1
|
Burke S, Chowdhury O, Rouault‐Pierre K. Low-risk MDS-A spotlight on precision medicine for SF3B1-mutated patients. Hemasphere 2025; 9:e70103. [PMID: 40124717 PMCID: PMC11926769 DOI: 10.1002/hem3.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
A deep understanding of the biological mechanisms driving the pathogenesis of myelodysplastic neoplasms (MDS) is essential to develop comprehensive therapeutic approaches that will benefit patient's disease management and quality of life. In this review, we focus on MDS harboring mutations in the splicing factor SF3B1. Clones harboring this mutation arise from the most primitive hematopoietic compartment and expand throughout the entire myeloid lineage, exerting distinct effects at various stages of differentiation. Supportive care, particularly managing anemia, remains essential in SF3B1-mutated MDS. While SF3B1 mutations are frequently linked with ring sideroblasts and iron overload due to impaired erythropoiesis, the current therapeutic landscape fails to adequately address the underlying disease biology, particularly in transfusion-dependent patients, where further iron overload contributes to increased morbidity and mortality. Novel agents such as Luspatercept and Imetelstat have shown promise, but their availability remains restricted and their long-term efficacy is to be investigated. Spliceosome modulators have failed to deliver and inhibitors of inflammatory pathways, including TLR and NF-κB inhibitors, are still under investigation. This scarcity of effective and disease-modifying therapies highlights the unmet need for new approaches tailored to the molecular and genetic abnormalities in SF3B1-mutated MDS. Emerging strategies targeting metabolic mis-splicing (e.g., COASY) with vitamin B5, pyruvate kinase activators, and inhibitors of oncogenic pathways like MYC and BCL-2 represent potential future avenues for treatment, but their clinical utility remains to be fully explored. The current limitations in treatment underscore the urgency of developing novel, more effective therapies for patients with SF3B1-mutated MDS.
Collapse
Affiliation(s)
- Shoshana Burke
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Onima Chowdhury
- Oxford University Hospitals NHS Foundation TrustOxfordUK
- Molecular Haematology Unit, Weatherall institute of Molecular Medicine NHR, Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Kevin Rouault‐Pierre
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
2
|
Chen ZG, Xie YT, Yang C, Xiao T, Chen SY, Wu JH, Guo QN, Gao L. M2 macrophages secrete CCL20 to regulate iron metabolism and promote daunorubicin resistance in AML cells. Life Sci 2025; 361:123297. [PMID: 39645162 DOI: 10.1016/j.lfs.2024.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Chemotherapy resistance is a significant clinical challenge in the treatment of leukemia. M2 macrophages have been identified as key contributors to the development of chemotherapy resistance in cancer, yet the precise mechanisms by which macrophages regulate this resistance remain elusive. Our study has identified CCL20 as a pivotal factor in the promotion of chemoresistance in AML cells by M2 macrophages. The chemotherapeutic agent daunorubicin induces a marked increase in ROS and lipid peroxidation levels within AML cells. This is accompanied by the inhibition of the SLC7A11/GCL/GPX4 signaling axis, elevated levels of intracellular free iron, disrupted iron metabolism, and consequent mitochondrial damage, ultimately leading to ferroptosis. Notably, CCL20 enhances the ability of AML cells to maintain iron homeostasis by upregulating SLC7A11 protein activity, mitigating mitochondrial damage, and inhibiting ferroptosis, thereby contributing to chemotherapy resistance. Furthermore, in vivo experiments demonstrated that blocking CCL20 effectively restores the sensitivity of AML cells to daunorubicin chemotherapy. Collectively, these findings underscore the complex interplay between M2 macrophages, CCL20 signaling, and chemotherapy resistance in AML, highlighting potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Zhi-Gang Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Yu-Tong Xie
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Chao Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Tong Xiao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Si-Yu Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Jun-Hong Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Qiao-Nan Guo
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037.
| |
Collapse
|
3
|
Antypiuk A, Vance SZ, Sharma R, Passos S, Asperti M, Navaneethabalakrishan S, Dürrenberger F, Manolova V, Vinchi F. Genetic iron overload aggravates, and pharmacological iron restriction improves, MDS pathophysiology in a preclinical study. Blood 2025; 145:155-169. [PMID: 39437711 DOI: 10.1182/blood.2024026135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Although iron overload is a common feature in myelodysplastic syndromes (MDS), it remains unclear how iron excess is detrimental for disease pathophysiology. Taking advantage of complementary approaches, we analyzed the impact of iron overload and restriction achieved through genetic activation of ferroportin (FPN) via the C326S mutation (FPNC326S) and pharmacologic inhibition (vamifeport) of the iron exporter FPN, respectively, in a MDS mouse model. Although FPNC326S-induced iron overload did not significantly improve the late stages of erythroid maturation, vamifeport-mediated iron restriction ameliorated anemia and red blood cell maturation in MDS mice, through the reduction of oxidative stress and apoptosis in erythroid progenitors. Iron overload aggravated, and restriction alleviated, reactive oxygen species formation, DNA damage, and cell death in hematopoietic stem and progenitor cells (HSPCs), resulting in altered cell survival and quality. Finally, myeloid bias, indicated by expanded bone marrow myeloid progenitors and circulating immature myeloid blasts, was exacerbated by iron excess and attenuated by iron restriction. Overall, vamifeport treatment resulted in improved anemia and significant survival increment in MDS mice. Interestingly, the combined therapy with vamifeport and the erythroid maturation agent luspatercept has superior effect in improving anemia and myeloid bias as compared with single treatments and offers additive beneficial effects in MDS. Our results prove, to our knowledge, for the first time in a preclinical model, that iron plays a pathologic role in transfusion-independent MDS. This is likely aggravated by transfusional iron overload, as suggested by observations in the FPNC326SMDS model. Ultimately, the beneficial effects of pharmacologic FPN inhibition uncovers the therapeutic potential of early prevention of iron toxicity in transfusion-independent MDS.
Collapse
Affiliation(s)
- Ada Antypiuk
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - S Zebulon Vance
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Richa Sharma
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Sara Passos
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Michela Asperti
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | | | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
4
|
McGraw KL, Larson DR. Implications for metabolic disturbances in myelodysplastic syndromes. Semin Hematol 2024; 61:470-478. [PMID: 39603905 PMCID: PMC11646176 DOI: 10.1053/j.seminhematol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The Myelodysplastic Syndromes (MDS) are heterogeneous stem cell malignancies clinically characterized by bone marrow dysplasia, peripheral blood cytopenias, and a high risk for transformation to acute myeloid leukemia. In early stages of disease, differentiation defects and maturation blocks result in deficient hematopoiesis. In higher risk disease, unrestricted proliferation of immature blast cells leads to leukemogenesis. Disease pathogenesis can be attributed to many factors including chronic inflammation that is driven in part by commonly found somatic gene mutations (SGM) fostering expansion of malignant clones while suppressing normal hematopoiesis. Cellular metabolism that both directly and indirectly regulates hematopoietic stem cell (HSC) fate, is intimately connected to the immune system, is altered by MDS somatic gene mutations and is likely is a major contributor to disease pathophysiology. Despite this likely role in pathobiology, there is an underwhelming depth of literature on the subject and the precise metabolic dysregulations in these myeloid malignancies have yet to be fully delineated. In this review, we will provide a general overview of several major metabolic processes and how each directs HSC fate, provide a summary of metabolic studies in MDS, discuss how common SGM and inflammation influence metabolic pathways to drive bone marrow failure, and end with a discussion of standards of care and how these should be carefully considered in the context of metabolic dysregulation.
Collapse
Affiliation(s)
- Kathy L McGraw
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872.
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872
| |
Collapse
|
5
|
Jeffries NE, Sadreyev D, Trull EC, Chetal K, Yvanovich EE, Mansour MK, Sadreyev RI, Sykes DB. Deferasirox, an iron chelator, impacts myeloid differentiation by modulating NF-kB activity via mitochondrial ROS. Br J Haematol 2024; 205:2000-2007. [PMID: 39327763 PMCID: PMC11568922 DOI: 10.1111/bjh.19782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
The iron chelator deferasirox (DFX) is effective in the treatment of iron overload. In certain patients with myelodysplastic syndrome, DFX can also provide a dramatic therapeutic benefit, improving red blood cell production and decreasing transfusion requirements. Nuclear Factor-kappa B (NF-kB) signalling has been implicated as a potential mechanism behind this phenomenon, with studies focusing on the effect of DFX on haematopoietic progenitors. Here, we examine the phenotypic and transcriptional effects of DFX throughout myeloid cell maturation in both murine and human model systems. The effect of DFX depends on the stage of differentiation, with effects on mitochondrial reactive oxygen species (ROS) production and NF-kB pathway regulation that vary between progenitors and neutrophils. DFX triggers a greater increase in mitochondrial ROS production in neutrophils and this phenomenon is mitigated when cells are cultured in hypoxic conditions. Single-cell transcriptomic profiling revealed that DFX decreases the expression of NF-kB and MYC (c-Myc) targets in progenitors and decreases the expression of PU.1 (SPI1) gene targets in neutrophils. Together, these data suggest a role of DFX in impairing terminal maturation of band neutrophils.
Collapse
Affiliation(s)
- Nathan E. Jeffries
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Sadreyev
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elizabeth C. Trull
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emma E. Yvanovich
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Department of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Zhang M, Liu M, Yang L, Liu Y, Niu H, Yu Y, Zhang Y, Yang J, Tang P, Shao Z, Xing L, Wang H. Increased ferroptosis of erythrocytes is associated with myelodysplastic syndromes. Ann Hematol 2024; 103:4009-4020. [PMID: 39177794 DOI: 10.1007/s00277-024-05946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Anemia is the most common symptom in patients with myelodysplastic syndromes (MDS). Programmed cell death of erythrocytes is one of the contributing factors to anemia. Ferroptosis is a newly identified form of iron-dependent cell death. The aim of this study is to investigate whether anemia in MDS patients is associated with ferroptosis of nucleated erythrocytes(NEs).We detected lipid peroxidation levels, Fe2+ contents, cell death rates, glutathione (GSH) and malondialdehyde (MDA) levels in bone marrow CD235a+ NEs of MDS patients. Expression levels of ferroptosis-related molecules (ACSL4, GPX4, and SLC7A11) were evaluated through qRT-PCR and Western Blotting. Correlation between these markers and clinical parameters were analyzed. To further substantiate that the mode of cell death with CD235a+ NEs of MDS patients was attributed to the ferroptosis pathway, we applied Fer-1 to inhibit ferroptosis. Cell viability was assessed using CCK8, and changes in ferroptosis-related indicators were simultaneously evaluated. We discover that the ferroptosis level of bone marrow NEs in MDS patients was increased, which is related to anemia and iron overload. Ferroptosis might be one of the causes of anemia in MDS patients.
