1
|
Lopez-Delgado JC, Patel JJ, Stoppe C, McClave SA. Considerations for medical nutrition therapy management of the critically ill patient with hematological malignancies: A narrative review. Nutr Clin Pract 2024; 39:800-814. [PMID: 38666811 DOI: 10.1002/ncp.11152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 07/04/2024] Open
Abstract
Patients with hematological malignancies (HMs) are more frequently admitted now than in the past to the intensive care unit (ICU) due to more aggressive approaches in primary therapy of HMs and the need for critical care support. Pathophysiological alterations derived from HMs and the different hematological therapies, such as chemotherapy, negatively affect gastrointestinal (GI) function, metabolism, and nutrition status. Further, malnutrition strongly influences outcomes and tolerance of the different hematological therapies. In consequence, these critically ill patients frequently present with malnutrition and pathophysiological alterations that create challenges for the delivery of medical nutrition therapy (MNT) in the ICU. Frequent screening, gauging tolerance, and monitoring nutrition status are mandatory to provide individualized MNT and achieve nutrition objectives. The present review discusses how HM impact GI function and nutrition status, the importance of MNT in patients with HM, and specific considerations for guidance in providing adequate MNT to these patients when admitted to the ICU.
Collapse
Affiliation(s)
| | - Jayshil J Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital, Würzburg, Würzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Stephen A McClave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis (CH) is an age-dependent process detectable using advanced sequencing technologies and is associated with multiple adverse health outcomes including cardiovascular disease and cancer. The purpose of this review is to summarize known causes of CH mutations and to identify key areas and considerations for future research on CH. RECENT FINDINGS Studies have identified multiple potential causes of CH mutations including smoking, cancer therapies, cardiometabolic disease, inflammation, and germline risk factors. Additionally, large-scale studies have facilitated the identification of gene-specific effects of CH mutation risk factors that may have unique downstream health implications. For example, cancer therapies and sources of environmental radiation appear to cause CH through their impact on DNA damage repair genes. There is a growing body of evidence defining risk factors for CH mutations. Standardization in the identification of CH mutations may have important implications for future research. Additional studies in underrepresented populations and their diverse environmental exposures are needed to facilitate broad public health impact of the study of CH mutations.
Collapse
|
3
|
Phosphate Metabolic Inhibition Contributes to Irradiation-Induced Myelosuppression through Dampening Hematopoietic Stem Cell Survival. Nutrients 2022; 14:nu14163395. [PMID: 36014901 PMCID: PMC9415467 DOI: 10.3390/nu14163395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
Myelosuppression is a common and intractable side effect of cancer therapies including radiotherapy and chemotherapy, while the underlying mechanism remains incompletely understood. Here, using a mouse model of radiotherapy-induced myelosuppression, we show that inorganic phosphate (Pi) metabolism is acutely inhibited in hematopoietic stem cells (HSCs) during irradiation-induced myelosuppression, and closely correlated with the severity and prognosis of myelosuppression. Mechanistically, the acute Pi metabolic inhibition in HSCs results from extrinsic Pi loss in the bone marrow niche and the intrinsic transcriptional suppression of soluble carrier family 20 member 1 (SLC20A1)-mediated Pi uptake by p53. Meanwhile, Pi metabolic inhibition blunts irradiation-induced Akt hyperactivation in HSCs, thereby weakening its ability to counteract p53-mediated Pi metabolic inhibition and the apoptosis of HSCs and consequently contributing to myelosuppression progression. Conversely, the modulation of the Pi metabolism in HSCs via a high Pi diet or renal Klotho deficiency protects against irradiation-induced myelosuppression. These findings reveal that Pi metabolism and HSC survival are causally linked by the Akt/p53–SLC20A1 axis during myelosuppression and provide valuable insights into the pathogenesis and management of myelosuppression.
