1
|
Geng Z, Wu X, Wang J, Cao G, Tan C, Li L, Qiu J. Effects of Heat and Hypoxia Training on the Fat Oxidation Capacity of Competitive Athletes. Eur J Sport Sci 2025; 25:e12312. [PMID: 40344349 PMCID: PMC12061047 DOI: 10.1002/ejsc.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
This study aimed to evaluate the impact of a four-week heat and hypoxia training on the fat oxidation capacity of competitive athletes. Eight elite male modern pentathlon athletes completed a four-week aerobic endurance training program in three environments: normal (CON), high temperature and humidity (HOT), and hypoxia (HYP). Assessments were conducted in both the normal environment and the corresponding special environment before and after training. Gas exchange data were collected during exercise to assess aerobic capacity, and fat oxidation was measured using indirect calorimetry. Fat oxidation kinetics were modeled using the sinusoidal (SIN) mathematical model to determine the maximum fat oxidation (MFO) and the exercise intensity at which it occurred (FATmax). Under normal environment, HOT training had an increase in absolute V̇O2 (238.152 mL/min and p = 0.003), both the HOT (96.062 s and p = 0.006) and HYP (109.917 s and p = 0.002) trainings demonstrated increases in VT2@Time, both the HOT (0.126 g/min and p = 0.015) and HYP (0.157 g/min and p = 0.004) trainings showed increases in MFO, and the HOT training also exhibited an increase in FATmax (5.303 g/min and p = 0.005); both the HOT and HYP trainings showed dilatation of the fat oxidation curve, with the HOT training also displaying dilatation in the fat oxidation curve under heat conditions. Four-weeks of heat and hypoxia training significantly enhanced athletes' aerobic metabolism and fat oxidation capacity. The benefits of heat training on aerobic metabolism and fat oxidation may exceed those of hypoxia training.
Collapse
Affiliation(s)
- Zhizhong Geng
- School of Health SciencesShanghai University of SportShanghaiChina
| | | | - Jinhao Wang
- Shanghai Research Institute of Sports ScienceShanghaiChina
| | - Guohuan Cao
- Shanghai Research Institute of Sports ScienceShanghaiChina
| | - Chenhao Tan
- Shanghai Research Institute of Sports ScienceShanghaiChina
| | - Longji Li
- School of Health SciencesShanghai University of SportShanghaiChina
| | - Jun Qiu
- Shanghai Research Institute of Sports ScienceShanghaiChina
| |
Collapse
|
2
|
McDonald P, Brown HA, Topham TH, Kelly MK, Jardine WT, Carr A, Sawka MN, Woodward AP, Clark B, Périard JD. Influence of Exercise Heat Acclimation Protocol Characteristics on Adaptation Kinetics: A Quantitative Review With Bayesian Meta-Regressions. Compr Physiol 2025; 15:e70017. [PMID: 40442924 PMCID: PMC12122934 DOI: 10.1002/cph4.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025]
Abstract
The integrative influence of heat acclimation (HA) protocol characteristics and approach on adaptation kinetics and exercise capacity/performance in the heat remains unclear. Bayesian multilevel regression models were used to estimate adaptations with the number of exposures, exposure duration, ambient temperature, water vapor pressure, and HA approach (e.g., constant workrate) as predictors. Data from 211 papers were included in meta-analyses with results presented as posterior means and 90% credible intervals. Mean protocol characteristics were as follows: 8 ± 4 exposures, 90 ± 36 min/exposure, 39.1°C ± 4.8°C, and 2.78 ± 0.83 kPa. HA decreased resting (-5 beats·min-1 [-7, -3]) and end-exercise heart rate (-17 beats·min-1 [-19, -14]), resting (-0.19°C [-0.23, -0.14]) and end-exercise core temperature (-0.43°C [-0.48, -0.36]), and expanded plasma volume (5.6% [3.8, 7.0]). HA also lowered exercise metabolic rate (-87 mL·min-1 [-126, -49]), increased whole-body sweat rate (WBSR) (163 mL·h-1 [94, 226]), time to exhaustion (49% [35, 61]) and incremental exercise time (14% [7, 24]), and improved time trial performance (3.1% [1.8, 4.5]). An additional HA exposure increased hemoglobin mass (1.9 g [0.6, 3.2]) and WBSR (9 mL·h-1 [1, 17]), and an additional 15 min/exposure further lowered end-exercise core temperature (-0.04°C [-0.05, -0.03]) and expanded plasma volume (0.4% [0.1, 0.7]). A 5°C increase in ambient temperature further lowered end-exercise HR (-2 beats·min-1 [-3, -1]) and a 1 kPa increase enhanced WBSR (37 mL·h-1 [4, 72]). End-exercise heart rate and core temperature decreased similarly following controlled hyperthermia (-16 beats·min-1 [-18, -14]; -0.43°C [-0.48, -0.36]) and constant workrate HA (-17 beats·min-1 [-18, -16]; -0.45°C [-0.49, -0.42]). HA protocol characteristics influence the adaptive response and may be manipulated to optimize adaptations. A predictor for estimating HA adaptations based on protocol characteristics is available at: https://www.canberra.edu.au/research/centres/uc-rise/research/environmental-physiology/exercise-heat-acclimation-predictor.
Collapse
Affiliation(s)
- Peter McDonald
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Harry A. Brown
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Thomas H. Topham
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Monica K. Kelly
- Centre for Sport Research, School of Exercise and Nutrition SciencesDeakin UniversityMelbourneVictoriaAustralia
| | - William T. Jardine
- Centre for Sport Research, School of Exercise and Nutrition SciencesDeakin UniversityMelbourneVictoriaAustralia
| | - Amelia Carr
- Centre for Sport Research, School of Exercise and Nutrition SciencesDeakin UniversityMelbourneVictoriaAustralia
| | - Michael N. Sawka
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrew P. Woodward
- Faculty of HealthUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Brad Clark
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Julien D. Périard
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| |
Collapse
|
3
|
Stevens CE, Costello JT, Tipton MJ, Walker EF, Gould AAM, Young JS, Lee BJ, Williams TB, Myers FA, Corbett J. Effect of condensed heat acclimation on thermophysiological adaptations, hypoxic cross-tolerance, exercise performance, and deacclimation. J Appl Physiol (1985) 2025; 138:634-650. [PMID: 39819118 DOI: 10.1152/japplphysiol.00775.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/23/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Short duration heat acclimation (HA) (≤5 daily heat exposures) elicits incomplete adaptation compared with longer interventions, possibly due to the lower accumulated thermal "dose." It is unknown if matching thermal "dose" over a shorter timescale elicits comparable adaptation to a longer intervention. Using a parallel-groups design, we compared: 1) "condensed" HA (CHA; n = 17 males) consisting of 4 × 75 min·day-1 heat exposures [target rectal temperature (Trec) = 38.5 °C] for two consecutive days, with 2) "traditional" HA (THA; n = 15 males) consisting of 1 × 75 min·day-1 heat exposure (target Trec = 38.5°C) for eight consecutive days. Physiological responses to exercise heat stress, hypoxia, and normoxic exercise performance were evaluated pre- and postintervention. Thermal (Trec over final 45 min: CHA = 38.45 ± 0.17°C, THA = 38.53 ± 0.13°C, P = 0.126) and cardiovascular strain were not different during interventions, indicating similar thermal "dose," although CHA had lower sweating rate, higher starting Trec, and greater inflammation, gastrointestinal permeability, and renal stress (P < 0.05). However, CHA elicited an array of thermophysiological adaptations that did not differ from THA [reduced indices of peak thermal (e.g., Δ peak Trec CHA = -0.28 ± 0.26°C, THA = -0.36 ± 0.17°C, P = 0.303) and cardiovascular strain, inflammation, and renal stress; blood and plasma volume expansion; improved perceptual indices], although improvements in resting thermal strain (e.g., Δ resting Trec CHA = -0.14 ± 0.21°C, THA = -0.35 ± 0.29°C, P = 0.027) and sweating rate were less with CHA. Both interventions improved aspects of hypoxic tolerance, but effects on temperate normoxic exercise indices were limited. The diminished thermal strain was well-maintained over a 22-day decay period. In conclusion, CHA could represent a viable acclimation option for time-restricted young healthy males preparing for a hot, and possibly high-altitude, environment.NEW & NOTEWORTHY This study has shown, for the first time, that a novel condensed heat acclimation program can elicit an array of thermophysiological adaptations, many of which do not differ from traditional heat acclimation. These findings suggest that accumulated thermal "dose" is an important factor contributing to the adaptive responses to heat stress and that condensed heat acclimation may represent a viable option for time-restricted individuals (e.g., military personnel, firefighters, and athletes) preparing to enter a hot environment.
Collapse
Affiliation(s)
- Charlotte E Stevens
- Extreme Environments Laboratory, School of Psychology, Sport and Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Occupational Performance Research Group, University of Chichester, Chichester, United Kingdom
| | - Joseph T Costello
- Extreme Environments Laboratory, School of Psychology, Sport and Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Michael J Tipton
- Extreme Environments Laboratory, School of Psychology, Sport and Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Ella F Walker
- Defence Science and Technology Laboratory, Porton Down Salisbury, United Kingdom
| | - Alex A M Gould
- Extreme Environments Laboratory, School of Psychology, Sport and Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - John S Young
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Thomas B Williams
- Extreme Environments Laboratory, School of Psychology, Sport and Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Fiona A Myers
- School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jo Corbett
- Extreme Environments Laboratory, School of Psychology, Sport and Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
4
|
Masoud A, McKenna ZJ, Li Z, Deyhle MR, Mermier CM, Schlader ZJ, Amorim FT. Strategies to mitigate acute kidney injury risk during physical work in hot environments. Am J Physiol Renal Physiol 2024; 326:F499-F510. [PMID: 38299216 DOI: 10.1152/ajprenal.00350.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
Prolonged physical work in the heat can reduce renal function and increase the risk of acute kidney injury (AKI). This is concerning given that the latest climate change projections forecast a rise in global temperature as well as the frequency, intensity, and duration of heatwaves. This means that outdoor and indoor workers in the agriculture or construction industries will be exposed to higher heat stress in the years ahead. Several studies indicate a higher incidence of chronic kidney disease from nontraditional origins (CKDnt) in individuals exposed to high temperatures, intense physical work, and/or recurrent dehydration. It has been proposed that prolonged physical work in the heat accompanied by dehydration results in recurrent episodes of AKI that ultimately lead to permanent kidney damage and the development of CKDnt. Thus, there is a need to identify and test strategies that can alleviate AKI risk during physical work in the heat. The purpose of this review is to present strategies that might prevent and mitigate the risk of AKI induced by physical work in the heat.
Collapse
Affiliation(s)
- Abdulaziz Masoud
- Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Zachary J McKenna
- Institute for Exercise and Environmental Medicine, Institute for Exercise and Environmental Medicine, Dallas, TX, United States
| | - Zidong Li
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA, United States
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Zachary J Schlader
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, United States
| | - Fabiano T Amorim
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
5
|
Corbett J, Young JS, Tipton MJ, Costello JT, Williams TB, Walker EF, Lee BJ, Stevens CE. Molecular biomarkers for assessing the heat-adapted phenotype: a narrative scoping review. J Physiol Sci 2023; 73:26. [PMID: 37848829 PMCID: PMC10717221 DOI: 10.1186/s12576-023-00882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typically quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a biological medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitivity and specificity of these candidates and identifying the current lack of a single 'standout' biomarker. It concludes by considering the potential of multivariable approaches that provide information about a range of physiological systems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-adapted state, and highlighting future research opportunities.