Collapse
Affiliation(s)
- Mengying Zhang
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China
| | - Mengyuan Liu
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China
| | - Liyan Yang
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China
| | - Yumei Liu
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China
| | - Haiyue Niu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yating Yu
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China
| | - Yue Zhang
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China
| | - Jinyue Yang
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China
| | - Pu Tang
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China
| | - Zonghong Shao
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China
| | - Limin Xing
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China.
| | - Huaquan Wang
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, China.
| |
Collapse
|
7
|
Aboulela M, Collins A. Efficacy of Epoetin Alfa in Managing Symptomatic Anaemia in Low-Risk Myelodysplastic Syndromes: A Retrospective Analysis. Cureus 2024; 16:e72460. [PMID: 39463913 PMCID: PMC11512730 DOI: 10.7759/cureus.72460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 10/29/2024] Open
Abstract
Background Myelodysplastic syndromes (MDS) are clonal myeloid disorders characterised by ineffective haematopoiesis, leading to anaemia that often requires dependence on red blood cell (RBC) transfusions. Epoetin alfa (Eprex®) is now a mainstay in the management of symptomatic anaemia in low-risk MDS patients, reducing transfusion dependence and improving the quality of life in this patient group. Objective This retrospective study aimed to assess the efficacy of epoetin alfa in treating symptomatic anaemia in low-risk MDS patients, focusing on transfusion independence and its relationship with baseline erythropoietin (EPO) levels and haemoglobin (Hb) response. Methods Data from 56 patients with low-risk MDS treated with epoetin alfa at Norfolk and Norwich University Hospital, Norwich, United Kingdom, between 2018 and 2023 were retrospectively analysed. Baseline EPO levels, transfusion history, Hb response, and the duration of transfusion independence were assessed. Statistical analyses were performed to evaluate the correlation between baseline characteristics and treatment outcomes. Results Among the patients, 98.2% had baseline EPO levels below the 500 IU/L threshold, with a median EPO level of 74.3 IU/L. Following an eight-week trial of 30,000 units of epoetin-alfa, 41.1% of patients showed improved Hb levels, 41.1% maintained stable Hb levels, and 17.9% experienced a decline. A significant correlation was found between lower baseline EPO levels (<250 IU/L) and a positive treatment response (p = 0.0065). Additionally, patients who required fewer transfusions before treatment had longer durations of transfusion independence (correlation coefficient = -0.40, p = 0.015). Dose escalation to 60,000 units provided a benefit to 53.3% of patients with initially stable Hb levels. The average duration of transfusion independence was 8.1 months, and patients with improved Hb levels had the longest periods of transfusion independence (p = 0.005). Conclusion Epoetin alfa is an effective therapy for managing symptomatic anaemia in low-risk MDS patients. This study highlights its efficacy and provides valuable predictive information, particularly showing that patients with lower baseline EPO levels are more likely to respond to treatment. While prior transfusion dependence did not significantly predict response to therapy in this cohort, it was associated with the duration of transfusion independence.
Collapse
Affiliation(s)
- Mohamed Aboulela
- Haematology, Norfolk and Norwich University Hospital, Norwich, GBR
- Medical Oncology, The Royal Marsden NHS Foundation Trust, London, GBR
| | - Angela Collins
- Haematology, Norfolk and Norwich University Hospital, Norwich, GBR
| |
Collapse
|
8
|
Shirai CL, Ruzinova MB, Barber P, Bianchi E, Ackerman JM, Wang T, Parrish S, Frater JL. Validation of an automated iron stain process for use with bone marrow aspirate smear slides. J Hematop 2024; 17:121-128. [PMID: 38771403 DOI: 10.1007/s12308-024-00586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The assessment of bone marrow iron stores is typically performed on an aspirate smear slide that has been manually stained by a technologist using a commercially available kit. This approach can contribute to inconsistent results and limit the broad use of iron staining in bone marrow specimens, particularly when laboratories have low staffing and/or high specimen volumes. Here, we describe the adaptation and validation of the Ventana Benchmark automated stainer and iron stain kit for routine clinical use of staining iron in bone marrow aspirate smear slides. We assessed accuracy and precision of the Ventana automated iron staining protocol compared to the Perls Prussian blue manual iron staining index method. Hematopathologists assigned Gale scores and enumerated the percentages of erythroid sideroblasts on paired patient bone marrow aspirate smear slides stained by the automated method and the manual iron staining method. We found a similar level of performance of the Ventana automated iron stain relative to the index manual method (as assessed by Pearson correlation and Bland-Altman analyses). In addition, there was low imprecision between replicates performed via the automated iron stain protocol. We also report superior qualitative findings of the automated method in ease of localization of iron storage, visualization of sideroblasts, and counterstain consistency. Automated iron staining of bone marrow aspirate smear slides performed similarly to the manual method and may allow for accurate routine evaluation of bone marrow iron stores as part of bone marrow analysis.
Collapse
Affiliation(s)
- Cara Lunn Shirai
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, 3rd Floor, Rm 3421, Institute of Health Bldg, St. Louis, MO, 63110, USA
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, 3rd Floor, Rm 3421, Institute of Health Bldg, St. Louis, MO, 63110, USA
| | - Philip Barber
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, 3rd Floor, Rm 3421, Institute of Health Bldg, St. Louis, MO, 63110, USA
| | | | - Julie M Ackerman
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, 3rd Floor, Rm 3421, Institute of Health Bldg, St. Louis, MO, 63110, USA
| | - Tianjiao Wang
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, 3rd Floor, Rm 3421, Institute of Health Bldg, St. Louis, MO, 63110, USA
| | | | - John L Frater
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, 3rd Floor, Rm 3421, Institute of Health Bldg, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Rabadiya SM, Yogesh M, Nagda J, Gandhi R, Makwana N. Association of serum ferritin trends with liver enzyme patterns in β-thalassemia major: A longitudinal correlational study. J Family Med Prim Care 2024; 13:2698-2702. [PMID: 39070990 PMCID: PMC11272003 DOI: 10.4103/jfmpc.jfmpc_1897_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 07/30/2024] Open
Abstract
Background β-Thalassemia major patients require lifelong blood transfusions, leading to iron overload and liver injury. This study examines the longitudinal association between serum ferritin and liver function over 5 years in pediatric patients. Methods This retrospective study included 582 transfusion-dependent thalassemia patients aged 1-18 years. Serum ferritin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and albumin were measured annually. Correlation and linear regression analyses assessed associations between ferritin trajectories and liver enzymes. Results Mean ferritin rose from 1820 ± 960 ng/mL at baseline to 4500 ± 1900 ng/mL at year 5, indicating worsening iron overload. AST and ALT levels also steadily climbed over follow-up, whereas albumin declined slightly. Ferritin correlated positively with AST (r = 0.675, P < 0.01) and ALT (r = 0.607, P < 0.01), but not with albumin (r = -0.143, P = 0.153) annually. The regression interaction term showed within-patient ferritin increases over time were independently associated with escalating AST and ALT (P < 0.05), after adjusting for confounders. Conclusion Rising ferritin levels predict progressive liver injury in regularly transfused pediatric thalassemia patients. Tighter control of iron overload may help preserve hepatic function.
Collapse
Affiliation(s)
- Samarth Mukesh Rabadiya
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| | - M Yogesh
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| | - Jay Nagda
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| | - Rohankumar Gandhi
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| | - Naresh Makwana
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| |
Collapse
|
10
|
Abba ML, Riabov V, Nowak D, Hofmann WK, Boch T. Understanding iron homeostasis in MDS: the role of erythroferrone. Front Oncol 2024; 14:1404817. [PMID: 38835379 PMCID: PMC11148345 DOI: 10.3389/fonc.2024.1404817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) are a heterogenous group of clonal stem cell disorders characterized by dysplasia and cytopenia in one or more cell lineages. Anemia is a very common symptom that is often treated with blood transfusions and/or erythropoiesis stimulating factors. Iron overload results from a combination of these factors together with the disease-associated ineffective erythropoiesis, that is seen especially in MDS cases with SF3B1 mutations. A growing body of research has shown that erythroferrone is an important regulator of hepcidin, the master regulator of systemic iron homeostasis. Consequently, it is of interest to understand how this molecule contributes to regulating the iron balance in MDS patients. This short review evaluates our current understanding of erythroferrone in general, but more specifically in MDS and seeks to place in context how the current knowledge could be utilized for prognostication and therapy.
Collapse
Affiliation(s)
- Mohammed L Abba
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Tobias Boch
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| |
Collapse
|
11
|
Nguyen K, Tang J, Cho S, Ying F, Sung HK, Jahng JW, Pantopoulos K, Sweeney G. Salubrinal promotes phospho-eIF2α-dependent activation of UPR leading to autophagy-mediated attenuation of iron-induced insulin resistance. Mol Metab 2024; 83:101921. [PMID: 38527647 PMCID: PMC11027572 DOI: 10.1016/j.molmet.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Identification of new mechanisms mediating insulin sensitivity is important to allow validation of corresponding therapeutic targets. In this study, we first used a cellular model of skeletal muscle cell iron overload and found that endoplasmic reticulum (ER) stress and insulin resistance occurred after iron treatment. Insulin sensitivity was assessed using cells engineered to express an Akt biosensor, based on nuclear FoxO localization, as well as western blotting for insulin signaling proteins. Use of salubrinal to elevate eIF2α phosphorylation and promote the unfolded protein response (UPR) attenuated iron-induced insulin resistance. Salubrinal induced autophagy flux and its beneficial effects on insulin sensitivity were not observed in autophagy-deficient cells generated by overexpressing a dominant-negative ATG5 mutant or via knockout of ATG7. This indicated the beneficial effect of salubrinal-induced UPR activation was autophagy-dependent. We translated these observations to an animal model of systemic iron overload-induced skeletal muscle insulin resistance where administration of salubrinal as pretreatment promoted eIF2α phosphorylation, enhanced autophagic flux in skeletal muscle and improved insulin responsiveness. Together, our results show that salubrinal elicited an eIF2α-autophagy axis leading to improved skeletal muscle insulin sensitivity both in vitro and in mice.
Collapse
Affiliation(s)
- Khang Nguyen
- Department of Biology, York University, Toronto, ON, Canada
| | - Jialing Tang
- Department of Biology, York University, Toronto, ON, Canada
| | - Sungji Cho
- Department of Biology, York University, Toronto, ON, Canada
| | - Fan Ying
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
12
|
Favale G, Donnarumma F, Capone V, Della Torre L, Beato A, Carannante D, Verrilli G, Nawaz A, Grimaldi F, De Simone MC, Del Gaudio N, Megchelenbrink WL, Caraglia M, Benedetti R, Altucci L, Carafa V. Deregulation of New Cell Death Mechanisms in Leukemia. Cancers (Basel) 2024; 16:1657. [PMID: 38730609 PMCID: PMC11083363 DOI: 10.3390/cancers16091657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression. In the past decade, leukemia research has predominantly centered around modulating the well-established processes of apoptosis (type I cell death) and autophagy (type II cell death). However, the development of therapy resistance and the adaptive nature of leukemic clones have rendered targeting these cell death pathways ineffective. The identification of novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD), has provided researchers with new tools to overcome survival mechanisms and activate alternative molecular pathways. This review aims to synthesize information on these recently discovered RCD mechanisms in the major types of leukemia, providing researchers with a comprehensive overview of cell death and its modulation.