Collapse
|
4
|
Effects of Soy–Whey Protein Nutritional Supplementation on Hematopoiesis and Immune Reconstitution in an Allogeneic Transplanted Mice. Nutrients 2022; 14:nu14153014. [PMID: 35893870 PMCID: PMC9332233 DOI: 10.3390/nu14153014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/07/2022] Open
Abstract
Profound malnutrition and immunodeficiency are serious negative effects of radiotherapy and bone marrow transplantation for hematologic malignancy patients. This study aimed to evaluate the effects of nutritional supplementation with a soy–whey protein mixture on hematopoietic and immune reconstitution in an allogeneic transplant mouse model. Male BALB/c (H-2Kd) mice, 6–8 weeks-old, were divided randomly into five groups and then provided with different protein nutrition support. After 28 days, blood samples, bone marrow, spleen, and thymus were harvested to measure the effects. The results showed that soy–whey blended protein supplements promoted hematopoietic stem cell engraftment, body weight recovery, and the recovery of white blood cells, lymphocytes, and neutrophils; triggered the expansion of hematopoietic stem cells and progenitor cell pools by increasing the numbers of the c-kit+ progenitor, Lin-Sca1+c-kit+, short-term hematopoietic stem cells, and multipotent progenitors; enhanced thymus re-establishment and splenic subset recovery in both organ index and absolute number; improved overall nutritional status by increasing total serum protein, albumin, and globulin; protected the liver from radiation-induced injury, and increased antioxidant capacity as indicated by lower concentrations of alanine aminotransferase, aspartate aminotransferase, malondialdehyde, and 4-hydroxynonenal. This study indicated that soy–whey blended protein as important nutrients, from both plant and animal sources, had a greater positive effect on patients with hematological malignancies to accelerate hematopoiesis and immune reconstitution after bone marrow transplantation.
Collapse
|
5
|
Müskens KF, Lindemans CA, Belderbos ME. Hematopoietic Dysfunction during Graft-Versus-Host Disease: A Self-Destructive Process? Cells 2021; 10:cells10082051. [PMID: 34440819 PMCID: PMC8392486 DOI: 10.3390/cells10082051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Graft-versus-host disease (GvHD) is a major complication of allogeneic hematopoietic (stem) cell transplantation (HCT). Clinically, GvHD is associated with severe and long-lasting hematopoietic dysfunction, which may contribute to the high mortality of GvHD after HCT. During GvHD, excessive immune activation damages both hematopoietic stem and progenitor cells and their surrounding bone marrow niche, leading to a reduction in cell number and functionality of both compartments. Hematopoietic dysfunction can be further aggravated by the occurrence—and treatment—of HCT-associated complications. These include immune suppressive therapy, coinciding infections and their treatment, and changes in the microbiome. In this review, we provide a structured overview of GvHD-mediated hematopoietic dysfunction, including the targets in the bone marrow, the mechanisms of action and the effect of GvHD-related complications and their treatment. This information may aid in the identification of treatment options to improve hematopoietic function in patients, during and after GvHD.
Collapse
Affiliation(s)
- Konradin F. Müskens
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.F.M.); (C.A.L.)
| | - Caroline A. Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.F.M.); (C.A.L.)
- Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Mirjam E. Belderbos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.F.M.); (C.A.L.)