Collapse
Affiliation(s)
- J Corbett
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK.
| | - J S Young
- National Horizons Centre, Teesside University, Darlington, UK
| | - M J Tipton
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - J T Costello
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - T B Williams
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - E F Walker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - B J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - C E Stevens
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
6
|
Charoensap T, Kilding AE, Maunder E. Carbohydrate, but not fat, oxidation is reduced during moderate-intensity exercise performed in 33 vs. 18 °C at matched heart rates. Eur J Appl Physiol 2023; 123:2073-2085. [PMID: 37199760 PMCID: PMC10193330 DOI: 10.1007/s00421-023-05225-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE Exposure to environmental heat stress increases carbohydrate oxidation and extracellular heat shock protein 70 (HSP70) concentrations during endurance exercise at matched absolute, external work rates. However, a reduction in absolute work rate typically occurs when unacclimated endurance athletes train and/or compete in hot environments. We sought to determine the effect of environmental heat stress on carbohydrate oxidation rates and plasma HSP70 expression during exercise at matched heart rates (HR). METHODS Ten endurance-trained, male cyclists performed two experimental trials in an acute, randomised, counterbalanced cross-over design. Each trial involved a 90-min bout of cycling exercise at 95% of the HR associated with the first ventilatory threshold in either 18 (TEMP) or 33 °C (HEAT), with ~ 60% relative humidity. RESULTS Mean power output (17 ± 11%, P < 0.001) and whole-body energy expenditure (14 ± 8%, P < 0.001) were significantly lower in HEAT. Whole-body carbohydrate oxidation rates were significantly lower in HEAT (19 ± 11%, P = 0.002), while fat oxidation rates were not different between-trials. The heat stress-induced reduction in carbohydrate oxidation was associated with the observed reduction in power output (r = 0.64, 95% CI, 0.01, 0.91, P = 0.05) and augmented sweat rates (r = 0.85, 95% CI, 0.49, 0.96, P = 0.002). Plasma HSP70 and adrenaline concentrations were not increased with exercise in either environment. CONCLUSION These data contribute to our understanding of how moderate environmental heat stress is likely to influence substrate oxidation and plasma HSP70 expression in an ecologically-valid model of endurance exercise.
Collapse
Affiliation(s)
- Thanchanok Charoensap
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
7
|
Gibson OR, Astin R, Puthucheary Z, Yadav S, Preston S, Gavins FNE, González-Alonso J. Skeletal muscle angiogenic, regulatory, and heat shock protein responses to prolonged passive hyperthermia of the human lower limb. Am J Physiol Regul Integr Comp Physiol 2023; 324:R1-R14. [PMID: 36409025 DOI: 10.1152/ajpregu.00320.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Passive hyperthermia induces a range of physiological responses including augmenting skeletal muscle mRNA expression. This experiment aimed to examine gene and protein responses to prolonged passive leg hyperthermia. Seven young participants underwent 3 h of resting unilateral leg heating (HEAT) followed by a further 3 h of rest, with the contralateral leg serving as an unheated control (CONT). Muscle biopsies were taken at baseline (0 h), and at 1.5, 3, 4, and 6 h in HEAT and 0 and 6 h in CONT to assess changes in selected mRNA expression via qRT-PCR, and HSP72 and VEGFα concentration via ELISA. Muscle temperature (Tm) increased in HEAT plateauing from 1.5 to 3 h (+3.5 ± 1.5°C from 34.2 ± 1.2°C baseline value; P < 0.001), returning to baseline at 6 h. No change occurred in CONT. Endothelial nitric oxide synthase (eNOS), Forkhead box O1 (FOXO-1), Hsp72, and VEGFα mRNA increased in HEAT (P < 0.05); however, post hoc analysis identified that only Hsp72 mRNA statistically increased (at 4 h vs. baseline). When peak change during HEAT was calculated angiopoietin 2 (ANGPT-2) decreased (-0.4 ± 0.2-fold), and C-C motif chemokine ligand 2 (CCL2) (+2.9 ± 1.6-fold), FOXO-1 (+6.2 ± 4.4-fold), Hsp27 (+2.9 ± 1.7-fold), Hsp72 (+8.5 ± 3.5-fold), Hsp90α (+4.6 ± 3.7-fold), and VEGFα (+5.9 ± 3.1-fold) increased from baseline (all P < 0.05). At 6 h Tm were not different between limbs (P = 0.582; CONT = 32.5 ± 1.6°C, HEAT = 34.3 ± 1.2°C), and only ANGPT-2 (P = 0.031; -1.3 ± 1.4-fold) and VEGFα (P = 0.030; 1.1 ± 1.2-fold) differed between HEAT and CONT. No change in VEGFα or HSP72 protein concentration were observed over time; however, peak change in VEGFα did increase (P < 0.05) in HEAT (+140 ± 184 pg·mL-1) versus CONT (+7 ± 86 pg·mL-1). Passive hyperthermia transiently augmented ANGPT-2, CCL2, eNOS, FOXO-1, Hsp27, Hsp72, Hsp90α and VEGFα mRNA, and VEGFα protein.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Centre for Physical Activity in Health and Disease, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rónan Astin
- Department of Medicine, Centre for Human Health and Performance, University College London, London, United Kingdom
| | - Zudin Puthucheary
- Adult Critical Care Unit, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Shreya Yadav
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Sophie Preston
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Felicity N E Gavins
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
8
|
McCormick JJ, Côté MD, King KE, McManus MK, Goulet N, Dokladny K, Moseley PL, Kenny GP. The autophagic response to exercise in peripheral blood mononuclear cells from young men is intensity-dependent and is altered by exposure to environmental heat. Am J Physiol Regul Integr Comp Physiol 2022; 323:R467-R482. [PMID: 35993558 DOI: 10.1152/ajpregu.00110.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy is essential to maintaining cellular homeostasis in all eukaryotic cells and to tolerance of acute stressors such as starvation, heat, and recovery following exercise. Limited information exists regarding the exercise intensity-dependent autophagic response in humans, and it is unknown how environmental heat stress may modulate this response. Therefore, we evaluated autophagy and accompanying pathways of cellular stress (the heat shock response [HSR], apoptosis, and acute inflammation) in peripheral blood mononuclear cells (PBMCs) from 10 young men (mean [SD]; 22 [2] years) before, immediately after and up to 6h post-exercise recovery from 30 minutes of low-, moderate-, and high-intensity semi-recumbent cycling (40, 55 and 70% of maximal oxygen consumption (VO2max), respectively)in a temperate environment (25°C) and at 70% of VO2max in a hot environment (40°C). Changes in protein content were analyzed via Western blot. Each increase in exercise intensity was associated with elevations in mean body temperature. LC3-II increased following moderate-intensity exercise, with further increases following high-intensity exercise (p < 0.05). However, an increase in beclin-2 and ULK1, with a decrease in p62 was only observed after high-intensity exercise, which was paralleled by elevated TNF-α and cleaved-caspase-3, with the HSR peaking at 6h after exercise (p < 0.05). When exercise was performed in the heat, greater LC3-II and cleaved-caspase-3 accumulation was observed, however beclin-2 declined in recovery (p < 0.05). Therefore, our findings indicate that autophagy in PBMCs during exercise may be associated with greater heat strain exhibited during increasing exercise intensities, which is modulated by exposure to heat.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Melissa D Côté
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Morgan K McManus
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Pope L Moseley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,College of Health Solutions, Arizona State University, Phoenix, Arizona, United States
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Bourbeau KC, Moriarty TA, Bellovary BN, Bellissimo GF, Ducharme JB, Haeny TJ, Zuhl MN. Cardiovascular, Cellular, and Neural Adaptations to Hot Yoga versus Normal-Temperature Yoga. Int J Yoga 2021; 14:115-126. [PMID: 34188383 PMCID: PMC8191229 DOI: 10.4103/ijoy.ijoy_134_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/28/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
CONTEXT Chronic heat exposure promotes cardiovascular and cellular adaptations, improving an organism's ability to tolerate subsequent stressors. Heat exposure may also promote neural adaptations and alter the neural-hormonal stress response. Hot-temperature yoga (HY) combines mind-body exercise with heat exposure. The added heat component in HY may induce cardiovascular and cellular changes, along with neural benefits and modulation of stress hormones. AIMS The purpose of the present study is to compare the cardiovascular, cellular heat shock protein 70 (HSP70), neural, and hormonal adaptations of HY versus normal-temperature yoga (NY). SETTINGS AND DESIGN Twenty-two subjects (males = 11 and females = 11, 26 ± 6 years) completed 4 weeks of NY (n = 11) or HY (n = 11, 41°C, 40% humidity). Yoga sessions were performed 3 times/week following a modified Bikram protocol. SUBJECTS AND METHODS Pre- and posttesting included (1) hemodynamic measures during a heat tolerance test and maximal aerobic fitness test; (2) neural and hormonal adaptations using serum brain-derived neurotrophic factor (BDNF) and adrenocorticotropic hormone (ACTH), along with a mental stress questionnaire; and (3) cellular adaptations (HSP70) in peripheral blood mononuclear cells (PBMCs). STATISTICAL ANALYSIS Within- and between-group Student's t-test analyses were conducted to compare pre- and post-VO2 max, perceived stress, BDNF, HSP70, and ACTH in HY and NY groups. RESULTS Maximal aerobic fitness increased in the HY group only. No evidence of heat acclimation or change in mental stress was observed. Serum BDNF significantly increased in yoga groups combined. Analysis of HSP70 suggested higher expression of HSP70 in the HY group only. CONCLUSIONS Twelve sessions of HY promoted cardiovascular fitness and cellular thermotolerance adaptations. Serum BDNF increased in response to yoga (NY + HY) and appeared to not be temperature dependent.
Collapse
Affiliation(s)
- Kelsey Christian Bourbeau
- Department of Kinesiology, University of Northern Iowa, Cedar Falls, Iowa, USA
- Department of Health, Exercise and Sports Science, University of New Mexico, Albuquerque, NM, USA
| | - Terence A Moriarty
- Department of Kinesiology, University of Northern Iowa, Cedar Falls, Iowa, USA
| | | | - Gabriella F Bellissimo
- Department of Kinesiology, State University of New York College at Cortland, Cortland, NY, USA
| | - Jeremy B Ducharme
- Department of Health, Exercise and Sports Science, University of New Mexico, Albuquerque, NM, USA
| | - Truman J Haeny
- Department of Health, Exercise and Sports Science, University of New Mexico, Albuquerque, NM, USA
| | - Micah N Zuhl
- School of Health Sciences, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
10
|
Brunt VE, Minson CT. Heat therapy: mechanistic underpinnings and applications to cardiovascular health. J Appl Physiol (1985) 2021; 130:1684-1704. [PMID: 33792402 DOI: 10.1152/japplphysiol.00141.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and novel therapies are drastically needed to prevent or delay the onset of CVD to reduce the societal and healthcare burdens associated with these chronic diseases. One such therapy is "heat therapy," or chronic, repeated use of hot baths or saunas. Although using heat exposure to improve health is not a new concept, it has received renewed attention in recent years as a growing number of studies have demonstrated robust and widespread beneficial effects of heat therapy on cardiovascular health. Here, we review the existing literature, with particular focus on the molecular mechanisms that underscore the cardiovascular benefits of this practice.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado.,Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
11
|
Lovas A, Szilágyi B, Bosnyák E, Ács P, Oláh A, Komka Z, Tóth M, Merkely B, Németh E, Gilányi B, Krepuska M, Sőti C, Sótonyi P. Reaction Kinetics Modeling of eHsp70 Induced by Norepinephrine in Response to Exercise Stress. Int J Sports Med 2020; 42:506-512. [PMID: 33291181 DOI: 10.1055/a-1224-3792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exercise elicits a systemic adaptation reaction, involving both neuroendocrine and cellular/paracrine stress responses, exemplified by the sympathoadrenergic activity and the release of cellular Hsp70 into the circulation. Regular sports training is known to result in increased fitness. In this study, we characterized the plasma norepinephrine and Hsp70 levels and modeled their relationship in response to exercise stress by bicycle ergometer in 12 trained judoka athletes and in 10 healthy controls. Resting norepinephrine was similar in both groups, whereas Hsp70 was significantly higher in controls compared to athletes. Intense exercise load induced both norepinephrine and Hsp70 elevation. However, both norepinephrine and Hsp70 were significantly lower in athletes compared to the control group. A reaction kinetic model was developed that provided a quantitative description of norepinephrine-facilitated extracellular Hsp70 release, congruent with the experimental data. Our study indicates that exercise-induced norepinephrine and extracellular Hsp70 may be coordinated responses to physiological stress, which are robustly affected by regular sports activity.