Collapse
Affiliation(s)
- Gregorio Favale
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Federica Donnarumma
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Vincenza Capone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Antonio Beato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Daniela Carannante
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Giulia Verrilli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Asmat Nawaz
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Francesco Grimaldi
- Dipartimento di Medicina Clinica e Chirurgia, Divisione di Ematologia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | | | - Nunzio Del Gaudio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Wouter Leonard Megchelenbrink
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Michele Caraglia
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), 80131 Napoli, Italy
- Programma di Epigenetica Medica, A.O.U. “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
13
|
Wiśniewski K, Pruszczyk-Matusiak K, Puła B, Lech-Marańda E, Góra-Tybor J. Real-World Outcome and Prognostic Factors in MDS Patients Treated with Azacitidine-A Retrospective Analysis. Cancers (Basel) 2024; 16:1333. [PMID: 38611011 PMCID: PMC11011162 DOI: 10.3390/cancers16071333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Azacitidine (AZA) is recognized as a vital drug used in the therapy of myelodysplastic syndromes (MDS) due to its beneficial effect on survival and quality of life. Nevertheless, many patients fail to respond to AZA treatment, as prognostic factors still are not identified. The present retrospective analysis included 79 patients with MDS treated with AZA as first-line therapy in a real-life setting. The percentage of patients with good, intermediate, and poor cytogenetics was 46.8%, 11.4%, and 34.2%, respectively. The overall response rate (complete remission [CR], partial remission [PR], and hematological improvement [HI]) was 24%. The CR, PR, and HI rates were 13.9%, 2.5%, and 7.6%, respectively. Stable disease (SD) was documented in 40.5% of patients. The median overall survival (OS) and progression-free survival (PFS) were 17.6 and 14.96 months, respectively. Patients with ORR and SD had a significantly longer median OS (23.8 vs. 5.7 months, p = 0.0005) and PFS (19.8 vs. 3.5 months, p < 0.001) compared to patients who did not respond to AZA. In univariate analysis, only an unfavorable cytogenetic group was a prognostic factor of a lower response rate (p = 0.03). In a multivariate model, older age (p = 0.047), higher IPSS (International Prognostic Scoring System) risk (p = 0.014), and higher IPSS-R cytogenetic risk (p = 0.004) were independent factors of shorter OS. Independent prognostic factors for shorter PFS were age (p = 0.001), IPSS risk (p = 0.02), IPSS cytogenetic risk (p = 0.002), and serum ferritin level (p = 0.008). The safety profile of AZA was predictable and consistent with previous studies. In conclusion, our study confirms the efficacy and safety of AZA in a real-world population and identifies potential biomarkers for response and survival.
Collapse
Affiliation(s)
- Kamil Wiśniewski
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland (E.L.-M.)
| | | | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland (E.L.-M.)
| | - Ewa Lech-Marańda
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland (E.L.-M.)
| | - Joanna Góra-Tybor
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
| |
Collapse
|
14
|
Xu X, Zhao H, Wang J, Kuklin A, Ågren H, Deng X, Huang T, Baryshnikov G, Wei Y, Zhang H. Synthesis of iron-boride/carbon-nitride composites and their applications in chemodynamic therapy. J Colloid Interface Sci 2024; 658:276-285. [PMID: 38104410 DOI: 10.1016/j.jcis.2023.12.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging treatment strategy that inhibits tumor growth by catalyzing the generation of reactive oxygen species (ROS), such as hydroxyl radicals (•OH), using specific nanomaterials. Herein, we have developed a new class of iron-based nanomaterials, i.e., iron-based borides (FeB), using the superchaotropic effect of a boron cluster (closo-[B12H12]2-) and organic ligands, followed by high-temperature calcination. Experimental data and theoretical calculations revealed that FeB nanoparticles exhibit a Fenton-like effect, efficiently decomposing hydrogen peroxide into •OH and thus increasing the concentration of ROS. FeB nanomaterials demonstrate excellent catalytic performance, efficiently generate ROS, and exert significant antitumor effects in cell experiments and animal models. Therefore, FeB nanomaterials have considerable potential for application in tumor treatment and offer new insights for the development of novel and efficient cancer therapy strategies.
Collapse
Affiliation(s)
- Xiaoran Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430072, China
| | - Haixu Zhao
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University Wuhan, 430072, China
| | - JiaJia Wang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University Wuhan, 430072, China
| | - Artem Kuklin
- Department of Physics and Astronomy, Division of X-ray Photon Science, Uppsala University. Lägerhyddsvägen 1, SE-75121 Uppsala, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Division of X-ray Photon Science, Uppsala University. Lägerhyddsvägen 1, SE-75121 Uppsala, Sweden
| | - Xuefan Deng
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University Wuhan, 430072, China.
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430072, China.
| | - Glib Baryshnikov
- Department of Science and Technology, Linköping University, Norrköping 60174, Sweden.
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430072, China.
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University Wuhan, 430072, China.
| |
Collapse
|
15
|
Xu F, Jin J, Guo J, Xu F, Chen J, Liu Q, Song L, Zhang Z, Zhou L, Su J, Xiao C, Zhang Y, Yan M, He Q, Wu D, Chang C, Li X, Wu L. The clinical characteristics, gene mutations and outcomes of myelodysplastic syndromes with diabetes mellitus. J Cancer Res Clin Oncol 2024; 150:71. [PMID: 38305890 PMCID: PMC10837231 DOI: 10.1007/s00432-023-05591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE Diabetes mellitus (DM) is the second most common comorbidity in myelodysplastic syndromes (MDS). The purpose of the study was to investigate the clinical characteristics of MDS patients with DM. METHODS A retrospective analysis was performed on the clinical data of 890 MDS patients with or without DM. Clinical data, including genetic changes, overall survival (OS), leukemia-free survival (LFS) and infection, were analyzed. RESULTS Among 890 patients, 184 (20.7%) had DM. TET2 and SF3B1 mutations occurred more frequently in the DM group than those in the non-DM group (p = 0.0092 and p = 0.0004, respectively). Besides, DM was an independent risk factor for infection (HR 2.135 CI 1.451-3.110, p = 0.000) in MDS. Compared to non-DM patients, MDS patients with DM had poor OS and LFS (p = 0.0002 and p = 0.0017, respectively), especially in the lower-risk group. While in multivariate analysis, DM did not retain its prognostic significance and the prognostic significance of infection was maintained (HR 2.488 CI 1.749-3.538, p = 0.000). CONCLUSIONS MDS patients with DM have an inferior prognosis which may due to higher infection incidence, with TET2 and SF3B1 mutations being more frequent in those cases.
Collapse
Affiliation(s)
- Fanhuan Xu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiacheng Jin
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Feng Xu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jianan Chen
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qi Liu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Luxi Song
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liyu Zhou
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Hematology, Shanghai Jiao Eighth People's Hospital, Shanghai, 200233, China
| | - Jiying Su
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Xiao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yumei Zhang
- Department of Hematology, Shanghai Jiao Eighth People's Hospital, Shanghai, 200233, China
| | - Meng Yan
- Department of Hematology, Shanghai Jiao Eighth People's Hospital, Shanghai, 200233, China
| | - Qi He
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xiao Li
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Lingyun Wu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Department of Hematology, Shanghai Jiao Eighth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
16
|
Słomka A, Pokrzywa A, Strzała D, Kubiaczyk M, Wesolowska O, Denkiewicz K, Styczyński J. The Role of Hepcidin in Myelodysplastic Syndromes (MDS): A Systematic Review of Observational Studies. Cancers (Basel) 2024; 16:332. [PMID: 38254820 PMCID: PMC10814117 DOI: 10.3390/cancers16020332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Iron overload emerges as a serious complication in myelodysplastic syndromes (MDS), particularly associated with frequent transfusions during the course of the disease. The discovery and description of hepcidin's mechanisms of action have contributed to a deeper understanding of iron metabolism. The existing literature reports a potential role of hepcidin in MDS, yet these data are fragmented and presented in an unstructured, somewhat chaotic manner. Hence, to address the existing data, we performed a systematic review of observational studies examining hepcidin levels in MDS. An extensive review of three bibliographic databases (Pubmed, Web of Science, and Scopus) enabled us to identify 12 observational studies. These studies focused primarily on adult patients with low-risk MDS who underwent transfusions and chelation therapy. An in-depth analysis of these manuscripts led to four main conclusions: (1) although high serum hepcidin levels are associated with MDS, most studies generally have not found a significant difference in these levels between patients and healthy individuals; (2) serum hepcidin levels are specific to MDS type; (3) serum hepcidin levels in MDS are strongly associated with transfusions and the genetic status of patients; and (4) high-risk MDS is associated with high serum hepcidin levels. While we have furnished a comprehensive summary of the significance of hepcidin in MDS, there are still gaps that future research should address. This pertains primarily to the capacity of hepcidin in predicting adverse outcomes for MDS patients and evaluating the efficacy of chelation therapy or the need for transfusion.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Anna Pokrzywa
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Dominika Strzała
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Maja Kubiaczyk
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Oliwia Wesolowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Kinga Denkiewicz
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
17
|
Duarte TL, Lopes M, Oliveira M, Santos AG, Vasco C, Reis JP, Antunes AR, Gonçalves A, Chacim S, Oliveira C, Porto B, Teles MJ, Moreira AC, Silva AMN, Schwessinger R, Drakesmith H, Henrique R, Porto G, Duarte D. Iron overload induces dysplastic erythropoiesis and features of myelodysplasia in Nrf2-deficient mice. Leukemia 2024; 38:96-108. [PMID: 37857886 DOI: 10.1038/s41375-023-02067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2-/- with hemochromatosis (Hfe-/-) or hepcidin-null (Hamp1-/-) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2/Hamp1-/- mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2/Hamp1-/- BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.
Collapse
Affiliation(s)
- Tiago L Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Marta Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mónica Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Catarina Vasco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Joana P Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Rita Antunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Andreia Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sérgio Chacim
- Serviço de Hematologia e Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria José Teles
- Departmento de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Ana C Moreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - André M N Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- LAQV-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rui Henrique
- Serviço de Anatomia Patológica, IPO Porto, Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Graça Porto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Serviço de Imuno-hemoterapia, Centro Hospitalar Universitário de Santo António (CHUdSA), Porto, Portugal
| | - Delfim Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Serviço de Hematologia e Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal.
- Departmento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
- P.CCC - Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal.
| |
Collapse
|
18
|
Schulz F, Hauch U, Ketzler-Henkel S, von der Heyde E, Koenigsmann M, Lauseker M, Schulte N, Germing U. Iron Chelation in Patients with Myelodysplastic Syndromes and Myeloproliferative Neoplasms-Real-World Data from the German Noninterventional Study EXCALIBUR. J Clin Med 2023; 12:6569. [PMID: 37892707 PMCID: PMC10607194 DOI: 10.3390/jcm12206569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Myelodysplastic syndromes and myeloproliferative neoplasms both represent hematologic diseases associated with bone marrow failure often resulting in anemia. For those patients, transfusion of red blood cell (RBC) units is essential but results in iron overload (IOL) that may affect various organ functions. Therefore, iron chelation therapy plays a major role in anemic patients, not only because it reduces IOL, but also because it may improve hematopoietic function by increasing hemoglobin or diminishing the requirement for RBC transfusions. To assess the utility, efficacy, and safety of the different iron chelation medications approved in Germany, as well as to examine the effect of chelation on hematopoietic insufficiency, a prospective, multicenter, noninterventional study named EXCALIBUR was designed. In total, 502 patients from 106 German hospitals and medical practices were enrolled. A large proportion of patients switched from a deferasirox dispersible tablet to a deferasirox-film-coated tablet, mainly because of more convenient application, which was reflected in the treatment satisfaction questionnaire for medication scores. Iron chelation was effective in lowering serum ferritin levels, with the observed adverse drug reactions being in line with the known safety profile. Hematologic response occurred in a few patients, comparable to other studies that examined hematologic improvement in patients with MDS.