- Correspondence:
| |
Collapse
|
6
|
Stanescu S, Belanger-Quintana A, Fernandez-Felix BM, Arrieta F, Quintero V, Maldonado MS, Alcaide P, Martínez-Pardo M. Severe anemia in patients with Propionic acidemia is associated with branched-chain amino acid imbalance. Orphanet J Rare Dis 2021; 16:226. [PMID: 34006296 PMCID: PMC8130149 DOI: 10.1186/s13023-021-01865-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Background Propionic acidemia (PA), an inborn error of metabolism, is caused by a deficiency in propionyl-CoA carboxylase. Patients have to follow a diet restricted in the propiogenic amino acids isoleucine (Ile), valine (Val), methionine (Met) and threonine (Thr); proper adherence can prevent and treat acute decompensation and increase life expectancy. However, chronic complications occur in several organs even though metabolic control may be largely maintained. Bone marrow aplasia and anemia are among the more common. Materials and methods In this retrospective study, data for patients with PA being monitored at the Hospital Ramón y Cajal (Madrid, Spain) (n = 10) in the past 10 years were examined to statistically detect relationships between persistent severe anemia outside of metabolic decompensation episodes and dietary practices such as natural protein intake and medical food consumption (special mixture of precursor-free amino acids) along with plasma levels of branched-chain amino acids (BCAA). High ferritin levels were deemed to indicate that a patient had received repeated transfusions for persistent anemia since data on hemoglobin levels at the moment of transfusion were not always passed on by the attending centers. Results Three patients had severe, persistent anemia that required repeated blood transfusions. Higher medical food consumption and plasma Leu levels were associated with iron overload. Notably, natural protein intake and plasma Val were negatively correlated with ferritin levels. We also observed an inverse relationship between plasma Val/Leu and Ile/Leu ratios and ferritin. Conclusion The present results suggest that severe anemia in patients with PA might be associated with low natural protein intake and BCAA imbalance. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01865-7.
Collapse
Affiliation(s)
- Sinziana Stanescu
- Servicio de Pediatria, Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain.
| | - Amaya Belanger-Quintana
- Servicio de Pediatria, Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Borja Manuel Fernandez-Felix
- Unidad de Bioestadistica Clinica, Instituto Ramon y Cajal de Investigacion Sanitaria, CIBER Epidemiología y Salud Pública (CIBERESP), Hospital Universitario Ramón y Cajal, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Francisco Arrieta
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, CIBER-OBN, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Victor Quintero
- Unidad de Oncohematologia, Servicio de Pediatria, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Maria Soledad Maldonado
- Unidad de Oncohematologia, Servicio de Pediatria, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Patricia Alcaide
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Mercedes Martínez-Pardo
- Servicio de Pediatria, Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| |
Collapse
|
7
|
Mohrin M. Mito-managing ROS & redox to reboot the immune system: Tapping mitochondria & redox management to extend the reach of hematopoietic stem cell transplantation. Free Radic Biol Med 2021; 165:38-53. [PMID: 33486089 DOI: 10.1016/j.freeradbiomed.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) are responsible for life-long production of blood and immune cells. HSC transplantation (HSCT) is the original cell therapy which can cure hematological disorders but also has the potential to treat other diseases if technical and safety barriers are overcome. To maintain homeostatic hematopoiesis or to restore hematopoiesis during transplantation HSCs must perform both self-renewal, replication of themselves, and differentiation, generation of mature blood and immune cells. These are just two of the cell fate choices HSCs have; the transitional phases where HSCs undergo these cell fate decisions are regulated by reduction-oxidation (redox) signaling, mitochondrial activity, and cellular metabolism. Recent studies revealed that mitochondria, a key source of redox signaling components, are central to HSC cell fate decisions. Here we highlight how mitochondria serve as hubs in HSCs to manage redox signaling and metabolism and thus guide HSC fate choices. We focus on how mitochondrial activity is modulated by their clearance, biogenesis, dynamics, distribution, and quality control in HSCs. We also note how modulating mitochondria in HSCs can help overcome technical barriers limiting further use of HSCT.