Collapse
Affiliation(s)
- Attila Lovas
- Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Brigitta Szilágyi
- Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edit Bosnyák
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Pongrácz Ács
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - András Oláh
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - Zsolt Komka
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary.,Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest
| | - Miklós Tóth
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Béla Merkely
- Department of Cardiology, Heart and Vascular Center, FIFA Medical Centre of Excellence, Semmelweis University Budapest, Hungary
| | - Endre Németh
- Department of Combat Sports, University of Physical Education, Budapest, Hungary
| | - Beatrix Gilányi
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Miklós Krepuska
- Department of Vascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest
| | - Csaba Sőti
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Ashworth ET, Cotter JD, Kilding AE. Methods for improving thermal tolerance in military personnel prior to deployment. Mil Med Res 2020; 7:58. [PMID: 33248459 PMCID: PMC7700709 DOI: 10.1186/s40779-020-00287-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Acute exposure to heat, such as that experienced by people arriving into a hotter or more humid environment, can compromise physical and cognitive performance as well as health. In military contexts heat stress is exacerbated by the combination of protective clothing, carried loads, and unique activity profiles, making them susceptible to heat illnesses. As the operational environment is dynamic and unpredictable, strategies to minimize the effects of heat should be planned and conducted prior to deployment. This review explores how heat acclimation (HA) prior to deployment may attenuate the effects of heat by initiating physiological and behavioural adaptations to more efficiently and effectively protect thermal homeostasis, thereby improving performance and reducing heat illness risk. HA usually requires access to heat chamber facilities and takes weeks to conduct, which can often make it impractical and infeasible, especially if there are other training requirements and expectations. Recent research in athletic populations has produced protocols that are more feasible and accessible by reducing the time taken to induce adaptations, as well as exploring new methods such as passive HA. These protocols use shorter HA periods or minimise additional training requirements respectively, while still invoking key physiological adaptations, such as lowered core temperature, reduced heart rate and increased sweat rate at a given intensity. For deployments of special units at short notice (< 1 day) it might be optimal to use heat re-acclimation to maintain an elevated baseline of heat tolerance for long periods in anticipation of such an event. Methods practical for military groups are yet to be fully understood, therefore further investigation into the effectiveness of HA methods is required to establish the most effective and feasible approach to implement them within military groups.
Collapse
Affiliation(s)
- Edward Tom Ashworth
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, Otago 9016 New Zealand
| | - Andrew Edward Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| |
Collapse
|
13
|
Pallubinsky H, Phielix E, Dautzenberg B, Schaart G, Connell NJ, Wit‐Verheggen V, Havekes B, Baak MA, Schrauwen P, Marken Lichtenbelt WD. Passive exposure to heat improves glucose metabolism in overweight humans. Acta Physiol (Oxf) 2020; 229:e13488. [PMID: 32359193 PMCID: PMC7379279 DOI: 10.1111/apha.13488] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
AIM Heat exposure has been indicated to positively affect glucose metabolism. An involvement of heat shock protein 72 (HSP72) in the enhancement of insulin sensitivity upon heat exposure has been previously suggested. Here, we performed an intervention study exploring the effect of passive heat acclimation (PHA) on glucose metabolism and intracellular (a) HSP72 concentrations in overweight humans. METHODS Eleven non-diabetic overweight (BMI 27-35 kg/m2 ) participants underwent 10 consecutive days of PHA (4-6 h/day, 34.4 ± 0.2°C, 22.8 ± 2.7%RH). Before and after PHA, whole-body insulin sensitivity was assessed using a one-step hyperinsulinaemic-euglycaemic clamp, skeletal muscle biopsies were taken to measure intracellular iHSP72, energy expenditure and substrate oxidation were measured using indirect calorimetry and blood samples were drawn to assess markers of metabolic health. Thermophysiological adaptations were measured during a temperature ramp protocol before and after PHA. RESULTS Despite a lack of change in iHSP72, 10 days of PHA reduced basal (9.7 ± 1.4 pre- vs 8.4 ± 2.1 μmol · kg-1 · min-1 post-PHA, P = .038) and insulin-stimulated (2.1 ± 0.9 pre- vs 1.5 ± 0.8 μmol · kg-1 · min-1 post-PHA, P = .005) endogenous glucose production (EGP) and increased insulin suppression of EGP (78.5 ± 9.7% pre- vs 83.0 ± 7.9% post-PHA, P = .028). Consistently, fasting plasma glucose (6.0 ± 0.5 pre- vs 5.8 ± 0.4 mmol/L post-PHA, P = .013) and insulin concentrations (97 ± 55 pre- vs 84 ± 49 pmol/L post-PHA, P = .026) decreased significantly. Moreover, fat oxidation increased, and free fatty acids as well as cholesterol concentrations and mean arterial pressure decreased after PHA. CONCLUSION Our results show that PHA for 10 days improves glucose metabolism and enhances fat metabolism, without changes in iHSP72. Further exploration of the therapeutic role of heat in cardio-metabolic disorders should be considered.
Collapse
Affiliation(s)
- Hannah Pallubinsky
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Bas Dautzenberg
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Niels J. Connell
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Vera Wit‐Verheggen
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Bas Havekes
- Department of Internal Medicine Division of Endocrinology Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Marleen A. Baak
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Wouter D. Marken Lichtenbelt
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| |
Collapse
|
14
|
Wu J, Zhang W, Li C. Recent Advances in Genetic and Epigenetic Modulation of Animal Exposure to High Temperature. Front Genet 2020; 11:653. [PMID: 32733534 PMCID: PMC7358359 DOI: 10.3389/fgene.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Animals have evolved multiple systems, including genetic and epigenetic systems, to respond accordingly to heat exposure and heat acclimation. Heat exposure greatly affects immunity, changes metabolic processes, and poses a serious threat to animals. Heat acclimation is induced by repeated organism exposure to heat stress to dissipate heat. This review focuses on genetic modulation via heat shock transcription factors and calcium as two important factors and compares the changes in HSPs under heat stress and heat acclimation. Epigenetic regulation summarizes the role of HSPs in DNA methylation and histone modifications under heat stress and heat acclimation. These genetic and epigenetic modifications protect cells from thermal damage by mediating the transcriptional levels of heat-responsive genes. This review highlights recent advances in the genetic and epigenetic control of animal thermal responses and their interactions.
Collapse
Affiliation(s)
- Jiong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Bittencourt MA, Wanner SP, Kunstetter AC, Barbosa NHS, Walker PCL, Andrade PVR, Turnes T, Guglielmo LGA. Comparative effects of two heat acclimation protocols consisting of high-intensity interval training in the heat on aerobic performance and thermoregulatory responses in exercising rats. PLoS One 2020; 15:e0229335. [PMID: 32084208 PMCID: PMC7034902 DOI: 10.1371/journal.pone.0229335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/04/2020] [Indexed: 01/15/2023] Open
Abstract
Acclimation resulting from low- to moderate-intensity physical exertion in the heat induces several thermoregulatory adaptations, including slower exercise-induced increases in core body temperature. However, few studies have investigated the thermoregulatory adaptations induced by high-intensity interval training (HIIT) protocols. Thus, the present study aimed to compare the adaptations in rats’ thermoregulatory parameters and aerobic performance observed after two different heat acclimation regimens consisting of HIIT protocols performed in a hot environment. Twenty-three adult male Wistar rats were initially subjected to an incremental-speed exercise at 32°C until they were fatigued and then randomly assigned to one of the following three heat acclimation strategies: passive heat exposure without any exercise (untrained controls–UN; n = 7), HIIT performed at the maximal aerobic speed (HIIT100%; n = 8) and HIIT performed at a high but submaximal speed (HIIT85%; n = 8). Following the two weeks of interventions, the rats were again subjected to a fatiguing incremental exercise at 32°C, while their colonic temperature (TCOL) was recorded. The workload performed by the rats and their thermoregulatory efficiency were calculated. After the intervention period, rats subjected to both HIIT protocols attained greater workloads (HIIT100%: 313.7 ± 21.9 J vs. HIIT85%: 318.1 ± 32.6 J vs. UN: 250.8 ± 32.4 J; p < 0.01) and presented a lower ratio between the change in TCOL and the distance travelled (HIIT100%: 4.95 ± 0.42°C/km vs. HIIT85%: 4.33 ± 0.59°C/km vs. UN: 6.14 ± 1.03°C/km; p < 0.001) when compared to UN rats. The latter finding indicates better thermoregulatory efficiency in trained animals. No differences were observed between rats subjected to the two HIIT regimens. In conclusion, the two HIIT protocols induce greater thermoregulatory adaptations and performance improvements than passive heat exposure. These adaptations do not differ between the two training protocols investigated in the present study.