Collapse
Affiliation(s)
- Felicitas Schulz
- Department for Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, 40225 Düsseldorf, Germany;
| | - Ulrich Hauch
- Practice for Hematology and Oncology, 99084 Erfurt, Germany
| | | | | | | | - Michael Lauseker
- Institut für Medizinische Informationsverarbeitung Biometrie und Epidemiologie (IBE), Fakultät für Medizin, Ludwig-Maximilians Universität München, 81377 Munich, Germany;
| | | | - Ulrich Germing
- Department for Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
19
|
Pontikoglou CG, Matheakakis A, Papadaki HA. The mesenchymal compartment in myelodysplastic syndrome: Its role in the pathogenesis of the disorder and its therapeutic targeting. Front Oncol 2023; 13:1102495. [PMID: 36761941 PMCID: PMC9907728 DOI: 10.3389/fonc.2023.1102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Myelodysplastic syndromes include a broad spectrum of malignant myeloid disorders that are characterized by dysplastic ineffective hematopoiesis, reduced peripheral blood cells counts and a high risk of progression to acute myeloid leukemia. The disease arises primarily because of accumulating chromosomal, genetic and epigenetic changes as well as immune-mediated alterations of the hematopoietic stem cells (HSCs). However, mounting evidence suggests that aberrations within the bone marrow microenvironment critically contribute to myelodysplastic syndrome (MDS) initiation and evolution by providing permissive cues that enable the abnormal HSCs to grow and eventually establish and propagate the disease. Mesenchymal stromal cells (MSCs) are crucial elements of the bone marrow microenvironment that play a key role in the regulation of HSCs by providing appropriate signals via soluble factors and cell contact interactions. Given their hematopoiesis supporting capacity, it has been reasonable to investigate MSCs' potential involvement in MDS. This review discusses this issue by summarizing existing findings obtained by in vitro studies and murine disease models of MDS. Furthermore, the theoretical background of targeting the BM-MSCs in MDS is outlined and available therapeutic modalities are described.
Collapse
Affiliation(s)
- Charalampos G. Pontikoglou
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece,Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece,*Correspondence: Charalampos G. Pontikoglou,
| | - Angelos Matheakakis
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece,Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
| | - Helen A. Papadaki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece,Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
20
|
Cappellini MD, Taher AT, Verma A, Shah F, Hermine O. Erythropoiesis in lower-risk myelodysplastic syndromes and beta-thalassemia. Blood Rev 2022; 59:101039. [PMID: 36577601 DOI: 10.1016/j.blre.2022.101039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The hematologic disorders myelodysplastic syndromes and beta-thalassemia are characterized by ineffective erythropoiesis and anemia, often managed with regular blood transfusions. Erythropoiesis, the process by which sufficient numbers of functional erythrocytes are produced from hematopoietic stem cells, is highly regulated, and defects can negatively affect the proliferation, differentiation, and survival of erythroid precursors. Treatments that directly target the underlying mechanisms of ineffective erythropoiesis are limited, and management of anemia with regular blood transfusions imposes a significant burden on patients, caregivers, and health care systems. There is therefore a strong unmet need for treatments that can restore effective erythropoiesis. Novel therapies are beginning to address this need by targeting a variety of mechanisms underlying erythropoiesis. Herein, we provide an overview of the role of ineffective erythropoiesis in myelodysplastic syndromes and beta-thalassemia, discuss unmet needs in targeting ineffective erythropoiesis, and describe current management strategies and emerging treatments for these disorders.
Collapse
Affiliation(s)
| | - Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Halim and Aida Daniel Academic and Clinical Center, Beirut, Lebanon.
| | - Amit Verma
- Albert Einstein College of Medicine, New York, NY, USA.
| | - Farrukh Shah
- Department of Haematology, Whittington Health NHS Trust, London, UK.
| | - Olivier Hermine
- Department of Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Cité, Paris, France; INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
21
|
Rozema J, van Asten I, Kwant B, Kibbelaar RE, Veeger NJGM, de Wit H, van Roon EN, Hoogendoorn M, the HemoBase Population Registry Consortium. Clinical view versus guideline adherence in ferritin monitoring and initiating iron chelation therapy in patients with myelodysplastic syndromes. Eur J Haematol Suppl 2022; 109:772-778. [PMID: 36130872 PMCID: PMC9828450 DOI: 10.1111/ejh.13865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES In patients with myelodysplastic syndromes (MDS) with >20 transfusions and ferritin levels >1000 μg/L, international guidelines recommend iron chelation therapy (ICT). The study's objective was to determine guideline adherence and the intensity of ferritin monitoring in clinical practice. METHODS We performed an observational population-based study using the HemoBase Registry, which contains data of all MDS patients diagnosed since 2005 in Friesland, the Netherlands. Clinical information on transfusions, ferritin measurements, ICT, and clinical performance as defined by age ≤ 80 years, Charlson Comorbidity Index <2 and lower-risk MDS was collected from health records. RESULTS Two hundred and thirty seven of 292 patients (81.1%) received ≥1 transfusion, and 121 (41.4%) received >20 transfusions. In 57 of these 121 patients (47.1%), ferritin measurements were performed at least once. Clinical performance was significantly associated with monitoring ferritin around the 20th transfusion (RR: 2.49, p = .016). Clinical performance was also associated with initiating ICT (RR: 5.99, p < .001). ICT was offered to 22.3% (n = 25) of eligible patients. CONCLUSIONS In this population-based study, ferritin levels were measured in <50% of MDS patients who received >20 transfusions, and clinical performance was significantly associated with measuring ferritin. Our study suggests that in heavily transfused MDS patients, ferritin monitoring is primarily based on patients' clinical performance rather than guideline recommendations.
Collapse
Affiliation(s)
- Johanne Rozema
- Unit of Pharmacotherapy, Epidemiology and Economics, Department of PharmacyUniversity of GroningenGroningenThe Netherlands,Department of Clinical Pharmacy & PharmacologyMedical Centre LeeuwardenLeeuwardenThe Netherlands
| | - Ivar van Asten
- Certe Medical Diagnostics & Advicelocation Medical Centre LeeuwardenLeeuwardenThe Netherlands
| | - Beau Kwant
- Unit of Pharmacotherapy, Epidemiology and Economics, Department of PharmacyUniversity of GroningenGroningenThe Netherlands
| | | | - Nic J. G. M. Veeger
- MCL Academy, Medical Centre LeeuwardenLeeuwardenThe Netherlands,Department of EpidemiologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | - Harry de Wit
- Certe Medical Diagnostics & Advicelocation Medical Centre LeeuwardenLeeuwardenThe Netherlands
| | - Eric N. van Roon
- Unit of Pharmacotherapy, Epidemiology and Economics, Department of PharmacyUniversity of GroningenGroningenThe Netherlands,Department of Clinical Pharmacy & PharmacologyMedical Centre LeeuwardenLeeuwardenThe Netherlands
| | - Mels Hoogendoorn
- Department of Internal MedicineMedical Centre LeeuwardenLeeuwardenThe Netherlands
| | | |
Collapse
|
22
|
Zeidan AM, Platzbecker U, Garcia-Manero G, Sekeres MA, Fenaux P, DeZern AE, Greenberg PL, Savona MR, Jurcic JG, Verma AK, Mufti GJ, Buckstein R, Santini V, Shetty JK, Ito R, Zhang J, Zhang G, Ha X, Backstrom JT, Komrokji RS. Longer-term benefit of luspatercept in transfusion-dependent lower-risk myelodysplastic syndromes with ring sideroblasts. Blood 2022; 140:2170-2174. [PMID: 35797468 PMCID: PMC10653038 DOI: 10.1182/blood.2022016171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Luspatercept is an approved therapy for selected patients with lower risk myelodysplasia requiring transfusion despite erythropoiesis-stimulating agents, based on the early results of a randomized trial against placebo. Zeidan and colleagues report that after a median of 26 months follow-up, 27% of patients commencing luspatercept were continuing therapy. Their updated analyses confirm that a significant minority (45%) of eligible patients can achieve transfusion independence, with a median durability of 30 weeks. These longer follow-up data better quantify the incremental benefit of luspatercept over placebo.
Collapse
Affiliation(s)
- Amer M. Zeidan
- Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | | | - Mikkael A. Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Pierre Fenaux
- Service d’Hématologie Séniors, Hôpital Saint-Louis, Université de Paris 7, Paris, France
| | - Amy E. DeZern
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD
| | | | - Michael R. Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph G. Jurcic
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Amit K. Verma
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY
| | - Ghulam J. Mufti
- Department of Haemato-Oncology, King’s College Hospital, London, United Kingdom
| | - Rena Buckstein
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Jeevan K. Shetty
- Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Morozova EV, Tsvetkov NY, Barabanshchikova MV, Yurovskaya KS, Moiseev IS. New perspectives in the treatment of patients with intermediate-2 and high-risk myelodysplastic syndrome. ONCOHEMATOLOGY 2022. [DOI: 10.17650/1818-8346-2022-17-4-106-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- E. V. Morozova
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - N. Yu. Tsvetkov
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - M. V. Barabanshchikova
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - K. S. Yurovskaya
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - I. S. Moiseev
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| |
Collapse
|
24
|
Santini V, Giagounidis A, Pelligra CG, Franco-Villalobos C, Tang D, Morison J, Beach CL, Hu A, Platzbecker U, Fenaux P. Impact of Lenalidomide Treatment on Overall Survival in Patients With Lower-Risk, Transfusion-Dependent Myelodysplastic Syndromes. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e874-e883. [PMID: 35710702 DOI: 10.1016/j.clml.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND For patients with lower-risk (LR) myelodysplastic syndromes (MDS), overall survival (OS) is rarely a primary clinical trial endpoint. Treatments such as lenalidomide can reduce red blood cell (RBC) transfusion burden (TB) and serum ferritin, but the long-term impact on OS remains undetermined. PATIENTS AND METHODS Data from 3 trials evaluating lenalidomide in patients with LR-MDS (the phase 2 MDS-003 and phase 3 MDS-004 trials in del[5q]; the phase 3 trial MDS-005 in non-del[5q] patients) were pooled. Predictors of OS were assessed by multivariate analysis using time-dependent models for TB and RBC transfusion independence (RBC-TI), and a landmark analysis of RBC-TI at 17 weeks. Separate analyses using MDS-004 and MDS-005 data determined the relationship between OS and serum ferritin. RESULTS Median follow-up for MDS-003, MDS-004, and MDS-005 was 3.2, 3.0, and 1.7 years, respectively. In multivariate analyses, transfusion of ≥6 RBC units over 8 weeks was a significant predictor of shorter OS vs. 0 units in the time-dependent TB model (hazard ratio [HR] 4.65; 95% confidence interval [CI] 3.32-6.52; P < .0001). RBC-TI achievement was associated with prolonged OS in the time-dependent (HR 0.48; 95% CI 0.37-0.62; P < .0001) and landmark model (HR 0.57; 95% CI 0.44-0.75; P < .0001). Increased serum ferritin was associated with shorter OS (P < .0001). CONCLUSION This analysis of prospective trial data in patients with LR-MDS confirms lenalidomide may improve OS by reducing TB and serum ferritin. OS should be considered as an endpoint in future lower risk MDS clinical trials.