Collapse
Affiliation(s)
- Mary Mohrin
- Immunology Discovery, Genentech, Inc. 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
8
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
9
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine as A Regeneration Factor: Beyond the Tissue Repair. Life (Basel) 2021; 11:life11010038. [PMID: 33435573 PMCID: PMC7827108 DOI: 10.3390/life11010038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Diverse pathologies (inflammation, tissues injuries, cancer, etc.) and physiological conditions (obesity, physical activity, etc.) induce the expression/secretion of the matricellular protein, secrete protein acidic and rich in cysteine (SPARC). SPARC contributes to the creation of an environment that is suitable for tissue regeneration through a variety of roles, including metabolic homeostasis, inflammation reduction, extracellular matrix remodeling and collagen maturation. Such a homeostatic environment optimizes tissue regeneration and improves tissues’ repair ability. These properties that SPARC has within the regeneration contexts could have a variety of applications, such as in obesity, cancer, sarcopenia, diabetes and bioengineering.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: + 1-(418)-525-4444 (ext. 46448); Fax: +1-(418)-654-2298
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Haematopoietic stem cells (HSCs) are characterized by two key features: self-renewal ability and multilineage differentiation potential. Through these cellular activities, HSCs sustain blood and immune system homeostasis throughout life and can also reconstitute the entire haematopoietic system within a bone marrow ablated recipient. This approach of HSC transplantation is used clinically as a curative treatment option for numerous haematological diseases, both malignant and nonmalignant. RECENT FINDINGS Elucidation of the mechanism of HSC expansion represents a major focus within haematology. Here, we review the recent progress towards understanding HSC expansion in vivo and ex vivo, including a discussion of recent clonal transplantation assays and the development of novel ex vivo culture systems. SUMMARY Recent findings provide exciting promise for improving the safety and efficacy of current HSC-based therapies as well as for the development of new therapeutic paradigms.
Collapse
|
11
|
Mineral and Amino Acid Profiling of Different Hematopoietic Populations from the Mouse Bone Marrow. Int J Mol Sci 2020; 21:ijms21176444. [PMID: 32899421 PMCID: PMC7504538 DOI: 10.3390/ijms21176444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023] Open
Abstract
Steady hematopoiesis is essential for lifelong production of all mature blood cells. Hematopoietic stem and progenitor cells (HSPCs) found in the bone marrow ensure hematopoietic homeostasis in an organism. Failure of this complex process, which involves a fine balance of self-renewal and differentiation fates, often result in severe hematological conditions such as leukemia and lymphoma. Several molecular and metabolic programs, internal or in close interaction with the bone marrow niche, have been identified as important regulators of HSPC function. More recently, nutrient sensing pathways have emerged as important modulators of HSC homing, dormancy, and function in the bone marrow. Here we describe a method for reliable measurement of various amino acids and minerals in different rare bone marrow (BM) populations, namely HSPCs. We found that the amino acid profile of the most primitive hematopoietic compartments (KLS) did not differ significantly from the one of their direct progenies (common myeloid progenitor CMP), while granulocyte-monocyte progenitors (GMPs), on the opposite of megakaryocyte-erythroid progenitors (MEPs), have higher content of the majority of amino acids analyzed. Additionally, we identified intermediates of the urea cycle to be differentially expressed in the KLS population and were found to lower mitochondrial membrane potential, an established readout on self-renewal capability. Moreover, we were able to profile for the first time 12 different minerals and detect differences in elemental contents between different HSPC compartments. Importantly, essential dietary trace elements, such as iron and molybdenum, were found to be enriched in granulocyte-monocyte progenitors (GMPs). We envision this amino acid and mineral profiling will allow identification of novel metabolic and nutrient sensing pathways important in HSPC fate regulation.