Collapse
Affiliation(s)
- Myla Aguiar Bittencourt
- Physical Effort Laboratory, Graduate Program in Physical Education, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Ana Cançado Kunstetter
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nicolas Henrique Santos Barbosa
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Carolina Leite Walker
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Victor Ribeiro Andrade
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago Turnes
- Physical Effort Laboratory, Graduate Program in Physical Education, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luiz Guilherme Antonacci Guglielmo
- Physical Effort Laboratory, Graduate Program in Physical Education, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
16
|
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Front Physiol 2020; 10:1556. [PMID: 31998141 PMCID: PMC6965159 DOI: 10.3389/fphys.2019.01556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases involve the progressive deterioration of structures within the central nervous system responsible for motor control, cognition, and autonomic function. Alzheimer's disease and Parkinson's disease are among the most common neurodegenerative disease and have an increasing prevalence over the age of 50. Central in the pathophysiology of these neurodegenerative diseases is the loss of protein homeostasis, resulting in misfolding and aggregation of damaged proteins. An element of the protein homeostasis network that prevents the dysregulation associated with neurodegeneration is the role of molecular chaperones. Heat shock proteins (HSPs) are chaperones that regulate the aggregation and disaggregation of proteins in intracellular and extracellular spaces, and evidence supports their protective effect against protein aggregation common to neurodegenerative diseases. Consequently, upregulation of HSPs, such as HSP70, may be a target for therapeutic intervention for protection against neurodegeneration. A novel therapeutic intervention to increase the expression of HSP may be found in heat therapy and/or heat acclimation. In healthy populations, these interventions have been shown to increase HSP expression. Elevated HSP may have central therapeutic effects, preventing or reducing the toxicity of protein aggregation, and/or peripherally by enhancing neuromuscular function. Broader physiological responses to heat therapy have also been identified and include improvements in muscle function, cerebral blood flow, and markers of metabolic health. These outcomes may also have a significant benefit for people with neurodegenerative disease. While there is limited research into body warming in patient populations, regular passive heating (sauna bathing) has been associated with a reduced risk of developing neurodegenerative disease. Therefore, the emerging evidence is compelling and warrants further investigation of the potential benefits of heat acclimation and passive heat therapy for sufferers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P. Hunt
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Geoffrey M. Minett
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Graham K. Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian B. Stewart
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Nava R, Zuhl MN. Heat acclimation-induced intracellular HSP70 in humans: a meta-analysis. Cell Stress Chaperones 2020; 25:35-45. [PMID: 31823288 PMCID: PMC6985308 DOI: 10.1007/s12192-019-01059-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023] Open
Abstract
Heat acclimation (HA) in humans promotes thermoregulatory adaptations that support management of core temperature in hot environments and reduces the likelihood of heat related illness. Another adaptation to HA is thermotolerance through induction of the heat shock protein (HSP) stress system, which provides protection against thermal insult. However, whether or not HA leads to upregulation of the intracellular HSP system, namely intracellular HSP70 (HSP70), is unclear in humans. Therefore, the purposes of this meta-analysis were to determine if HA leads to HSP70 induction among humans and to evaluate how methodological differences among HA studies influence findings regarding HA-induced HSP70 accumulation. Several databases were searched to identify studies that measured HSP70 (protein and mRNA) changes in response to HA among humans. The effect of HA on HSP70 was analyzed. Differences in the effect of HA were assessed between protein and mRNA. The moderating effect of several independent variables (HA frequency, HA duration, core temperature, exercise intensity) on HSP70 was also evaluated. Data were extracted from 12 studies including 118 participants (mean age 24 years, 98% male). There was a significant effect of HA on HSP70 expression, g = 0.97 (95% CI, 0.08-1.89). The effect of HA was different between subgroups (protein vs. mRNA), g = 1.51 (95% CI, 0.71-2.31), and g = - 0.39 (95% CI, - 1.36), respectively. The frequency of HA (in days) moderated HSP70 protein expression. There was a significant effect of heat acclimation on HSP70 induction in humans. The only factor among identified studies that may moderate this response was the frequency (number of days) of heat exposure.
Collapse
Affiliation(s)
- Roberto Nava
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Micah N Zuhl
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
- School of Health Sciences, Central Michigan University, Mount Pleasant, MI, 48859, USA
| |
Collapse
|
18
|
Impaired Heat Adaptation From Combined Heat Training and "Live High, Train Low" Hypoxia. Int J Sports Physiol Perform 2019; 14:635-643. [PMID: 30427243 DOI: 10.1123/ijspp.2018-0399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: To determine whether combining training in heat with "Live High, Train Low" hypoxia (LHTL) further improves thermoregulatory and cardiovascular responses to a heat-tolerance test compared with independent heat training. Methods: A total of 25 trained runners (peak oxygen uptake = 64.1 [8.0] mL·min-1·kg-1) completed 3-wk training in 1 of 3 conditions: (1) heat training combined with "LHTL" hypoxia (H+H; FiO2 = 14.4% [3000 m], 13 h·d-1; train at <600 m, 33°C, 55% relative humidity [RH]), (2) heat training (HOT; live and train <600 m, 33°C, 55% RH), and (3) temperate training (CONT; live and train <600 m, 13°C, 55% RH). Heat adaptations were determined from a 45-min heat-response test (33°C, 55% RH, 65% velocity corresponding to the peak oxygen uptake) at baseline and immediately and 1 and 3 wk postexposure (baseline, post, 1 wkP, and 3 wkP, respectively). Core temperature, heart rate, sweat rate, sodium concentration, plasma volume, and perceptual responses were analyzed using magnitude-based inferences. Results: Submaximal heart rate (effect size [ES] = -0.60 [-0.89; -0.32]) and core temperature (ES = -0.55 [-0.99; -0.10]) were reduced in HOT until 1 wkP. Sweat rate (ES = 0.36 [0.12; 0.59]) and sweat sodium concentration (ES = -0.82 [-1.48; -0.16]) were, respectively, increased and decreased until 3 wkP in HOT. Submaximal heart rate (ES = -0.38 [-0.85; 0.08]) was likely reduced in H+H at 3 wkP, whereas CONT had unclear physiological changes. Perceived exertion and thermal sensation were reduced across all groups. Conclusions: Despite greater physiological stress from combined heat training and "LHTL" hypoxia, thermoregulatory adaptations are limited in comparison with independent heat training. The combined stimuli provide no additional physiological benefit during exercise in hot environments.
Collapse
|
19
|
Alhadad SB, Tan PMS, Lee JKW. Efficacy of Heat Mitigation Strategies on Core Temperature and Endurance Exercise: A Meta-Analysis. Front Physiol 2019; 10:71. [PMID: 30842739 PMCID: PMC6391927 DOI: 10.3389/fphys.2019.00071] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/21/2019] [Indexed: 11/26/2022] Open
Abstract
Background: A majority of high profile international sporting events, including the coming 2020 Tokyo Olympics, are held in warm and humid conditions. When exercising in the heat, the rapid rise of body core temperature (Tc) often results in an impairment of exercise capacity and performance. As such, heat mitigation strategies such as aerobic fitness (AF), heat acclimation/acclimatization (HA), pre-exercise cooling (PC) and fluid ingestion (FI) can be introduced to counteract the debilitating effects of heat strain. We performed a meta-analysis to evaluate the effectiveness of these mitigation strategies using magnitude-based inferences. Methods: A computer-based literature search was performed up to 24 July 2018 using the electronic databases: PubMed, SPORTDiscus and Google Scholar. After applying a set of inclusion and exclusion criteria, a total of 118 studies were selected for evaluation. Each study was assessed according to the intervention's ability to lower Tc before exercise, attenuate the rise of Tc during exercise, extend Tc at the end of exercise and improve endurance. Weighted averages of Hedges' g were calculated for each strategy. Results: PC (g = 1.01) was most effective in lowering Tc before exercise, followed by HA (g = 0.72), AF (g = 0.65), and FI (g = 0.11). FI (g = 0.70) was most effective in attenuating the rate of rise of Tc, followed by HA (g = 0.35), AF (g = −0.03) and PC (g = −0.46). In extending Tc at the end of exercise, AF (g = 1.11) was most influential, followed by HA (g = −0.28), PC (g = −0.29) and FI (g = −0.50). In combination, AF (g = 0.45) was most effective at favorably altering Tc, followed by HA (g = 0.42), PC (g = 0.11) and FI (g = 0.09). AF (1.01) was also found to be most effective in improving endurance, followed by HA (0.19), FI (−0.16) and PC (−0.20). Conclusion: AF was found to be the most effective in terms of a strategy's ability to favorably alter Tc, followed by HA, PC and lastly, FI. Interestingly, a similar ranking was observed in improving endurance, with AF being the most effective, followed by HA, FI, and PC. Knowledge gained from this meta-analysis will be useful in allowing athletes, coaches and sport scientists to make informed decisions when employing heat mitigation strategies during competitions in hot environments.
Collapse
Affiliation(s)
- Sharifah Badriyah Alhadad
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Pearl M S Tan
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Jason K W Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia. Sports Med 2018; 47:1751-1768. [PMID: 28389828 PMCID: PMC5554481 DOI: 10.1007/s40279-017-0717-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To prepare for extremes of heat, cold or low partial pressures of oxygen (O2), humans can undertake a period of acclimation or acclimatization to induce environment-specific adaptations, e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. While these strategies are effective, they are not always feasible due to logistical impracticalities. Cross-adaptation is a term used to describe the phenomenon whereby alternative environmental interventions, e.g. HA or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate-intensity exercise at altitude via adaptations allied to improved O2 delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross-acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on O2 delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA, suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross-tolerance. The effects of CA on markers of cross-tolerance is an area requiring further investigation. Because much of the evidence relating to cross-adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted, given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross-adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK. .,Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK.
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter W Watt
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| |
Collapse
|
21
|
Dietary curcumin supplementation does not alter peripheral blood mononuclear cell responses to exertional heat stress. Eur J Appl Physiol 2018; 118:2707-2717. [DOI: 10.1007/s00421-018-3998-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
|
22
|
ELY BRETTR, BLANCHARD LAURIEA, STEELE JAREDR, FRANCISCO MICHAELA, CHEUVRONT SAMUELN, MINSON CHRISTOPHERT. Physiological Responses to Overdressing and Exercise-Heat Stress in Trained Runners. Med Sci Sports Exerc 2018; 50:1285-1296. [DOI: 10.1249/mss.0000000000001550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Jayaram A, Kanninen T, Sisti G, Inglis SR, Morgan N, Witkin SS. Pregnancy History Influences the Level of Autophagy in Peripheral Blood Mononuclear Cells From Pregnant Women. Reprod Sci 2017; 25:1376-1381. [PMID: 29237347 DOI: 10.1177/1933719117746763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Maternal immune responses are altered during pregnancy and differ between nulliparous and multiparous women. The influence of a prior gestation on autophagy in peripheral blood mononuclear cells (PBMCs) from pregnant women has not been determined and is the subject of this investigation. METHODS Peripheral blood mononuclear cells were isolated from 212 pregnant women and immediately lysed in the presence of protease inhibitors, and the extent of autophagy was determined by quantitation of the concentration of p62 (sequestosome-1) in the lysates by enzyme-linked immunosorbent assay (ELISA). In PBMCs, the p62 level is inversely related to the extent of autophagy. The level of the stress-inducible 70-kDa heat shock protein (hsp70), an inhibitor of autophagy, was also measured in the lysates by ELISA. Data were analyzed by the Spearman rank correlation, Mann-Whitney U test, or Kruskal-Wallis test, as appropriate. RESULTS The p62 concentration in PBMCs increased (autophagy decreased) with the number of previous live ( P = .0322), preterm ( P = .0143), or term ( P = .0418) deliveries. The p62 level was lower (autophagy higher) in women with a prior spontaneous pregnancy loss but no deliveries as compared to women with their first conception ( P = .0087). The intracellular hsp70 concentration correlated with the p62 level ( P < .0001). CONCLUSION Multiparity is associated with a reduced level of autophagy in PBMCs. Dysregulated autophagy might be one mechanism leading to spontaneous abortion in nulliparous women.