Collapse
Affiliation(s)
- Valeria Santini
- MDS Unit, AOU Careggi, DMSC, University of Florence. Florence, Italy.
| | - Aristoteles Giagounidis
- Department of Oncology, Haematology, and Palliative Care, Marien Hospital, Düsseldorf, Germany
| | | | | | - Derek Tang
- Formerly Bristol Myers Squibb, Princeton, NJ, USA
| | | | - C L Beach
- Formerly Bristol Myers Squibb, Princeton, NJ, USA
| | - Angela Hu
- Formerly Bristol Myers Squibb, Princeton, NJ, USA
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Leipzig, Germany
| | - Pierre Fenaux
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Université de Paris, France
| |
Collapse
|
25
|
Kaka N, Sethi Y, Patel N, Kaiwan O, Al-Inaya Y, Manchanda K, Uniyal N. Endocrine manifestations of chronic kidney disease and their evolving management: A systematic review. Dis Mon 2022; 68:101466. [PMID: 35965104 DOI: 10.1016/j.disamonth.2022.101466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic Kidney Disease (CKD) shows a wide range of renal abnormalities including the excretory, metabolic, endocrine, and homeostatic function of the kidney. The prognostic impact of the 'endocrine manifestations' which are often overlooked by clinicians cannot be overstated. METHODS AND OBJECTIVES A systematic review was attempted to provide a comprehensive overview of all endocrine abnormalities of CKD and their evolving principles of management, searching databases of PubMed, Embase, and Scopus and covering the literature between 2002 and 2022. RESULTS The endocrine derangements in CKD can be attributed to a myriad of pathologic processes, in particular decreased clearance, impaired endogenous hormone production, uremia-induced cellular dysfunction, and activation of systemic inflammatory pathways. The major disorders include anemia, hyperprolactinemia, insulin resistance, reproductive hormone deficiency, thyroid hormone deficiency, and serum FGF (Fibroblast Growth Factor) alteration. Long-term effects of CKD also include malnutrition and increased cardiovascular risk. The recent times have unveiled their detailed pathogenesis and have seen an evolution in the principles of management which necessitates a revision of current guidelines. CONCLUSION Increased advertence regarding the pathology, impact, and management of these endocrine derangements can help in reducing morbidity as well as mortality in the CKD patients by allowing prompt individualized treatment. Moreover, with timely and appropriate intervention, a long-term reduction in complications, as well as an enhanced quality of life, can be achieved in patients with CKD.
Collapse
Affiliation(s)
- Nirja Kaka
- GMERS Medical College, Himmatnagar, Gujarat 382007, India
| | - Yashendra Sethi
- Department of Medicine, Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Neil Patel
- GMERS Medical College, Himmatnagar, Gujarat 382007, India.
| | | | | | | | - Nidhi Uniyal
- Department of Medicine, Government Doon Medical College, Dehradun, Uttarakhand, India
| |
Collapse
|
26
|
Role of Iron and Iron Overload in the Pathogenesis of Invasive Fungal Infections in Patients with Hematological Malignancies. J Clin Med 2022; 11:jcm11154457. [PMID: 35956074 PMCID: PMC9369168 DOI: 10.3390/jcm11154457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Iron is an essential trace metal necessary for the reproduction and survival of fungal pathogens. The latter have developed various mechanisms to acquire iron from their mammalian hosts, with whom they participate in a continuous struggle for dominance over iron. Invasive fungal infections are an important problem in the treatment of patients with hematological malignancies, and they are associated with significant morbidity and mortality. The diagnosis of invasive clinical infections in these patients is complex, and the treatment, which must occur as early as possible, is difficult. There are several studies that have shown a possible link between iron overload and an increased susceptibility to infections. This link is also relevant for patients with hematological malignancies and for those treated with allogeneic hematopoietic stem cell transplantation. The role of iron and its metabolism in the virulence and pathogenesis of various invasive fungal infections is intriguing, and so far, there is some evidence linking invasive fungal infections to iron or iron overload. Clarifying the possible association of iron and iron overload with susceptibility to invasive fungal infections could be important for a better prevention and treatment of these infections in patients with hematological malignancies.
Collapse
|
27
|
Jouzier C, Cherait A, Cony-Makhoul P, Hamel JF, Veloso M, Thepot S, Cluzeau T, Stamatoullas A, Garnier A, Guerci-Bresler A, Dimicoli-Salazar S, Pica GM, Cheze S, Santana C, Chermat F, Fenaux P, Park S. Red blood cell transfusion burden in myelodysplastic syndromes (MDS) with ring Sideroblasts (RS): A retrospective multicenter study by the Groupe Francophone des Myélodysplasies (GFM). Transfusion 2022; 62:961-973. [PMID: 35452143 DOI: 10.1111/trf.16884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND MDS-RS patients are characterized by chronic anemia and a low risk of Acute Myeloid Leukemia (AML) progression and they generally become Red Blood Cell (RBC) transfusion dependent (TD). STUDY DESIGN AND METHODS We performed a retrospective "real-life" observational study of 6 months in 100 MDS-RS TD patients, recruited in 12 French centers, to describe transfusion characteristics, and evaluate the frequency and causes of hospitalizations, health costs, and morbidity, associated with transfusion dependency, in a French population of RBC transfusion-dependent MDS-RS patients. RESULTS 79% of the patients had high transfusion burden (HTB) and 21% low transfusion burden (LTB). HTB patients had a longer disease duration (6 vs. 3.7 years, p = 0.0078), more frequent iron chelation (82% vs. 50%, p = 0.0052) and higher serum ferritin (p = 0.03). During the 6-month study period, 22% of the patients required inpatient hospitalization, 36% of them for symptomatic anemia requiring emergency RBC transfusion. The 6-month median transfusion costs, including the cost of the day care facility, transportation to and from the hospital, iron chelation, and lab tests, was 16,188€/patient. DISCUSSION MDS-RS represents the archetypal type of chronically transfused lower-risk MDS. Most of those patients have a high transfusion burden and thus frequently need visits to the hospital's day care facility, and frequent hospitalizations, with an overall high median treatment cost. Those costs should be compared with costs of new treatments potentially able to avoid RBC transfusion dependence and to reduce the complications of chronic anemia in MDS-RS patients.
Collapse
Affiliation(s)
- Claire Jouzier
- Service d'hématologie, CHU Grenoble Alpes, Grenoble, France
| | - Amina Cherait
- Service d'hématologie seniors, Hôpital St Louis, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | | | | | - Melanie Veloso
- Service de Biostatistique, CHU Grenoble Alpes, Grenoble, France
| | - Sylvain Thepot
- Service des Maladies du sang, CHU d'Angers, Angers, France
| | | | | | - Alice Garnier
- Service d'hématologie Clinique, CHU de Nantes, France
| | | | | | - Gian Matteo Pica
- Service d'hématologie Clinique, Centre hospitalier Métropole Savoie, Chambéry, France
| | - Stéphane Cheze
- Service d'hématologie Clinique, CHU Côte de Nacre, Caen, France
| | - Clémence Santana
- Service d'hématologie, Centre Léon Bérard, Lyon et en Rhône-Alpes, France
| | - Fatiha Chermat
- Service d'hématologie séniors, Hôpital St Louis, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Pierre Fenaux
- Service d'hématologie séniors, Hôpital St Louis, Assistance Publique des Hôpitaux de Paris (APHP), Université de Paris, France
| | - Sophie Park
- Service d'hématologie, CHU Grenoble Alpes, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
28
|
Iron-mediated tissue damage in acquired ineffective erythropoiesis disease: It’s more a matter of burden or more of exposure to toxic iron form? Leuk Res 2022; 114:106792. [DOI: 10.1016/j.leukres.2022.106792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/19/2023]
|
29
|
Zhang D, Gao X, Li H, Borger DK, Wei Q, Yang E, Xu C, Pinho S, Frenette PS. The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell 2022; 29:232-247.e7. [PMID: 35065706 PMCID: PMC8818037 DOI: 10.1016/j.stem.2021.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Host microbiota crosstalk is essential for the production and functional modulation of blood-cell lineages. Whether, and if so how, the microbiota influences hematopoietic stem cells (HSCs) is unclear. Here, we show that the microbiota regulates HSC self-renewal and differentiation under stress conditions by modulating local iron availability in the bone marrow (BM). In microbiota-depleted mice, HSC self-renewal was enhanced during regeneration, while the commitment toward differentiation was dramatically compromised. Mechanistically, microbiota depletion selectively impaired the recycling of red blood cells (RBCs) by BM macrophages, resulting in reduced local iron levels without affecting systemic iron homeostasis. Limiting iron availability in food (in vivo) or in culture (ex vivo), or by CD169+ macrophage depletion, enhanced HSC self-renewal and expansion. These results reveal an intricate interplay between the microbiota, macrophages, and iron, and their essential roles in regulating critical HSC fate decisions under stress.
Collapse
Affiliation(s)
- Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Huihui Li
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daniel K Borger
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eva Yang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Gattermann N, Muckenthaler M, Kulozik AE, Metzgeroth G, Hastka J. The Evaluation Of Iron Deficiency And Iron Overload. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:847-856. [PMID: 34755596 DOI: 10.3238/arztebl.m2021.0290] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/10/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND In the western world, 2-5% of women of child-bearing age suffer from irondeficiency anemia. Iron overload due to chronic treatment with blood transfusions or hereditary hemochromatosis is much rarer. METHODS This review is based on pertinent publications retrieved by a selective search on the pathophysiology, clinical features, and diagnostic evaluation of iron deficiency and iron overload. RESULTS The main causes of iron deficiency are malnutrition and blood loss. Its differential diagnosis includes iron-refractory iron deficiency anemia (IRIDA), a rare congenital disease in which the hepcidin level is pathologically elevated, as well as the more common anemia of chronic disease (anemia of chronic inflammation), in which increased amounts of hepcidin are formed under the influence of interleukin-6 and enteric iron uptake is blocked as a result. Iron overload comes about through long-term transfusion treatment or a congenital disturbance of iron metabolism (hemochromatosis). Its diagnostic evaluation is based on clinical and laboratory findings, imaging studies, and specific mutation analyses. CONCLUSION Our improving understanding of the molecular pathophysiology of iron metabolism aids in the evaluation of iron deficiency and iron overload and may in future enable treatment not just with iron supplementation or iron chelation, but also with targeted pharmacological modulation of the hepcidin regulatory system.