Collapse
|
12
|
Merino JJ, Cabaña-Muñoz ME, Pelaz MJ. The Bluegreen Algae (AFA) Consumption over 48 Hours Increases the Total Number of Peripheral CD34+ Cells in Healthy Patients: Effect of Short-Term and Long-Term Nutritional Supplementation (Curcumin/AFA) on CD34+ Levels (Blood). J Pers Med 2020; 10:E49. [PMID: 32521810 PMCID: PMC7354690 DOI: 10.3390/jpm10020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022] Open
Abstract
Several active principles from plants could trigger the release of stem cells from the bone marrow. Stem cell mobilizers have shown side effects in patients. Thus, the purpose of this paper is to find the natural products from plants (curcuminoids, glycosinolate of sulforaphane, AFA bluegreen algae), which could be potential stem mobilizes without adverse side effects. The antioxidant curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-2,5-dione], glycosinolate of sulforaphane (broccoli) or AFA (Aphanizomenon flos) extract promote beneficial effects in patients. The number of circulating stem cells were monitored by HSC marker-CD34 by flow cytometry in peripheral blood from healthy subjects. CD34 is a hematological stem cells (HSC) marker. A double-blind study was conducted in 22 healthy subjects. We have evaluated whether short-term AFA-Aphanizomenon flos aquae-algae or curcuminoids consumption (powder or liquid formulation) over 48 consecutive hours could increase the total number of peripheral CD34+ blood cells (n = 22, n = 5 subjects/group). The total number of circulating CD34+ cells were quantified after short-term and long-term nutritional supplementation; their levels were compared with their own basal levels (n = 5/group, controls: before taking any supplement) or placebo-treated patients (n = 7); their average age was 54 years old. We also evaluated whether long-term nutritional supplementation with several nutraceuticals could enhance HSC mobilization by increasing the total number of peripheral CD-34+ cell after seven or 38 consecutive days of administration (n = 5, with seven placebo-treated patients). The long-term administration take place with these doses/day [curcuminoids: 2000 mg/day, equivalent to 120 mg of curcuminoids/day), glycosinolate of sulforaphane (66 mg/day), plus AFA Algae bluegreen extract (400 mg/day)]. On the last day (10 A.M.) of treatment, blood samples were collected six hours after taking these supplements; the average age was 54 years old. Notably, the blue green AFA algae extract consumption over 48 h enhances HSC mobilization by increasing the total number of peripheral CD34+ cells. The long-term administration with curcuminoids, glycosinolate of sulforaphane, and AFA bluegreen algae extract also increased the total number of CD34-HSC cells after seven or 38 days of consecutive of administration in healthy subjects.
Collapse
Affiliation(s)
- José Joaquín Merino
- Dpto. Farmacologia, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
13
|
Abstract
The self-renewal capacity of multipotent haematopoietic stem cells (HSCs) supports blood system homeostasis throughout life and underlies the curative capacity of clinical HSC transplantation therapies. However, despite extensive characterization of the HSC state in the adult bone marrow and embryonic fetal liver, the mechanism of HSC self-renewal has remained elusive. This Review presents our current understanding of HSC self-renewal in vivo and ex vivo, and discusses important advances in ex vivo HSC expansion that are providing new biological insights and offering new therapeutic opportunities.
Collapse
|
14
|
Scapin G, Goulard MC, Dharampuriya PR, Cillis JL, Shah DI. Analysis of Hematopoietic Stem Progenitor Cell Metabolism. J Vis Exp 2019. [PMID: 31762453 DOI: 10.3791/60234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) have distinct metabolic plasticity, which allows them to transition from their quiescent state to a differentiation state to sustain demands of the blood formation. However, it has been difficult to analyze the metabolic status (mitochondrial respiration and glycolysis) of HSPCs due to their limited numbers and lack of optimized protocols for non-adherent, fragile HSPCs. Here, we provide a set of clear, step-by-step instructions to measure metabolic respiration (oxygen consumption rate; OCR) and glycolysis (extracellular acidification rate; ECAR) of murine bone marrow-LineagenegSca1+c-Kit+ (LSK) HSPCs. This protocol provides a higher amount of LSK HSPCs from murine bone marrow, improves the viability of HSPCs during incubation, facilitates extracellular flux analyses of non-adherent HSPCs, and provides optimized injection protocols (concentration and time) for drugs targeting oxidative phosphorylation and glycolytic pathways. This method enables the prediction of the metabolic status and the health of HSPCs during blood development and diseases.
