNA2-dependent RBP-jκ and EBF1 binding sites and is subject to DNA methylation-associated transcriptional silencing similar to what is seen in EBV latency type III genomes. Finally, we provide evidence that TET2 colocalizes with EBNA2-EBF1-RBP-jκ binding sites and can interact with EBNA2 by coimmunoprecipitation. Taken together, these findings indicate that TET2 gene transcripts are regulated similarly to EBV type III latency genes and that TET2 protein is a cofactor of EBNA2 and coregulator of the EBV type III latency program and DNA methylation state.IMPORTANCE Epstein-Barr virus (EBV) latency and carcinogenesis involve the selective epigenetic modification of viral and cellular genes. Here, we show that TET2, a cellular tumor suppressor involved in active DNA demethylation, plays a central role in regulating the DNA methylation state during EBV latency. TET2 is coordinately regulated and functionally interacts with the viral oncogene EBNA2. TET2 and EBNA2 function cooperatively to demethylate genes important for EBV-driven B-cell growth transformation.
Collapse
|
44
|
Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions. Int J Hematol 2017; 106:18-26. [PMID: 28540498 DOI: 10.1007/s12185-017-2261-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) exhibit multilineage differentiation and self-renewal activities that maintain the entire hematopoietic system during an organism's lifetime. These abilities are sustained by intrinsic transcriptional programs and extrinsic cues from the microenvironment or niche. Recent studies using metabolomics technologies reveal that metabolic regulation plays an essential role in HSC maintenance. Metabolic pathways provide energy and building blocks for other factors functioning at steady state and in stress. Here we review recent advances in our understanding of metabolic regulation in HSCs relevant to cell cycle quiescence, symmetric/asymmetric division, and proliferation following stress and lineage commitment, and discuss the therapeutic potential of targeting metabolic factors or pathways to treat hematological malignancies.
Collapse
|