Collapse
|
31
|
Hu H, Chen T, Liu W, Shen Y, Li Q, Zhou Y, Ye B, Wu D. Differentiation of Yin, Yang and Stasis Syndromes in Severe Aplastic Anemia Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation and Their Correlation with Iron Metabolism, cAMP/cGMP, 17-OH-CS and Thyroxine. J Blood Med 2021; 12:975-989. [PMID: 34803418 PMCID: PMC8598128 DOI: 10.2147/jbm.s332171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objective To better understanding and differentiation of traditional Chinese medicine (TCM) syndromes in severe aplastic anemia (SAA) patients undergoing hematopoietic stem cell transplantation (Allo-HSCT) and their correlation with iron metabolism, cAMP/cGMP, 17-OH-CS and thyroxine. Methods Eighteen patients with SAA who underwent HSCT were enrolled. The syndrome was evaluated before conditioning and days after stem cell reinfusion (−10d, −1d, +7d, +30d, +60d, and +90d). The correlation of TCM syndrome (Yin, Yang, and stasis) to cyclic nucleotides, 17-OH-CS, thyroxine, and iron metabolism were analyzed and compared to data from normal subjects. Results More “Yin deficiency” (n=11, 11/18) syndrome was observed before HSCT, and nearly 61% was complicated with “blood stasis”. After conditioning, the proportion of “kidney Yin and Yang deficiency” increased to 61.6%. Fourteen days after HSCT, the syndrome developed into “Spleen-Kidney Yang Deficiency,” and the stasis score decreased. On +90day, majority patients were diagnosed with “Kidney Yang Deficiency” (35.7%) or “Spleen-Kidney Yang Deficiency” (28.6%), and 88.9% were diagnosed without stasis. The correlation analysis showed that cGMP might represent “Deficient Yang” as well as low total triiodothyronine (T3) and free T3 (FT3). There was also a positive relation between labile plasma iron (LPI), hepcidin, soluble transferrin receptor (sTfR), and “Yin deficiency”, and the last two factors, along with marrow nitric oxide synthase were also positively related to “Stasis” syndrome. Conclusion During HSCT, the syndrome evolved from “kidney Yin and Yang deficiency” to “kidney Yang deficiency” or “spleen–kidney Yang deficiency”, and the “stasis” along with “Yin deficiency” syndromes were quickly relieved within 90 days. The changes of cyclic nucleotides, 17-OH-CS, thyroxine, and iron metabolism indexes can be applied for better differentiation of TCM syndrome.
Collapse
Affiliation(s)
- Huijin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Tao Chen
- Department of Hematology, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Wenbin Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
32
|
Neutrophil and platelet increases with luspatercept in lower-risk MDS: secondary endpoints from the MEDALIST trial. Blood 2021; 139:624-629. [PMID: 34758066 PMCID: PMC8796653 DOI: 10.1182/blood.2021012589] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
|
33
|
Characteristics of macrophages from myelodysplastic syndrome microenvironment. Exp Cell Res 2021; 408:112837. [PMID: 34547255 DOI: 10.1016/j.yexcr.2021.112837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022]
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic neoplasms. The progression of malignancy is closely associated with immune regulation. Macrophages are indispensable tissue components and have been proposed to play a role in the pathophysiology of hematopoietic malignancies. However, the specific role of macrophages in the development of MDS remains unclear. Here, we investigated the characteristics and phenotypic evolution of macrophages from patients with MDS. Macrophages from patients with MDS expressed CD68, CD86 and CD163. Furthermore, MDS macrophages exhibited more M2-related characteristics. Moreover, a number of phenotype-associated genes in MDS macrophages exhibited diverse responses to iron overload or iron chelation upon stimulation by ferric chloride or deferoxamine (DFO, an iron chelator). Ferric chloride polarized MDS macrophages to exhibit more M1-related characteristics, a phenomenon that could be partially reversed by DFO. Therefore, this study reveals the characteristics and phenotypic evolution of MDS macrophages and broadens the knowledge of macrophage plasticity in hematopoietic malignancies.
Collapse
|
34
|
Palumbo GA, Galimberti S, Barcellini W, Cilloni D, Di Renzo N, Elli EM, Finelli C, Maurillo L, Ricco A, Musto P, Russo R, Latagliata R. From Biology to Clinical Practice: Iron Chelation Therapy With Deferasirox. Front Oncol 2021; 11:752192. [PMID: 34692534 PMCID: PMC8527180 DOI: 10.3389/fonc.2021.752192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy (ICT) has become a mainstay in heavily transfused hematological patients, with the aim to reduce iron overload (IOL) and prevent organ damage. This therapeutic approach is already widely used in thalassemic patients and in low-risk Myelodysplastic Syndrome (MDS) patients. More recently, ICT has been proposed for high-risk MDS, especially when an allogeneic bone marrow transplantation has been planned. Furthermore, other hematological and hereditary disorders, characterized by considerable transfusion support to manage anemia, could benefit from this therapy. Meanwhile, data accumulated on how iron toxicity could exacerbate anemia and other clinical comorbidities due to oxidative stress radical oxygen species (ROS) mediated by free iron species. Taking all into consideration, together with the availability of approved oral iron chelators, we envision a larger use of ICT in the near future. The aim of this review is to better identify those non-thalassemic patients who can benefit from ICT and give practical tips for management of this therapeutic strategy.
Collapse
Affiliation(s)
- Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia, ” University of Catania, Catania, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Wilma Barcellini
- Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico di Milano and University of Milan, Milan, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nicola Di Renzo
- Hematology and Transplant Unit, Ospedale Vito Fazzi, Lecce, Italy
| | - Elena Maria Elli
- Division of Hematology and Bone Marrow Unit, Ospedale San Gerardo, Aziende Socio Sanitarie Territoriali (ASST), Monza, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Luca Maurillo
- Department of Onco-hematology, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alessandra Ricco
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| | - Rodolfo Russo
- Clinica Nefrologica, Dialisi e Trapianto, Department of Integrated Medicine with the Territory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Latagliata
- Unità Operativa Complessa (UOC) Ematologia, Ospedale Belcolle, Viterbo and Division of Cellular Biotechnology and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
35
|
Shibusawa M, Kidoguchi K, Tanimoto T. Oral Azacitidine in Patients With Myelodysplastic Syndrome. J Clin Oncol 2021; 39:3091-3092. [PMID: 34197214 DOI: 10.1200/jco.21.01126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Motoharu Shibusawa
- Motoharu Shibusawa, MD, Department of Hematology, IMS Group Shinmatsudo Central General Hospital, Chiba, Japan; Keisuke Kidoguchi, MD, Saga-ken Medical Centre Koseikan, Saga, Japan; and Tetsuya Tanimoto, MD, Navitas Clinic Kawasaki, Kanagawa, Japan
| | - Keisuke Kidoguchi
- Motoharu Shibusawa, MD, Department of Hematology, IMS Group Shinmatsudo Central General Hospital, Chiba, Japan; Keisuke Kidoguchi, MD, Saga-ken Medical Centre Koseikan, Saga, Japan; and Tetsuya Tanimoto, MD, Navitas Clinic Kawasaki, Kanagawa, Japan
| | - Tetsuya Tanimoto
- Motoharu Shibusawa, MD, Department of Hematology, IMS Group Shinmatsudo Central General Hospital, Chiba, Japan; Keisuke Kidoguchi, MD, Saga-ken Medical Centre Koseikan, Saga, Japan; and Tetsuya Tanimoto, MD, Navitas Clinic Kawasaki, Kanagawa, Japan
| |
Collapse
|
36
|
Yokus O, Herek C, Cinli TA, Goze H, Serin I. Iron overload during the treatment of acute leukemia: pretransplant transfusion experience. Int J Hematol Oncol 2021; 10:IJH36. [PMID: 34840721 PMCID: PMC8609998 DOI: 10.2217/ijh-2021-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recent studies have shown the increased risk of mortality in cases with acute leukemia and iron overload. We aimed to determine the status of iron overload in patients with acute leukemia. MATERIALS & METHODS Patients diagnosed with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) between January 2015 and December 2019 were included in the study. RESULTS At 6 months, there were statistically more patients with serum ferritin >1000 in the AML group compared to the ALL group (p = 0,011). CONCLUSION Iron overload occurs earlier in patients with AML; the difference disappears after 6 months of treatment. It is the correct point to emphasize that iron overload is an important factor of pretransplant morbidity, especially in AML cases.
Collapse
Affiliation(s)
- Osman Yokus
- Department of Hematology, University of Health Sciences, Istanbul Training & Research Hospital, Bagcilar, Istanbul, 34200, Turkey
| | - Celalettin Herek
- Department of Internal Medicine, University of Health Sciences, Bagcilar Training & Research Hospital, Bagcilar, Istanbul, 34200, Turkey
| | - Tahir Alper Cinli
- Department of Hematology, University of Health Sciences, Istanbul Training & Research Hospital, Bagcilar, Istanbul, 34200, Turkey
| | - Hasan Goze
- Department of Hematology, University of Health Sciences, Istanbul Training & Research Hospital, Bagcilar, Istanbul, 34200, Turkey
| | - Istemi Serin
- Department of Hematology, University of Health Sciences, Istanbul Training & Research Hospital, Bagcilar, Istanbul, 34200, Turkey
| |
Collapse
|
37
|
Schulz F, Nachtkamp K, Kasprzak A, Gattermann N, Haas R, Germing U. Luspatercept as a therapy for myelodysplastic syndromes with ring sideroblasts. Expert Rev Hematol 2021; 14:509-516. [PMID: 34161752 DOI: 10.1080/17474086.2021.1947791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell diseases characterized by cell dysplasia, ineffective hematopoiesis and risk of transformation to acute myeloid leukemia (AML). The median age of 75 years at diagnosis is associated with the presence of comorbidities, which preclude intensive therapies like allogeneic hematopoietic stem cell transplantation in most MDS patients. Risk stratification using the (Revised) International Prognostic Scoring System (IPSS/IPSS-R) is necessary to plan individualized treatment. AREAS COVERED Luspatercept (ACE-536), a specific activin receptor fusion protein, promotes late-stage erythropoiesis. Two clinical trials, PACE-MDS (phase 2) and MEDALIST (phase 3), yielded positive results in terms of improved hemoglobin levels and loss of transfusion dependence, with hardly any side effects. A phase 3 trial to compare luspatercept to ESAs (COMMANDS study) is ongoing. EXPERT OPINION Luspatercept is a promising alternative to ESAs for a subset of transfusion-dependent patients with lower risk MDS, namely those with a sideroblastic phenotype who are either not suitable for or have already failed erythropoietin-based treatment. The favorable safety profile and convenient subcutaneous administration every 3 weeks are more conducive to patients' quality of life than chronic red blood cell transfusion therapy.