Collapse
Affiliation(s)
- Giorgia Scapin
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center
| | - Marie C Goulard
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center
| | - Priyanka R Dharampuriya
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center
| | - Jennifer L Cillis
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center
| | - Dhvanit I Shah
- Nationwide Children's Hospital; The Ohio State University College of Medicine; The Ohio State University Comprehensive Cancer Center;
| |
Collapse
|
15
|
Nemkov T, D'Alessandro A, Reisz JA. Metabolic underpinnings of leukemia pathology and treatment. Cancer Rep (Hoboken) 2019; 2:e1139. [PMID: 32721091 DOI: 10.1002/cnr2.1139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Carcinogenic transformation of white blood cells during hematopoiesis leads to the development of leukemia, a cancer characterized by incompetent immune cells and a disruption of normal bone marrow function. Leukemias are diverse in type, affected population, prognosis, and treatment regimen, yet a common theme in leukemia is the dysregulated metabolism of leukemic cells and leukemic stem cells with respect to their noncancerous counterparts. RECENT FINDINGS In this review, we highlight current findings that elucidate metabolic traits unique to the four major types of leukemia, which confer carcinogenic survival but can be potentially exploited for therapeutic intervention. These metabolic features can work in conjunction with or be independent of unique aspects of the bone marrow microenvironment that can also influence cell survival and proliferation, thus sustaining carcinogenesis. CONCLUSION Deepening our understanding of the interactions of leukemias with their niche environments in vivo will inform future treatments for leukemia, particularly for those that are refractive to tyrosine kinase inhibitors and other therapeutic mainstays.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
High-fat diet disturbs lipid raft/TGF-β signaling-mediated maintenance of hematopoietic stem cells in mouse bone marrow. Nat Commun 2019; 10:523. [PMID: 30705272 PMCID: PMC6355776 DOI: 10.1038/s41467-018-08228-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
Despite recent in vivo data demonstrating that high-fat diet (HFD)-induced obesity leads to major perturbations in murine hematopoietic stem cells (HSC), the direct role of a HFD is not yet completely understood. Here, we investigate the direct impact of a short-term HFD on HSC and hematopoiesis in C57BL/6J mice compared with standard diet-fed mice. We detect a loss of half of the most primitive HSC in the bone marrow (BM) cells of HFD-fed mice, which exhibit lower hematopoietic reconstitution potential after transplantation. Impaired maintenance of HSC is due to reduced dormancy after HFD feeding. We discover that a HFD disrupts the TGF-β receptor within lipid rafts, associated to impaired Smad2/3-dependent TGF-β signaling, as the main molecular mechanism of action. Finally, injecting HFD-fed mice with recombinant TGF-β1 avoids the loss of HSC and alteration of the BM’s ability to recover, underscoring the fact that a HFD affects TGF-β signaling on HSC. High fat diets (HFD) are thought to perturb murine hematopoiesis as a result of obesity. Here the authors find that short-term HFD reduces hematopoietic stem cells (HSC), disrupts lipid rafts and TGF-β1 signalling. Injecting HFD-fed mice with recombinant TGF-β1 can rescue HSC loss.