Collapse
Affiliation(s)
- Aswathi Jayaram
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Tomi Kanninen
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Giovanni Sisti
- 2 Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Steven R Inglis
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Nurah Morgan
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Steven S Witkin
- 2 Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
24
|
Lee BJ, Thake CD. Heat and Hypoxic Acclimation Increase Monocyte Heat Shock Protein 72 but Do Not Attenuate Inflammation following Hypoxic Exercise. Front Physiol 2017; 8:811. [PMID: 29085305 PMCID: PMC5650636 DOI: 10.3389/fphys.2017.00811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
Acclimation to heat or hypoxic stress activates the heat shock response and accumulation of cytoprotective heat shock proteins (HSPs). By inhibiting the NF-κB pathway HSP72 can preserve epithelial function and reduce systemic inflammation. The aim of this study was to determine the time course of mHSP72 accumulation during acclimation, and to assess intestinal barrier damage and systemic inflammation following hypoxic exercise. Three groups completed 10 × 60-min acclimation sessions (50% normoxic VO2peak) in control (n = 7; 18°C, 35% RH), hypoxic (n = 7; FiO2 = 0.14, 18°C, 35% RH), or hot (n = 7; 40°C, 25% RH) conditions. Tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin 10 (IL-10), and intestinal fatty acid binding protein (I-FABP) were determined at rest and following a cycling normoxic stress test (NST; ~2 weeks before acclimation), pre-acclimation hypoxic stress test (HST1; FiO2 = 0.14, both at 50% normoxic VO2peak; ~1 week before acclimation) and post-acclimation HST (48 h; HST2). Monocyte HSP72 (mHSP72) was determined before and after exercise on day 1, 3, 5, 6, and 10 of acclimation. Accumulation of basal mHSP72 was evident from day 5 (p < 0.05) of heat acclimation and increased further on day 6 (p < 0.01), and day 10 (p < 0.01). In contrast, basal mHSP72 was elevated on the final day of hypoxic acclimation (p < 0.05). Following the NST, plasma TNF-α (–0.11 ± 0.27 ng.mL−1), IL-6 (+0.62 ± 0.67 ng.mL−1) IL-10 (+1.09 ± 9.06 ng.mL−1) and I-FABP (+37.6 ± 112.8 pg.mL−1) exhibited minimal change. After HST1, IL-6 (+3.87 ± 2.56 ng.mL−1), IL-10 (+26.15 ± 26.06 ng.mL−1) and I-FABP (+183.7 ± 182.1 pg.mL−1) were elevated (p < 0.01), whereas TNF-α was unaltered (+0.08 ± 1.27; p > 0.05). A similar trend was observed after HST2, with IL-6 (+3.09 ± 1.30 ng.mL−1), IL-10 (+23.22 ± 21.67 ng.mL−1) and I-FABP (+145.9 ±123.2 pg.mL−1) increased from rest. Heat acclimation induces mHSP72 accumulation earlier and at a greater magnitude compared to matched work hypoxic acclimation, however neither acclimation regime attenuated the systemic cytokine response or intestinal damage following acute exercise in hypoxia.
Collapse
Affiliation(s)
- Ben J Lee
- Occupational Performance Research Group, Department of Sport and Exercise Sciences, University of Chichester, Chichester, United Kingdom.,Centre for Applied Biological and Exercise Sciences, Coventry University, Coventry, United Kingdom
| | - Charles D Thake
- Occupational Performance Research Group, Department of Sport and Exercise Sciences, University of Chichester, Chichester, United Kingdom
| |
Collapse
|
25
|
Marshall H, Chrismas BCR, Suckling CA, Roberts JD, Foster J, Taylor L. Chronic probiotic supplementation with or without glutamine does not influence the eHsp72 response to a multi-day ultra-endurance exercise event. Appl Physiol Nutr Metab 2017; 42:876-883. [PMID: 28460195 DOI: 10.1139/apnm-2017-0131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Probiotic and glutamine supplementation increases tissue Hsp72, but their influence on extracellular Hsp72 (eHsp72) has not been investigated. The aim of this study was to investigate the effect of chronic probiotic supplementation, with or without glutamine, on eHsp72 concentration before and after an ultramarathon. Thirty-two participants were split into 3 independent groups, where they ingested probiotic capsules (PRO; n = 11), probiotic + glutamine powder (PGLn; n = 10), or no supplementation (CON; n = 11), over a 12-week period prior to commencement of the Marathon des Sables (MDS). eHsp72 concentration in the plasma was measured at baseline, 7 days pre-race, 6-8 h post-race, and 7 days post-race. The MDS increased eHsp72 concentrations by 124% (F[1,3] = 22.716, p < 0.001), but there was no difference in the response between groups. Additionally, PRO or PGLn supplementation did not modify pre- or post-MDS eHsp72 concentrations compared with CON (p > 0.05). In conclusion, the MDS caused a substantial increase in eHsp72 concentration, indicating high levels of systemic stress. However, chronic PRO or PGLn supplementation did not affect eHsp72 compared with control pre- or post-MDS. Given the role of eHsp72 in immune activation, the commercially available supplements used in this study are unlikely to influence this cascade.
Collapse
Affiliation(s)
- Hannah Marshall
- a Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford MK41 9EA, UK
| | | | - Craig Anthony Suckling
- c Cambridge Centre for Sport and Exercise Sciences, Department of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Justin D Roberts
- c Cambridge Centre for Sport and Exercise Sciences, Department of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Josh Foster
- a Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford MK41 9EA, UK
| | - Lee Taylor
- d ASPETAR, Athlete Health and Performance Research Centre, Qatar Orthopaedic and Sports Medicine Hospital, Aspire Zone, PO Box 29222, Doha, Qatar.,e School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TT, UK
| |
Collapse
|
26
|
Heck TG, Scomazzon SP, Nunes PR, Schöler CM, da Silva GS, Bittencourt A, Faccioni-Heuser MC, Krause M, Bazotte RB, Curi R, Homem de Bittencourt PI. Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: correlation with cytokine production and extracellular-to-intracellular HSP70 ratio. Cell Stress Chaperones 2017; 22:271-291. [PMID: 28251488 PMCID: PMC5352601 DOI: 10.1007/s12192-017-0771-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022] Open
Abstract
Exercise stimulates immune responses, but the appropriate "doses" for such achievements are unsettled. Conversely, in metabolic tissues, exercise improves the heat shock (HS) response, a universal cytoprotective response to proteostasis challenges that are centred on the expression of the 70-kDa family of intracellular heat shock proteins (iHSP70), which are anti-inflammatory. Concurrently, exercise triggers the export of HSP70 towards the extracellular milieu (eHSP70), where they work as pro-inflammatory cytokines. As the HS response is severely compromised in chronic degenerative diseases of inflammatory nature, we wondered whether acute exercise bouts of different intensities could alter the HS response of lymphocytes from secondary lymphoid organs and whether this would be related to immunoinflammatory responses. Adult male Wistar rats swam for 20 min at low, moderate, high or strenuous intensities as per an overload in tail base. Controls remained at rest under the same conditions. Afterwards, mesenteric lymph node lymphocytes were assessed for the potency of the HS response (42 °C for 2 h), NF-κB binding activity, mitogen-stimulated proliferation and cytokine production. Exercise stimulated cell proliferation in an "inverted-U" fashion peaking at moderate load, which was paralleled by suppression of NF-κB activation and nuclear location, and followed by enhanced HS response in relation to non-exercised animals. Comparative levels of eHSP70 to iHSP70 (H-index) matched IL-2/IL-10 ratios. We conclude that exercise, in a workload-dependent way, stimulates immunoinflammatory performance of lymphocytes of tissues far from the circulation and this is associated with H-index of stress response, which is useful to assess training status and immunosurveillance balance.
Collapse
Affiliation(s)
- Thiago Gomes Heck
- Physiology Research Group, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of the Northwestern Rio Grande do Sul State, Rua do Comércio, 3000, Ijuí, RS, 98700-000, Brazil.
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil.
| | - Sofia Pizzato Scomazzon
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Patrícia Renck Nunes
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Cinthia Maria Schöler
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Gustavo Stumpf da Silva
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Aline Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Maria Cristina Faccioni-Heuser
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Rua Galvão Bueno, 868 - 13° Andar, Bloco B, Sala 1302, Liberdade, São Paulo, SP, 01506-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
27
|
Neal RA, Massey HC, Tipton MJ, Young JS, Corbett J. Effect of Permissive Dehydration on Induction and Decay of Heat Acclimation, and Temperate Exercise Performance. Front Physiol 2016; 7:564. [PMID: 27932993 PMCID: PMC5120118 DOI: 10.3389/fphys.2016.00564] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose: It has been suggested that dehydration is an independent stimulus for heat acclimation (HA), possibly through influencing fluid-regulation mechanisms and increasing plasma volume (PV) expansion. There is also some evidence that HA may be ergogenic in temperate conditions and that this may be linked to PV expansion. We investigated: (i) the influence of dehydration on the time-course of acquisition and decay of HA; (ii) whether dehydration augmented any ergogenic benefits in temperate conditions, particularly those related to PV expansion. Methods: Eight males [VO2max: 56.9(7.2) mL·kg−1·min−1] undertook two HA programmes (balanced cross-over design), once drinking to maintain euhydration (HAEu) and once with restricted fluid-intake (HADe). Days 1, 6, 11, and 18 were 60 min exercise-heat stress tests [HST (40°C; 50% RH)], days 2–5 and 7–10 were 90 min, isothermal-strain (Tre ~ 38.5°C), exercise-heat sessions. Performance parameters [VO2max, lactate threshold, efficiency, peak power output (PPO)] were determined pre and post HA by graded exercise test (22°C; 55%RH). Results: During isothermal-strain sessions hypohydration was achieved in HADe and euhydration maintained in HAEu [average body mass loss −2.71(0.82)% vs. −0.56(0.73)%, P < 0.001], but aldosterone concentration, power output, and cardiovascular strain were unaffected by dehydration. HA was evident on day 6 {reduced end-exercise Tre [−0.30(0.27)°C] and exercise heart rate [−12(15) beats.min−1], increased PV [+7.2(6.4)%] and sweat-loss [+0.25(0.22) L.h−1], P < 0.05} with some further adaptations on day 11 {further reduced end-exercise Tre [−0.25(0.19)°C] and exercise heart rate [−3(9) beats.min−1], P < 0.05}. These adaptations were not notably affected by dehydration and were generally maintained 7-days post HA. Performance parameters were unchanged, apart from increased PPO (+16(20) W, irrespective of condition). Conclusions: When thermal-strain is matched, permissive dehydration which induces a mild, transient, hypohydration does not affect the acquisition and decay of HA, or endurance performance parameters. Irrespective of hydration, trained individuals require >5 days to optimize HA.
Collapse
Affiliation(s)
- Rebecca A Neal
- Extreme Environments Laboratory, Department of Sport and Exercise Sciences, University of Portsmouth Portsmouth, UK
| | - Heather C Massey
- Extreme Environments Laboratory, Department of Sport and Exercise Sciences, University of Portsmouth Portsmouth, UK
| | - Michael J Tipton
- Extreme Environments Laboratory, Department of Sport and Exercise Sciences, University of Portsmouth Portsmouth, UK
| | - John S Young
- Young Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth Portsmouth, UK
| | - Jo Corbett
- Extreme Environments Laboratory, Department of Sport and Exercise Sciences, University of Portsmouth Portsmouth, UK
| |
Collapse
|
28
|
Gibson OR, Tuttle JA, Watt PW, Maxwell NS, Taylor L. Hsp72 and Hsp90α mRNA transcription is characterised by large, sustained changes in core temperature during heat acclimation. Cell Stress Chaperones 2016; 21:1021-1035. [PMID: 27511024 PMCID: PMC5083671 DOI: 10.1007/s12192-016-0726-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Increased intracellular heat shock protein-72 (Hsp72) and heat shock protein-90α (Hsp90α) have been implicated as important components of acquired thermotolerance, providing cytoprotection during stress. This experiment determined the physiological responses characterising increases in Hsp72 and Hsp90α mRNA on the first and tenth day of 90-min heat acclimation (in 40.2 °C, 41.0 % relative humidity (RH)) or equivalent normothermic training (in 20 °C, 29 % RH). Pearson's product-moment correlation and stepwise multiple regression were performed to determine relationships between physiological [e.g. (Trec, sweat rate (SR) and heart rate (HR)] and training variables (exercise duration, exercise intensity, work done), and the leukocyte Hsp72 and Hsp90α mRNA responses via reverse transcription quantitative polymerase chain reaction (RT-QPCR) (n = 15). Significant (p < 0.05) correlations existed between increased Hsp72 and Hsp90α mRNA (r = 0.879). Increased core temperature was the most important criteria for gene transcription with ΔTrec (r = 0.714), SR (r = 0.709), Trecfinal45 (r = 0.682), area under the curve where Trec ≥ 38.5 °C (AUC38.5 °C; r = 0.678), peak Trec (r = 0.661), duration Trec ≥ 38.5 °C (r = 0.650) and ΔHR (r = 0.511) each demonstrating a significant (p < 0.05) correlation with the increase in Hsp72 mRNA. The Trec AUC38.5 °C (r = 0.729), ΔTrec (r = 0.691), peak Trec (r = 0.680), Trecfinal45 (r = 0.678), SR (r = 0.660), duration Trec ≥ 38.5 °C (r = 0.629), the rate of change in Trec (r = 0.600) and ΔHR (r = 0.531) were the strongest correlate with the increase in Hsp90α mRNA. Multiple regression improved the model for Hsp90α mRNA only, when Trec AUC38.5 °C and SR were combined. Training variables showed insignificant (p > 0.05) weak (r < 0.300) relationships with Hsp72 and Hsp90α mRNA. Hsp72 and Hsp90α mRNA correlates were comparable on the first and tenth day. When transcription of the related Hsp72 and Hsp90α mRNA is important, protocols should rapidly induce large, prolonged changes in core temperature.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK.