Collapse
Affiliation(s)
- Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kathrin Nachtkamp
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Annika Kasprzak
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
38
|
Oliva EN, Platzbecker U, Fenaux P, Garcia-Manero G, LeBlanc TW, Patel BJ, Kubasch AS, Sekeres MA. Targeting health-related quality of life in patients with myelodysplastic syndromes - Current knowledge and lessons to be learned. Blood Rev 2021; 50:100851. [PMID: 34088518 DOI: 10.1016/j.blre.2021.100851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
Using a range of health-related quality of life (HRQoL) instruments, most - but not all - studies of myelodysplastic syndromes (MDS) have reported that lower hemoglobin levels and red blood cell transfusion dependency are associated with worse HRQoL. In addition, some MDS treatments may significantly improve HRQoL, particularly among those patients who respond to therapy; however, the majority of these studies were underpowered for this secondary endpoint. Furthermore, decreased HRQoL has been associated with worse survival outcomes, and HRQoL scores can be used to refine classical prognostic systems. Despite the subjective nature of HRQoL, the importance and validity of measuring it in trials and clinical practice are increasingly being recognized, but properly validated MDS-specific instruments are required. We describe what is currently known about HRQoL in patients with MDS, and the limitations of measuring HRQoL, and we provide some recommendations to improve the measurement of this outcome in future trials.
Collapse
Affiliation(s)
- Esther N Oliva
- Grande Ospedale Metropolitano Bianchi Melacrino Morelli, Reggio Calabria, Italy.
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany.
| | - Pierre Fenaux
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Université Paris 7, Paris, France.
| | | | | | | | - Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany.
| | - Mikkael A Sekeres
- Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
39
|
EnvIRONmental Aspects in Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms22105202. [PMID: 34068996 PMCID: PMC8156755 DOI: 10.3390/ijms22105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic iron overload is multifactorial in patients suffering from myelodysplastic syndrome (MDS). Disease-immanent ineffective erythropoiesis together with chronic red blood cell transfusion represent the main underlying reasons. However, like the genetic heterogeneity of MDS, iron homeostasis is also diverse in different MDS subtypes and can no longer be generalized. While a certain amount of iron and reactive oxygen species (ROS) are indispensable for proper hematological output, both are harmful if present in excess. Consequently, iron overload has been increasingly recognized as an important player in MDS, which is worth paying attention to. This review focuses on iron- and ROS-mediated effects in the bone marrow niche, their implications for hematopoiesis and their yet unclear involvement in clonal evolution. Moreover, we provide recent insights into hepcidin regulation in MDS and its interaction between erythropoiesis and inflammation. Based on Tet methylcytosine dioxygenase 2 (TET2), representing one of the most frequently mutated genes in MDS, leading to disturbances in both iron homeostasis and hematopoiesis, we highlight that different genetic alteration may have different implications and that a comprehensive workup is needed for a complete understanding and development of future therapies.
Collapse
|
40
|
Mehta KJ. Role of iron and iron-related proteins in mesenchymal stem cells: Cellular and clinical aspects. J Cell Physiol 2021; 236:7266-7289. [PMID: 33821487 DOI: 10.1002/jcp.30383] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are located in various tissues where these cells show niche-dependent multilineage differentiation and secrete immunomodulatory molecules to support numerous physiological processes. Due to their regenerative and reparative properties, MSCs are extremely valuable for cell-based therapy in tackling several pathological conditions including COVID-19. Iron is essential for MSC processes but iron-loading, which is common in several chronic conditions, hinders normal MSC functionality. This not only aggravates disease pathology but can also affect allogeneic and autologous MSC therapy. Thus, understanding MSCs from an iron perspective is of clinical significance. Accordingly, this review highlights the roles of iron and iron-related proteins in MSC physiology. It describes the contribution of iron and endogenous iron-related effectors like hepcidin, ferroportin, transferrin receptor, lactoferrin, lipocalin-2, bone morphogenetic proteins and hypoxia inducible factors in MSC biology. It summarises the excess-iron-induced alterations in MSC components, processes and discusses signalling pathways involving ROS, PI3K/AKT, MAPK, p53, AMPK/MFF/DRP1 and Wnt. Additionally, it evaluates the endogenous and exogenous saviours of MSCs against iron-toxicity. Lastly, it elaborates on the involvement of MSCs in the pathology of clinical conditions of iron-excess, namely, hereditary hemochromatosis, diabetes, β-thalassaemia and myelodysplastic syndromes. This unique review integrates the distinct fields of iron regulation and MSC physiology. Through an iron-perspective, it describes both mechanistic and clinical aspects of MSCs and proposes an iron-linked MSC-contribution to physiology, pathology and therapeutics. It advances the understanding of MSC biology and may aid in identifying signalling pathways, molecular targets and compounds for formulating adjunctive iron-based therapies for excess-iron conditions, and thereby inform regenerative medicine.
Collapse
Affiliation(s)
- Kosha J Mehta
- Faculty of Life Sciences and Medicine, Centre for Education, King's College London, London, UK
| |
Collapse
|
41
|
Prospective cardiac magnetic resonance imaging survey in myelodysplastic syndrome patients: insights from an Italian network. Ann Hematol 2021; 100:1139-1147. [PMID: 33742225 DOI: 10.1007/s00277-021-04495-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 01/17/2023]
Abstract
We prospectively evaluated changes in cardiac and hepatic iron overload (IO) and in morpho-functional cardiac parameters and myocardial fibrosis by magnetic resonance imaging (MRI) in patients with low-risk and intermediate-1-risk myelodysplastic syndromes (MDS). Fifty patients enrolled in the Myocardial Iron Overload in MyElodysplastic Diseases (MIOMED) study were followed for 12 months. IO was quantified by the T2* technique and biventricular function parameters by cine images. Macroscopic myocardial fibrosis was detected by late gadolinium enhancement technique. Twenty-eight patients (71.89±8.46 years; 8 females) performed baseline and follow-up MRIs. Thirteen patients had baseline hepatic IO, with a higher frequency among transfusion-dependent patients. Out of the 15 patients with a baseline MRI liver iron concentration <3 mg/g/dw, two (non-chelated) developed hepatic IO. Thirteen (46.4%) patients had an abnormal T2* value in at least one myocardial segment. One patient without hepatic IO and non-transfused had baseline global T2* <20 ms. Among the 15 patients with no baseline myocardial IO (MIO), 2 worsened. There was a significant increase in both left and right ventricular end-diastolic volume indexes. Thirty-six percent of patients showed myocardial fibrosis correlating with aging. Two new occurrences were detected at the follow-up. In conclusion, by a more sensitive segmental approach, MIO is quite frequent in MDS patients and it can be present also in non-transfused patients and in absence of detectable hepatic iron. The incidence of cardiac and hepatic IO and of myocardial fibrosis and the increase in biventricular volumes after a 12-month interval suggest performing periodic MRI scans to better manage MDS patients.
Collapse
|
42
|
Abstract
Anemia is a very common comorbidity in patients with heart failure (HF), affecting ∼30% of stable ambulatory patients and 50% patients with acute decompensated HF. Absolute or functional iron deficiency (ID) is seen in ∼50% patients with HF. Both of these comorbidities often coexist and are independently associated with increased mortality and hospitalizations. These findings led several investigators to test the hypotheses that treatment of anemia and ID in HF would improve symptoms and long-term outcomes. Small studies showed that erythropoiesis-stimulating agents (ESAs) improve subjective measures of HF. However, a large pivotal outcome trial found that the ESA darbepoetin alfa did not improve long-term outcomes in patients with HF with reduced ejection fraction and instead was associated with adverse effects. Studies using IV iron have had somewhat greater success, showing improvements in subjective and some objective measures of HF. However, more research is needed to establish the best treatment options for these high-risk patients. We present 5 common scenarios of patients with HF and anemia and describe our personal approach on how we might treat them based on objective evidence where available. An algorithm that offers guidance in regard to personalized therapy for such patients is also presented.
Collapse
|
43
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Lewis R, Bewersdorf JP, Zeidan AM. Clinical Management of Anemia in Patients with Myelodysplastic Syndromes: An Update on Emerging Therapeutic Options. Cancer Manag Res 2021; 13:645-657. [PMID: 33531837 PMCID: PMC7846829 DOI: 10.2147/cmar.s240600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
For the majority of patients with lower-risk myelodysplastic syndrome (LR-MDS), one of the primary clinical goals is to alleviate the symptoms associated with the resultant cytopenias and to minimize the transfusion burden. While supportive red blood cell (RBC) transfusions and erythropoiesis-stimulating agents (ESAs) may lead to clinical improvement, frequent transfusions are often complicated by iron overload and decreased quality of life; furthermore, most patients either do not respond to ESAs or will eventually develop resistance. As such, there is a great need for further therapeutic options in the management of anemia related to MDS. Several additional therapeutics are now available in select patients with LR-MDS and symptomatic anemia including luspatercept, lenalidomide, and immunosuppressive therapy. Furthermore, several novel agents are currently in development to address this area of clinical need such as imetelstat and roxadustat. In this article, we review the currently available therapeutic options for symptomatic anemia in LR-MDS as well as review the therapeutic agents in development.
Collapse
Affiliation(s)
- Russell Lewis
- Department of Medicine, Section of Hematology, Yale University, New Haven, CT, USA
| | | | - Amer M Zeidan
- Department of Medicine, Section of Hematology, Yale University, New Haven, CT, USA
| |
Collapse
|
45
|
Riabov V, Mossner M, Stöhr A, Jann JC, Streuer A, Schmitt N, Knaflic A, Nowak V, Weimer N, Obländer J, Palme I, Schumann C, Baldus CD, Schulze TJ, Wuchter P, Röhl H, Jawhar A, Weiss C, Boch T, Metzgeroth G, Neumann M, Hofmann WK, Nolte F, Nowak D. High erythroferrone expression in CD71 + erythroid progenitors predicts superior survival in myelodysplastic syndromes. Br J Haematol 2021; 192:879-891. [PMID: 33486765 DOI: 10.1111/bjh.17314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
Ineffective erythropoiesis and iron overload are common in myelodysplastic syndromes (MDS). Erythroferrone (ERFE) and growth/differentiation factor 15 (GDF15) are two regulators of iron homeostasis produced by erythroid progenitors. Elevated systemic levels of ERFE and GDF15 in MDS are associated with dysregulated iron metabolism and iron overload, which is especially pronounced in MDS with SF3B1 gene mutations. However, the role of ERFE and GDF15 in MDS pathogenesis and their influence on disease progression are largely unknown. Here, we analyzed the expression of ERFE and GDF15 in CD71+ erythroid progenitors of n = 111 MDS patients and assessed their effects on patient survival. The expression of ERFE and GDF15 in MDS was highly aberrant. Unexpectedly, ERFE expression in erythroprogenitors was highly relevant for MDS prognosis and independent of International Prognostic Scoring System (IPSS) stratification. Although ERFE expression was increased in patients with SF3B1 mutations, it predicted overall survival (OS) in both the SF3B1wt and SF3B1mut subgroups. Of note, ERFE overexpression predicted superior OS in the IPSS low/Int-1 subgroup and in patients with normal karyotype. Similar observations were made for GDF15, albeit not reaching statistical significance. In summary, our results revealed a strong association between ERFE expression and MDS outcome, suggesting a possible involvement of ERFE in molecular MDS pathogenesis.