Collapse
|
17
|
Ito K, Bonora M, Ito K. Metabolism as master of hematopoietic stem cell fate. Int J Hematol 2018; 109:18-27. [PMID: 30219988 DOI: 10.1007/s12185-018-2534-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
HSCs have a fate choice when they divide; they can self-renew, producing new HSCs, or produce daughter cells that will mature to become committed cells. Technical challenges, however, have long obscured the mechanics of these choices. Advances in flow-sorting have made possible the purification of HSC populations, but available HSC-enriched fractions still include substantial heterogeneity, and single HSCs have proven extremely difficult to track and observe. Advances in single-cell approaches, however, have led to the identification of a highly purified population of hematopoietic stem cells (HSCs) that make a critical contribution to hematopoietic homeostasis through a preference for self-renewing division. Metabolic cues are key regulators of this cell fate choice, and the importance of controlling the population and quality of mitochondria has recently been highlighted to maintain the equilibrium of HSC populations. Leukemic cells also demand tightly regulated metabolism, and shifting the division balance of leukemic cells toward commitment has been considered as a promising therapeutic strategy. A deeper understanding of precisely how specific modes of metabolism control HSC fate is, therefore, of great biological interest, and more importantly will be critical to the development of new therapeutic strategies that target HSC division balance for the treatment of hematological disease.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
Wilkinson AC, Morita M, Nakauchi H, Yamazaki S. Branched-chain amino acid depletion conditions bone marrow for hematopoietic stem cell transplantation avoiding amino acid imbalance-associated toxicity. Exp Hematol 2018; 63:12-16.e1. [PMID: 29705267 PMCID: PMC6052250 DOI: 10.1016/j.exphem.2018.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 01/28/2023]
Abstract
Hematopoietic stem cells (HSCs) are used clinically in bone marrow (BM) transplantation due to their unique ability to reform the entire hematopoietic system. Recently, we reported that HSCs are highly sensitive to valine, one of the three branched-chain amino acids (BCAAs) in addition to isoleucine and leucine. Dietary depletion of valine could even be used as a conditioning regimen for HSC transplantation. Here, we report that HSCs are highly sensitive to the balance of BCAAs, with both proliferation and survival reduced by BCAA imbalance. However, low but balanced BCAA levels failed to rescue HSC maintenance. Importantly, in vivo depletion of all three BCAAs was significantly less toxic than depletion of valine only. We demonstrate that BCAA depletion can replace valine depletion as a safer alternative to BM conditioning. In summary, by determining HSC metabolic requirements, we can improve metabolic approaches to BM conditioning.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Maiko Morita
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA; Division of Stem Cell Therapy, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
19
|
Ito K, Ito K. Hematopoietic stem cell fate through metabolic control. Exp Hematol 2018; 64:1-11. [PMID: 29807063 DOI: 10.1016/j.exphem.2018.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Hematopoietic stem cells maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions and this damage may eventually compromise the cells' self-renewal capacity. Hematopoietic stem cell divisions result in either self-renewal or differentiation, with the balance between the two affecting hematopoietic homeostasis directly; however, the heterogeneity of available hematopoietic stem cell-enriched fractions, together with the technical challenges of observing hematopoietic stem cell behavior, has long hindered the analysis of individual hematopoietic stem cells and prevented the elucidation of this process. Recent advances in genetic models, metabolomics analyses, and single-cell approaches have revealed the contributions made to hematopoietic stem cell self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality control as a key factor in the equilibrium of hematopoietic stem cells. A deeper understanding of precisely how specific modes of metabolism control hematopoietic stem cells fate at the single-cell level is therefore not only of great biological interest, but will also have clear clinical implications for the development of therapies for hematological diseases.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
20
|
Arai F. Guest editorial: Regulatory signaling in normal and abnormal hematopoiesis. Int J Hematol 2018; 107:624-626. [PMID: 29728979 DOI: 10.1007/s12185-018-2460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
Stem cells are characterized by their unique ability to both self-renew and differentiate along multiple cellular lineages. Self-renewal and differentiation must be tightly controlled to ensure an appropriate stem cell pool in tissue over the lifetime of an organism. Elucidating the mechanisms controlling stem cell fate and maintenance remains a key challenge in stem cell biology. Hematopoietic stem cells (HSCs) are responsible for the lifelong production of multiple blood cell lineages. To remain functional, these cells must interact with a particular microenvironment, known as the stem cell niche. HSC niches provide various factors, including cytokines, extracellular matrices, nutrients, hormones, and metabolites. These niche factors modulate cell-intrinsic molecular regulatory networks in HSCs. Niche signals also play crucial roles in the induction of HSCs from pluripotent stem cells or vascular endothelial cells. The Progress in Hematology review series in the current issue highlights some critical regulators of HSC maintenance and production.
Collapse
Affiliation(s)
- Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|