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK.
| | - James A Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford, UK
| | - Peter W Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
29
|
Tyler CJ, Reeve T, Hodges GJ, Cheung SS. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis. Sports Med 2016; 46:1699-1724. [DOI: 10.1007/s40279-016-0538-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Taylor L, Lee BJ, Gibson OR, Midgley AW, Watt P, Mauger A, Castle P. Effective microorganism - X attenuates circulating superoxide dismutase following an acute bout of intermittent running in hot, humid conditions. Res Sports Med 2016; 24:130-44. [PMID: 27031165 DOI: 10.1080/15438627.2015.1126279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study determined the effectiveness of antioxidant supplementation on high-intensity exercise-heat stress. Six males completed a high-intensity running protocol twice in temperate conditions (TEMP; 20.4°C), and twice in hot conditions (HOT; 34.7°C). Trials were completed following7 days supplementation with 70 ml·day(-1) effective microorganism-X (EM-X; TEMPEMX or HOTEMX) or placebo (TEMPPLA or HOTPLA). Plasma extracellular Hsp72 (eHsp72) and superoxide dismutase (SOD) were measured by ELISA. eHsp72 and SOD increased pre-post exercise (p < 0.001), with greater eHsp72 (p < 0.001) increases observed in HOT (+1.5 ng·ml(-1)) compared to TEMP (+0.8 ng·ml(-1)). EM-X did not influence eHsp72 (p > 0.05). Greater (p < 0.001) SOD increases were observed in HOT (+0.22 U·ml(-1)) versus TEMP (+0.10 U·ml(-1)) with SOD reduced in HOTEMX versus HOTPLA (p = 0.001). Physiological and perceptual responses were all greater (p < 0.001) in HOT versus TEMP conditions, with no difference followed EM-X (p > 0.05). EM-X supplementation attenuated the SOD increases following HOT, potentiating its application as an ergogenic aid to ameliorate oxidative stress.
Collapse
Affiliation(s)
- Lee Taylor
- a Applied Sport and Exercise Physiology (ASEP) Research Group, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences , University of Bedfordshire , Bedford , UK.,g ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital , Athlete Health and Performance Research Centre , Doha , Qatar
| | - Ben J Lee
- b Department of Biomolecular and Sport Sciences , University of Coventry , Coventry , UK.,h Department for Health , University of Bath , Claverton Down , Bath , UK
| | - Oliver R Gibson
- c Centre for Sport and Exercise Science and Medicine (SESAME) , University of Brighton, Welkin Human Performance Laboratories , Denton Road, Eastbourne , UK.,i Centre for Sports Medicine and Human Performance (CSMHP) , Brunel University London , Uxbridge , UK
| | - Adrian W Midgley
- d Sport and Physical Activity Department , Edge Hill University , Ormskirk , United Kingdom
| | - Peter Watt
- c Centre for Sport and Exercise Science and Medicine (SESAME) , University of Brighton, Welkin Human Performance Laboratories , Denton Road, Eastbourne , UK
| | - Alexis Mauger
- e Endurance Research Group, School of Sport and Exercise Sciences , University of Kent , Chatham Maritime , UK
| | - Paul Castle
- f Muscle Cellular and Molecular Physiology (MCMP) & Applied Sport and Exercise Science(ASEP) Research Groups, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences , University of Bedfordshire , Bedford , UK
| |
Collapse
|
31
|
Lee BJ, Miller A, James RS, Thake CD. Cross Acclimation between Heat and Hypoxia: Heat Acclimation Improves Cellular Tolerance and Exercise Performance in Acute Normobaric Hypoxia. Front Physiol 2016; 7:78. [PMID: 27014080 PMCID: PMC4781846 DOI: 10.3389/fphys.2016.00078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The potential for cross acclimation between environmental stressors is not well understood. Thus, the aim of this investigation was to determine the effect of fixed-workload heat or hypoxic acclimation on cellular, physiological, and performance responses during post acclimation hypoxic exercise in humans. METHOD Twenty-one males (age 22 ± 5 years; stature 1.76 ± 0.07 m; mass 71.8 ± 7.9 kg; [Formula: see text]O2 peak 51 ± 7 mL(.)kg(-1.)min(-1)) completed a cycling hypoxic stress test (HST) and self-paced 16.1 km time trial (TT) before (HST1, TT1), and after (HST2, TT2) a series of 10 daily 60 min training sessions (50% N [Formula: see text]O2 peak) in control (CON, n = 7; 18°C, 35% RH), hypoxic (HYP, n = 7; fraction of inspired oxygen = 0.14, 18°C, 35% RH), or hot (HOT, n = 7; 40°C, 25% RH) conditions. RESULTS TT performance in hypoxia was improved following both acclimation treatments, HYP (-3:16 ± 3:10 min:s; p = 0.0006) and HOT (-2:02 ± 1:02 min:s; p = 0.005), but unchanged after CON (+0:31 ± 1:42 min:s). Resting monocyte heat shock protein 72 (mHSP72) increased prior to HST2 in HOT (62 ± 46%) and HYP (58 ± 52%), but was unchanged after CON (9 ± 46%), leading to an attenuated mHSP72 response to hypoxic exercise in HOT and HYP HST2 compared to HST1 (p < 0.01). Changes in extracellular hypoxia-inducible factor 1-α followed a similar pattern to those of mHSP72. Physiological strain index (PSI) was attenuated in HOT (HST1 = 4.12 ± 0.58, HST2 = 3.60 ± 0.42; p = 0.007) as a result of a reduced HR (HST1 = 140 ± 14 b.min(-1); HST2 131 ± 9 b.min(-1) p = 0.0006) and Trectal (HST1 = 37.55 ± 0.18°C; HST2 37.45 ± 0.14°C; p = 0.018) during exercise. Whereas PSI did not change in HYP (HST1 = 4.82 ± 0.64, HST2 4.83 ± 0.63). CONCLUSION Heat acclimation improved cellular and systemic physiological tolerance to steady state exercise in moderate hypoxia. Additionally we show, for the first time, that heat acclimation improved cycling time trial performance to a magnitude similar to that achieved by hypoxic acclimation.
Collapse
Affiliation(s)
- Ben J Lee
- Department for Health, University of BathBath, UK; Centre for Applied Biological and Exercise Sciences, Coventry UniversityCoventry, UK
| | - Amanda Miller
- Centre for Applied Biological and Exercise Sciences, Coventry University Coventry, UK
| | - Rob S James
- Centre for Applied Biological and Exercise Sciences, Coventry University Coventry, UK
| | - Charles D Thake
- Centre for Applied Biological and Exercise Sciences, Coventry University Coventry, UK
| |
Collapse
|
32
|
Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand J Med Sci Sports 2016; 25 Suppl 1:20-38. [PMID: 25943654 DOI: 10.1111/sms.12408] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2014] [Indexed: 11/29/2022]
Abstract
Exercise heat acclimation induces physiological adaptations that improve thermoregulation, attenuate physiological strain, reduce the risk of serious heat illness, and improve aerobic performance in warm-hot environments and potentially in temperate environments. The adaptations include improved sweating, improved skin blood flow, lowered body temperatures, reduced cardiovascular strain, improved fluid balance, altered metabolism, and enhanced cellular protection. The magnitudes of adaptations are determined by the intensity, duration, frequency, and number of heat exposures, as well as the environmental conditions (i.e., dry or humid heat). Evidence is emerging that controlled hyperthermia regimens where a target core temperature is maintained, enable more rapid and complete adaptations relative to the traditional constant work rate exercise heat acclimation regimens. Furthermore, inducing heat acclimation outdoors in a natural field setting may provide more specific adaptations based on direct exposure to the exact environmental and exercise conditions to be encountered during competition. This review initially examines the physiological adaptations associated with heat acclimation induction regimens, and subsequently emphasizes their application to competitive athletes and sports.
Collapse
Affiliation(s)
- J D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | | |
Collapse
|
33
|
Abstract
Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.