Collapse
Affiliation(s)
- Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maximilian Mossner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexandra Stöhr
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antje Knaflic
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Schumann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Claudia D Baldus
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Torsten J Schulze
- Institute Springe, German Red Cross Blood Service NSTOB, Springe, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Henning Röhl
- Department of Orthopedic Surgery, Diakonissen Hospital, Mannheim, Germany
| | - Ahmed Jawhar
- Department of Orthopedic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Boch
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Neumann
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
46
|
Lee KH, Ho Y, Tarng DC. Iron Therapy in Chronic Kidney Disease: Days of Future Past. Int J Mol Sci 2021; 22:1008. [PMID: 33498292 PMCID: PMC7863960 DOI: 10.3390/ijms22031008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Anemia affects millions of patients with chronic kidney disease (CKD) and prompt iron supplementation can lead to reductions in the required dose of erythropoiesis-stimulating agents, thereby reducing medical costs. Oral and intravenous (IV) traditional iron preparations are considered far from ideal, primarily due to gastrointestinal intolerability and the potential risk of infusion reactions, respectively. Fortunately, the emergence of novel iron replacement therapies has engendered a paradigm shift in the treatment of iron deficiency anemia in patients with CKD. For example, oral ferric citrate is an efficacious and safe phosphate binder that increases iron stores to maintain hemoglobin levels. Additional benefits include reductions in fibroblast growth factor 23 levels and the activation of 1,25 dihydroxyvitamin D. The new-generation IV iron preparations ferumoxytol, iron isomaltoside 1000, and ferric carboxymaltose are characterized by a reduced risk of infusion reactions and are clinically well tolerated as a rapid high-dose infusion. In patients undergoing hemodialysis (HD), ferric pyrophosphate citrate (FPC) administered through dialysate enables the replacement of ongoing uremic and HD-related iron loss. FPC transports iron directly to transferrin, bypassing the reticuloendothelial system and avoiding iron sequestration. Moreover, this paper summarizes recent advancements of hypoxia-inducible factor prolyl hydroxylase inhibitors and future perspectives in renal anemia management.
Collapse
Affiliation(s)
- Kuo-Hua Lee
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.L.); (Y.H.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), Hsinchu 300, Taiwan
| | - Yang Ho
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.L.); (Y.H.)
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.L.); (Y.H.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), Hsinchu 300, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Department and Institute of Physiology, National Yang-Ming University, Taipei 11217, Taiwan
| |
Collapse
|
47
|
Ishihara A, Yamauchi T, Ikeda K, Fukuyoshi Y, Yokoyama T, Yonemura Y, Uchiba M, Matsui H. Glycosylated ferritin as an improved marker for post-transfusion iron overload. Int J Hematol 2021; 113:537-546. [PMID: 33400141 DOI: 10.1007/s12185-020-03056-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022]
Abstract
Red blood cell (RBC) transfusion is an effective therapy for anemia, but repeated transfusions may cause iron overload-related damage to various organs. Iron chelation therapy, now widely available for patients who have received transfusions, is expected to reduce organ damage even in patients who received many transfusions. Therefore, determining when to start iron chelation therapy is important. In guidelines for iron chelation therapy, the serum ferritin level has been widely accepted as a practical marker for estimating iron overload. However, guidelines recommend multiple measurements of serum ferritin, because levels often fluctuate. Here, we investigated the usefulness of glycosylated ferritin as a marker of iron overload using a cohort consisted of 103 patients who had a total ferritin value over 1000 ng/mL. We found that the volume of RBCs transfused was clearly associated with the glycosylated ferritin level. We also found that acute inflammation, as represented by C-reactive protein values, was associated with increased non-glycosylated ferritin and that patients with hematopoietic diseases had higher glycosylated ferritin levels, possibly because of repeated RBC transfusions. We thus conclude that glycosylated ferritin may be an improved marker for predicting iron overload status.
Collapse
Affiliation(s)
- Ayako Ishihara
- Department of Clinical Laboratory Medicine, Kumamoto University Hospital, Kumamoto University, Kumamoto, Japan
| | - Tsuyuko Yamauchi
- Department of Clinical Laboratory Medicine, Kumamoto University Hospital, Kumamoto University, Kumamoto, Japan
| | - Katsuyoshi Ikeda
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| | - Yoko Fukuyoshi
- Department of Clinical Laboratory Medicine, Kumamoto University Hospital, Kumamoto University, Kumamoto, Japan
| | - Toshiro Yokoyama
- Department of Clinical Laboratory Medicine, Kumamoto University Hospital, Kumamoto University, Kumamoto, Japan
| | - Yuji Yonemura
- Department of Transfusion Medicine and Cell Therapy, Kumamoto University Hospital, Kumamoto University, Kumamoto, Japan
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuhiro Uchiba
- Department of Transfusion Medicine and Cell Therapy, Kumamoto University Hospital, Kumamoto University, Kumamoto, Japan
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Clinical Laboratory Medicine, Kumamoto University Hospital, Kumamoto University, Kumamoto, Japan.
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
48
|
Ooi SL, Campbell R, Pak SC, Golombick T, Manoharan A, Ramakrishna R, Badmaev V, Schloss J. Is 6-Shogaol an Effective Phytochemical for Patients With Lower-risk Myelodysplastic Syndrome? A Narrative Review. Integr Cancer Ther 2021; 20:15347354211065038. [PMID: 34930049 PMCID: PMC8728773 DOI: 10.1177/15347354211065038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndrome (MDS) evolves due to genomic instability, dysregulated signaling pathways, and overproduction of inflammatory markers. Reactive oxygen species contribute to the inflammatory response, which causes gene damage, cellular remodeling, and fibrosis. MDS can be a debilitating condition, and management options in patients with MDS aim to improve cytopenias, delay disease progression, and enhance quality of life. High serum ferritin levels, a source of iron for reactive oxygen species production, correlate with a higher risk of progression to acute myeloid leukemia, and iron overload is compounded by blood transfusions given to improve anemia. 6-shogaol is a natural phenolic compound formed when ginger is exposed to heat and/or acidic conditions, and it has been shown to possess anti-tumor activity against leukemia cell lines and antioxidant effects. This narrative review assessed the potential benefits of this phytochemical in lower-risk MDS patients through examining the current evidence on the pharmacological and therapeutic properties of ginger and 6-shogaol.
Collapse
Affiliation(s)
| | - Ron Campbell
- Charles Sturt University, Bathurst,
NSW, Australia
- The Oaks Medical Practice, The Oaks,
NSW, Australia
| | | | | | - Arumugam Manoharan
- Southern Sydney Haematology, Kogarah,
NSW, Australia
- University of Wollongong Australia,
Wollongong NSW, Australia
| | - Raj Ramakrishna
- Southern Sydney Haematology, Kogarah,
NSW, Australia
- University of Wollongong Australia,
Wollongong NSW, Australia
| | | | | |
Collapse
|
49
|
Russell-Hallinan A, Neary R, Watson CJ, Baugh JA. Repurposing From Oncology to Cardiology: Low-Dose 5-Azacytidine Attenuates Pathological Cardiac Remodeling in Response to Pressure Overload Injury. J Cardiovasc Pharmacol Ther 2020; 26:375-385. [PMID: 33264040 DOI: 10.1177/1074248420979235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Recent evidence suggests that transcriptional reprogramming is involved in the pathogenesis of cardiac remodeling (cardiomyocyte hypertrophy and fibrosis) and the development of heart failure. 5-Azacytidine (5aza), an inhibitor of DNA methylation approved for hematological malignancies, has previously demonstrated beneficial effects on cardiac remodeling in hypertension. The aim of our work was to investigate whether pressure overload is associated with alterations in DNA methylation and if intervention with low-dose 5aza can attenuate the associated pathological changes. METHODS AND RESULTS C57Bl6/J mice underwent surgical constriction of the aortic arch for 8 weeks. Mice began treatment 4 weeks post-surgery with either vehicle or 5aza (5 mg/kg). Cardiac structure and function was examined in vivo using echocardiography followed by post mortem histological assessment of hypertrophy and fibrosis. Global DNA methylation was examined by immunostaining for 5-methylcytosine (5MeC) and assessment of DNA methyltransferase expression. The results highlighted that pressure overload-induced pathological cardiac remodeling is associated with increased DNA methylation (elevated cardiac 5MeC positivity and Dnmt1 expression). Administration of 5aza attenuated pathological remodeling and diastolic dysfunction. These beneficial changes were mirrored by a treatment-related reduction in global 5MeC levels and expression of Dnmt1 and Dnmt3B in the heart. CONCLUSION DNA methylation plays an important role in the pathogenesis of pressure overload-induced cardiac remodeling. Therapeutic intervention with 5aza, at a dose 5 times lower than clinically given for oncology treatment, attenuated myocardial hypertrophy and fibrosis. Our work supports the rationale for its potential use in cardiac pathologies associated with aberrant cardiac wound healing.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, 1596Queen's University Belfast, Northern Ireland, United Kingdom.,UCD School of Medicine, Conway Institute, 231327University College Dublin, Belfield, Dublin, Ireland
| | - Roisin Neary
- UCD School of Medicine, Conway Institute, 231327University College Dublin, Belfield, Dublin, Ireland
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, 1596Queen's University Belfast, Northern Ireland, United Kingdom
| | - John A Baugh
- UCD School of Medicine, Conway Institute, 231327University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
50
|
Analysis of the impact of adherence to guidelines and expert advice in patients with myelodysplastic syndromes. Ann Hematol 2020; 100:455-463. [PMID: 33159566 PMCID: PMC7817552 DOI: 10.1007/s00277-020-04325-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
The European Leukemia Net (ELN) guidelines for treatment of myelodysplastic syndromes (MDS) connect heterogeneous MDS subgroups with a number of therapeutic options ranging from best supportive care to allogeneic stem cell transplantation (alloSCT). However, it is currently unknown whether adherence to guideline recommendations translates into improved survival. The sizeable database of the Duesseldorf MDS Registry allowed us to address this question. We first performed a retrospective analysis including 1698 patients (cohort 1) to whom we retrospectively applied the ELN guidelines. We compared patients treated according to the guidelines with patients who deviated from it, either because they received a certain treatment though it was not recommended or because they did not receive that treatment despite being eligible. We also performed a prospective study with 381 patients (cohort 2) who were seen in our department and received guideline-based expert advice. Again, we compared the impact of subsequent guideline-adherent versus non-adherent treatment. For the majority of treatment options (best supportive care, lenalidomide, hypomethylating agents, low-dose chemotherapy, and intensive chemotherapy), we found that adherence to the ELN guidelines did not improve survival in cohort 1. The same was true when patient management was prospectively enhanced through guideline-based treatment advice given by MDS experts (cohort 2). The only exceptions were alloSCT and iron chelation (ICT). Patients receiving ICT and alloSCT as recommended fared significantly better than those who were eligible but received other treatment. Our analysis underscores the limited survival impact of most MDS therapies and suggests to pursue alloSCT in all suitable candidates. Graphical abstract.
Collapse
|