Collapse
Key Words
- AKT, v-akt murine thymoma viral oncogene homolog 1
- AMPK, adenosine monophosphate-activated protein kinase
- ATG, autophagy-related
- BECN1, Beclin 1, autophagy related
- EIF4EBP1, eukaryotic translation initiation factor 4E binding protein 1
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- HSF1, heat shock transcription factor 1
- HSP, heat shock protein
- HSP70
- HSPA8/HSC70, heat shock 70kDa protein 8
- IL, interleukin
- LC3, MAP1LC3, microtubule-associated protein 1 light chain 3
- MTMR14/hJumpy, myotubularin related protein 14
- MTOR, mechanistic target of rapamycin
- NR1D1/Rev-Erb-α, nuclear receptor subfamily 1, group D, member 1
- PBMC, peripheral blood mononuclear cell
- PPARGC1A/PGC-1α, peroxisome proliferator-activated receptor, gamma, coactivator 1 α
- RHEB, Ras homolog enriched in brain
- SOD, superoxide dismutase
- SQSTM1/p62, sequestosome 1
- TPR, translocated promoter region, nuclear basket protein
- TSC, tuberous sclerosis complex
- ULK1, unc-51 like autophagy activating kinase 1
- autophagy
- exercise
- heat shock response
- humans
- protein breakdown
- protein synthesis
Collapse
Affiliation(s)
- Karol Dokladny
- a Department of Internal Medicine; Health Sciences Center; Health, Exercise & Sports Science of University of New Mexico ; Albuquerque , NM USA
| | | | | |
Collapse
|
34
|
Lee ECH, Muñoz CX, McDermott BP, Beasley KN, Yamamoto LM, Hom LL, Casa DJ, Armstrong LE, Kraemer WJ, Anderson JM, Maresh CM. Extracellular and cellular Hsp72 differ as biomarkers in acute exercise/environmental stress and recovery. Scand J Med Sci Sports 2015; 27:66-74. [DOI: 10.1111/sms.12621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 11/30/2022]
Affiliation(s)
- E. C-H. Lee
- Human Performance Laboratory; Department of Kinesiology; University of Connecticut; Storrs CT USA
| | - C. X. Muñoz
- Human Performance Laboratory; Department of Kinesiology; University of Connecticut; Storrs CT USA
| | - B. P. McDermott
- Department of Health, Human Performance and Recreation; University of Arkansas; Fayettville AR USA
| | - K. N. Beasley
- Human Performance Laboratory; Department of Kinesiology; University of Connecticut; Storrs CT USA
| | - L. M. Yamamoto
- Human Performance Laboratory; Department of Kinesiology; University of Connecticut; Storrs CT USA
| | - L. L. Hom
- Human Performance Laboratory; Department of Kinesiology; University of Connecticut; Storrs CT USA
| | - D. J. Casa
- Human Performance Laboratory; Department of Kinesiology; University of Connecticut; Storrs CT USA
| | - L. E. Armstrong
- Human Performance Laboratory; Department of Kinesiology; University of Connecticut; Storrs CT USA
| | - W. J. Kraemer
- Department of Human Sciences; Ohio State University; Columbus OH USA
| | - J. M. Anderson
- Human Performance Laboratory; Department of Kinesiology; University of Connecticut; Storrs CT USA
| | - C. M. Maresh
- Department of Human Sciences; Ohio State University; Columbus OH USA
| |
Collapse
|
35
|
Amorim FT, Fonseca IT, Machado-Moreira CA, Magalhães FDC. Insights into the role of heat shock protein 72 to whole-body heat acclimation in humans. Temperature (Austin) 2015; 2:499-505. [PMID: 27227070 PMCID: PMC4843936 DOI: 10.1080/23328940.2015.1110655] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 01/22/2023] Open
Abstract
Heat acclimation results in systemic and cellular adaptions that reduce the negative effect of heat and, consequently, the risk of heat illness. Although the classical changes observed with heat acclimation lead to increased tolerance to exercise in the heat by reducing heat storage (reflected in reduced core and skin temperatures) and increasing whole-body capacity for heat dissipation (greater plasma volume, sweat output, and skin blood flow), it appears that heat acclimation also induces changes at the cellular level that might increase tolerance of the whole organism to a higher core temperature for the development of fatigue. Thermotolerance is a process that involves increased resilience to an otherwise lethal heat stress that follows a sublethal exposure to heat. Thermotolerance is believed to be the result of increased content of heat shock proteins (Hsp), specially a member of the 70 kDa family, Hsp72 kDa. In humans, we and others have reported that heat acclimation increases intracellular Hsp72 levels. This increase in intracellular Hsp72 could improve whole-body organism thermotolerance by maintaining intestinal epithelial tight junction barriers, by increasing resistance to gut-associated endotoxin translocation, or by reducing the inflammatory response. In this review, we will initially provide an overview of the physiological adaptations induced by heat acclimation and emphasize the main cellular changes that occur with heat acclimation associated with intracellular accumulation of Hsp72. Finally, we will present an argument for a role of whole-body heat acclimation in augmenting cellular thermotolerance, which may protect vital organs from deleterious effects of heat stress in humans.
Collapse
Affiliation(s)
- Fabiano Trigueiro Amorim
- Laboratório de Biologia do Exercício; Centro Integrado de Pesquisa em Saúde; Universidade Federal dos Vales do Jequitinhonha e Mucuri ; Diamantina, Brazil
| | - Ivana T Fonseca
- Laboratório de Biologia do Exercício; Centro Integrado de Pesquisa em Saúde; Universidade Federal dos Vales do Jequitinhonha e Mucuri ; Diamantina, Brazil
| | | | - Flávio de Castro Magalhães
- Laboratório de Biologia do Exercício; Centro Integrado de Pesquisa em Saúde; Universidade Federal dos Vales do Jequitinhonha e Mucuri ; Diamantina, Brazil
| |
Collapse
|
36
|
Périard JD, Ruell PA, Thompson MW, Caillaud C. Moderate- and high-intensity exhaustive exercise in the heat induce a similar increase in monocyte Hsp72. Cell Stress Chaperones 2015; 20:1037-42. [PMID: 26264882 PMCID: PMC4595430 DOI: 10.1007/s12192-015-0631-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022] Open
Abstract
This study examined the relationship between exhaustive exercise in the heat at moderate and high intensities on the intracellular heat shock protein 72 (iHsp72) response. Twelve male subjects cycled to exhaustion at 60 and 75% of maximal oxygen uptake in hot conditions (40 °C, 50% RH). iHsp72 concentration was measured in monocytes before, at exhaustion and 24 h after exercise. Rectal temperature, heart rate and oxygen uptake were recorded during exercise. Volitional exhaustion occurred at 58.9 ± 12.1 and 27.3 ± 9.5 min (P < 0.001) and a rectal temperature of 39.8 ± 0.4 and 39.2 ± 0.6 °C (P = 0.002), respectively, for 60 and 75 %. The area under the curve above a rectal temperature of 38.5 °C was greater at 60 % (17.5 ± 6.6 °C min) than 75 % (3.4 ± 4.8 °C min; P < 0.001), whereas the rate of increase in rectal temperature was greater at 75 % (5.1 ± 1.7 vs. 2.2 ± 1.4 °C h(-1); P < 0.001). iHsp72 concentration increased similarly at exhaustion relative to pre-exercise (P = 0.044) and then increased further at 24 h (P < 0.001). Multiple regression analysis revealed no predictor variables associated with iHsp72 expression; however, a correlation was observed between exercise intensities for the increase in iHsp expression at exhaustion and 24 h (P < 0.05). These results suggest that iHsp72 expression increased in relation to the level of hyperthermia attained and sustained at 60 % and the higher metabolic rate and greater rate of increase in core temperature at 75 %, with the further increase in iHsp72 concentration 24 h after exercise reinforcing its role as a chaperone and cytoprotective agent.
Collapse
Affiliation(s)
- J D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, PO Box 29222, Doha, Qatar.
- Exercise, Health and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia.
| | - P A Ruell
- Exercise, Health and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
| | - M W Thompson
- Exercise, Health and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
| | - C Caillaud
- Exercise, Health and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, Australia
| |
Collapse
|
37
|
Gibson OR, Turner G, Tuttle JA, Taylor L, Watt PW, Maxwell NS. Heat acclimation attenuates physiological strain and the HSP72, but not HSP90α, mRNA response to acute normobaric hypoxia. J Appl Physiol (1985) 2015. [DOI: 10.1152/japplphysiol.00332.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heat acclimation (HA) attenuates physiological strain in hot conditions via phenotypic and cellular adaptation. The aim of this study was to determine whether HA reduced physiological strain, and heat shock protein (HSP) 72 and HSP90α mRNA responses in acute normobaric hypoxia. Sixteen male participants completed ten 90-min sessions of isothermic HA (40°C/40% relative humidity) or exercise training [control (CON); 20°C/40% relative humidity]. HA or CON were preceded (HYP1) and proceeded (HYP2) by a 30-min normobaric hypoxic exposure [inspired O2 fraction = 0.12; 10-min rest, 10-min cycling at 40% peak O2 uptake (V̇o2 peak), 10-min cycling at 65% V̇o2 peak]. HA induced greater rectal temperatures, sweat rate, and heart rates (HR) than CON during the training sessions. HA, but not CON, reduced resting rectal temperatures and resting HR and increased sweat rate and plasma volume. Hemoglobin mass did not change following HA nor CON. HSP72 and HSP90α mRNA increased in response to each HA session, but did not change with CON. HR during HYP2 was lower and O2 saturation higher at 65% V̇o2 peak following HA, but not CON. O2 uptake/HR was greater at rest and 65% V̇o2 peak in HYP2 following HA, but was unchanged after CON. At rest, the respiratory exchange ratio was reduced during HYP2 following HA, but not CON. The increase in HSP72 mRNA during HYP1 did not occur in HYP2 following HA. In CON, HSP72 mRNA expression was unchanged during HYP1 and HYP2. In HA and CON, increases in HSP90α mRNA during HYP1 were maintained in HYP2. HA reduces physiological strain, and the transcription of HSP72, but not HSP90α mRNA in acute normobaric hypoxia.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
| | - Gareth Turner
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
- English Institute of Sport, EIS Performance Centre, Loughborough University, Loughborough, United Kingdom; and
| | - James A. Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedfordshire, United Kingdom
| | - Lee Taylor
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedfordshire, United Kingdom
| | - Peter W. Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
| | - Neil S. Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
| |
Collapse
|
38
|
White AC, Salgado RM, Astorino TA, Loeppky JA, Schneider SM, McCormick JJ, McLain TA, Kravitz L, Mermier CM. The effect of 10 days of heat acclimation on exercise performance in acute hypobaric hypoxia (4350 m). Temperature (Austin) 2015; 3:176-85. [PMID: 27227084 PMCID: PMC4861181 DOI: 10.1080/23328940.2015.1072659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/08/2015] [Indexed: 01/09/2023] Open
Abstract
To examine the effect (“cross-tolerance”) of heat acclimation (HA) on exercise performance upon exposure to acute hypobaric hypoxia (4350 m). Eight male cyclists residing at 1600 m performed tests of maximal aerobic capacity (VO2max) at 1600 m and 4350 m, a 16 km time-trial at 4350 m, and a heat tolerance test at 1600 m before and after 10 d HA at 40°C, 20% RH. Resting blood samples were obtained pre-and post- HA to estimate changes in plasma volume (ΔPV). Successful HA was indicated by significantly lower exercise heart rate and rectal temperature on day 10 vs. day 1 of HA and during the heat tolerance tests. Heat acclimation caused a 1.9% ΔPV, however VO2max was not significantly different at 1600 m or 4350 m. Time-trial cycling performance improved 28 sec after HA (p = 0.07), suggesting a possible benefit for exercise performance at acute altitude and that cross-tolerance between these variables may exist in humans. These findings do not clearly support the use of HA to improve exercise capacity and performance upon acute hypobaric hypoxia, however they do indicate that HA is not detrimental to either exercise capacity or performance.
Collapse
Affiliation(s)
- Ailish C White
- Department of Kinesiology, Point Loma Nazarene University, San Diego, CA, USA; Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Roy M Salgado
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA; Department of Kinesiology, Occidental College, Los Angeles, CA, USA
| | - Todd A Astorino
- Department of Kinesiology, California State University San Marcos , San Marcos, CA, USA
| | - Jack A Loeppky
- Department of Health, Exercise, and Sports Sciences, University of New Mexico , Albuquerque, NM, USA
| | - Suzanne M Schneider
- Department of Health, Exercise, and Sports Sciences, University of New Mexico , Albuquerque, NM, USA
| | - James J McCormick
- Department of Health, Exercise, and Sports Sciences, University of New Mexico , Albuquerque, NM, USA
| | - Trisha A McLain
- Department of Health, Exercise, and Sports Sciences, University of New Mexico , Albuquerque, NM, USA
| | - Len Kravitz
- Department of Health, Exercise, and Sports Sciences, University of New Mexico , Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico , Albuquerque, NM, USA
| |
Collapse
|
39
|
Gibson OR, Mee JA, Taylor L, Tuttle JA, Watt PW, Maxwell NS. Isothermic and fixed-intensity heat acclimation methods elicit equal increases in Hsp72 mRNA. Scand J Med Sci Sports 2015; 25 Suppl 1:259-68. [DOI: 10.1111/sms.12430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/30/2022]
Affiliation(s)
- O. R. Gibson
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - J. A. Mee
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - L. Taylor
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups; Department of Sport Science and Physical Activity; Institute of Sport and Physical Activity Research (ISPAR); University of Bedfordshire; Brighton UK
| | - J. A. Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups; Department of Sport Science and Physical Activity; Institute of Sport and Physical Activity Research (ISPAR); University of Bedfordshire; Brighton UK
| | - P. W. Watt
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - N. S. Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| |
Collapse
|
40
|
Isothermic and fixed intensity heat acclimation methods induce similar heat adaptation following short and long-term timescales. J Therm Biol 2015; 49-50:55-65. [DOI: 10.1016/j.jtherbio.2015.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/18/2022]
|
41
|
Human monocyte heat shock protein 72 responses to acute hypoxic exercise after 3 days of exercise heat acclimation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:849809. [PMID: 25874231 PMCID: PMC4385626 DOI: 10.1155/2015/849809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/21/2014] [Indexed: 01/21/2023]
Abstract
The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% V̇O2peak in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 (P = 0.97). STHA induced an increase in basal HSP72 (P = 0.03) with no change observed in CON (P = 0.218). Basal mHSP72 remained elevated before HST2 for the STHA group (P < 0.05) and was unchanged from HST1 in CON (P > 0.05). Percent change in mHSP72 was lower after HST2 in STHA compared to CON (P = 0.02). The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72.
Collapse
|
42
|
The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediators Inflamm 2015; 2015:249205. [PMID: 25814786 PMCID: PMC4357135 DOI: 10.1155/2015/249205] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Recent evidence shows divergence between the concentrations of extracellular 70 kDa heat shock protein [eHSP70] and its intracellular concentrations [iHSP70] in people with type 2 diabetes (T2DM). A vital aspect regarding HSP70 physiology is its versatility to induce antagonistic actions, depending on the location of the protein. For example, iHSP70 exerts a powerful anti-inflammatory effect, while eHSP70 activates proinflammatory pathways. Increased eHSP70 is associated with inflammatory and oxidative stress conditions, whereas decreased iHSP70 levels are related to insulin resistance in skeletal muscle. Serum eHSP70 concentrations are positively correlated with markers of inflammation, such as C-reactive protein, monocyte count, and TNF-α, while strategies to enhance iHSP70 (e.g., heat treatment, chemical HSP70 inducers or coinducers, and physical exercise) are capable of reducing the inflammatory profile and the insulin resistance state. Here, we present recent findings suggesting that imbalances in the HSP70 status, described by the [eHSP70]/[iHSP70] ratio, may be determinant to trigger a chronic proinflammatory state that leads to insulin resistance and T2DM development. This led us to hypothesize that changes in this ratio value could be used as a biomarker for the management of the inflammatory response in insulin resistance and diabetes.
Collapse
|
43
|
Adaptation to Hot Environmental Conditions: An Exploration of the Performance Basis, Procedures and Future Directions to Optimise Opportunities for Elite Athletes. Sports Med 2014; 45:303-11. [DOI: 10.1007/s40279-014-0277-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in core body temperature induced by acute heat exposure. Br J Nutr 2014; 112:1601-10. [PMID: 25322775 DOI: 10.1017/s0007114514002608] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dietary glutamine (Gln) supplementation improves intestinal function in several stressful conditions. Therefore, in the present study, the effects of dietary Gln supplementation on the core body temperature (T core), bacterial translocation (BT) and intestinal permeability of mice subjected to acute heat stress were evaluated. Male Swiss mice (4 weeks old) were implanted with an abdominal temperature sensor and randomly assigned to one of the following groups fed isoenergetic and isoproteic diets for 7 d before the experimental trials: group fed the standard AIN-93G diet and exposed to a high ambient temperature (39°C) for 2 h (H-NS); group fed the AIN-93G diet supplemented with l-Gln and exposed to a high temperature (H-Gln); group fed the standard AIN-93G diet and not exposed to a high temperature (control, C-NS). Mice were orally administered diethylenetriaminepentaacetic acid radiolabelled with technetium (99mTc) for the assessment of intestinal permeability or 99mTc-Escherichia coli for the assessment of BT. Heat exposure increased T core (approximately 41°C during the experimental trial), intestinal permeability and BT to the blood and liver (3 h after the experimental trial) in mice from the H-NS group relative to those from the C-NS group. Dietary Gln supplementation attenuated hyperthermia and prevented the increases in intestinal permeability and BT induced by heat exposure. No correlations were observed between the improvements in gastrointestinal function and the attenuation of hyperthermia by Gln. Our findings indicate that dietary Gln supplementation preserved the integrity of the intestinal barrier and reduced the severity of hyperthermia during heat exposure. The findings also indicate that these Gln-mediated effects occurred through independent mechanisms.
Collapse
|
45
|
Gibson OR, Dennis A, Parfitt T, Taylor L, Watt PW, Maxwell NS. Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure. Cell Stress Chaperones 2014; 19:389-400. [PMID: 24085588 PMCID: PMC3982022 DOI: 10.1007/s12192-013-0468-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/20/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022] Open
Abstract
Extracellular heat shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50 % [Formula: see text] in three conditions (TEMP, 20 °C/63 % RH; HOT, 30.2 °C/51%RH; VHOT, 40.0 °C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4 %) (p < 0.05), but not TEMP (-1.9 %) or HOT (+25.7 %) conditions. eHsp72 returned to baseline values within 24 h in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5 and 39.0 °C, duration Trec ≥38.5 and ≥39.0 °C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature.
Collapse
Affiliation(s)
- Oliver R Gibson
- School of Sport and Service Management, Welkin Science Laboratories, University of Brighton, 30 Carlisle Road, Eastbourne, UK,
| | | | | | | | | | | |
Collapse
|
46
|
Rhoads RP, Baumgard LH, Suagee JK. 2011 and 2012 Early Careers Achievement Awards: metabolic priorities during heat stress with an emphasis on skeletal muscle. J Anim Sci 2013; 91:2492-503. [PMID: 23408824 DOI: 10.2527/jas.2012-6120] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Environmental heat stress undermines efficient animal production resulting in a significant financial burden to agricultural producers. The reduction in performance during heat stress is traditionally thought to result from reduced nutrient intake. Recently, this notion has been challenged with observations indicating that heat-stressed animals may exploit novel homeorhetic strategies to direct metabolic and fuel selection priorities independent of nutrient intake or energy balance. Alterations in systemic physiology support a shift in metabolism, stemming from coordinated interactions at whole-body and tissue-specific levels. Such changes are characterized by increased basal and stimulated circulating insulin concentration in addition to the ostensible lack of basal adipose tissue lipid mobilization coupled with reduced adipocyte responsiveness to lipolytic stimuli. Hepatic and skeletal muscle cellular bioenergetics also exhibit clear differences in carbohydrate production and use, respectively, due to heat stress. The apparent dichotomy in intermediary metabolism between the 2 tissue types may stem from factors such as tricarboxylic acid cycle substrate flux and mitochondrial respiration. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism through coordinated changes in fuel supply and use across tissues in a manner that is distinct from commonly recognizable changes that occur in animals on a reduced plane of nutrition. Perhaps most intriguing is that the coordinated systemic, cellular, and molecular changes appear conserved across physiological states and among different ruminant and monogastric species. Ultimately, these changes result in the reprioritization of skeletal muscle fuel selection during heat stress, which may be important for whole-body metabolism and overall physiological adaptation to hyperthermia.
Collapse
Affiliation(s)
- R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061, USA.
| | | | | |
Collapse
|
47
|
Dulin E, García-Barreno P, Guisasola MC. Genetic variations of HSPA1A, the heat shock protein levels, and risk of atherosclerosis. Cell Stress Chaperones 2012; 17:507-16. [PMID: 22328194 PMCID: PMC3368027 DOI: 10.1007/s12192-012-0328-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/20/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022] Open
Abstract
HSPA1A is a serum and intracellular heat shock protein with antiapoptotic and antithrombotic properties. The present study examines the hypothesis that a decrease in the synthesis of this protein in relation to certain polymorphisms of the regulatory region of the HSPA1A gene can define a vascular disease risk phenotype. A randomly selected population was studied and stratified into groups according to the degree of vascular risk. After applying the Task Force Chart to 452 people, the subjects were divided into three groups: group 0 (no vascular risk factor or risk < 5%), n = 239; group 1 (moderate (10-20%) risk, with no clinical cardiovascular disease), n = 161; and group 2 (overt atherosclerosis), n = 52. Serum and intragranulocytic HSPA1A was quantified, and direct Sanger sequencing was performed in all subjects. An analysis was made of the association of two single nucleotide polymorphisms (db rs1008438 -110A/C and db rs1043618 +190 G/C) with circulating and intragranulocytic HSPA1A and the risk of atherosclerosis. The atherosclerotic subjects showed significantly lower circulating HSPA1A levels than the other groups, regardless of the genotype. The patients with CC genotype for both polymorphisms showed significantly lower intragranulocytic HSPA1A levels than the other genotypes. Serum HSPA1A concentrations could be proposed as a biomarker of cardiovascular disease. CC homozygosis for polymorphisms db rs1008438 and db rs1043618 is associated with a decrease in the intragranulocytic production of HSPA1A. Given the antiatherogenic functions of intracellular HSPA1A, the -110A and +190 G alleles could constitute potential genetic biomarkers of a less severe clinical phenotype for the risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Elena Dulin
- Biochemistry Department, Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Pedro García-Barreno
- Experimental Medical & Surgery Unit, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Maria C. Guisasola
- Experimental Medical & Surgery Unit, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
| |
Collapse
|
48
|
Taylor L, Hillman AR, Midgley AW, Peart DJ, Chrismas B, McNaughton LR. Hypoxia-mediated prior induction of monocyte-expressed HSP72 and HSP32 provides protection to the disturbances to redox balance associated with human sub-maximal aerobic exercise. Amino Acids 2012; 43:1933-44. [PMID: 22441647 DOI: 10.1007/s00726-012-1265-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/05/2012] [Indexed: 11/29/2022]
Abstract
HSP72 is rapidly expressed in response to a variety of stressors in vitro and in vivo (including hypoxia). This project sought a hypoxic stimulus to elicit increases in HSP72 and HSP32 in attempts to confer protection to the sub-maximal aerobic exercise-induced disturbances to redox balance. Eight healthy recreationally active male subjects were exposed to five consecutive days of once-daily hypoxia (2,980 m, 75 min). Seven days prior to the hypoxic acclimation period, subjects performed 60 min of cycling on a cycle ergometer (exercise bout 1-EXB1), and this exercise bout was repeated 1 day post-cessation of the hypoxic period (exercise bout 2-EXB2). Blood samples were taken immediately pre- and post-exercise and 1, 4 and 8 h post-exercise for HSP72 and immediately pre, post and 1 h post-exercise for HSP32, TBARS and glutathione [reduced (GSH), oxidised (GSSG) and total (TGSH)], with additional blood samples obtained immediately pre-day 1 and post-day 5 of the hypoxic acclimation period for the same indices. Monocyte-expressed HSP32 and HSP72 were analysed by flow cytometry, with measures of oxidative stress accessed by commercially available kits. There were significant increases in HSP72 (P < 0.001), HSP32 (P = 0.03), GSSG (t = 9.5, P < 0.001) and TBARS (t = 5.6, P = 0.001) in response to the 5-day hypoxic intervention, whereas no significant changes were observed for GSH (P = 0.22) and TGSH (P = 0.25). Exercise-induced significant increases in HSP72 (P < 0.001) and HSP32 (P = 0.003) post-exercise in EXB1; this response was absent for HSP72 (P ≥ 0.79) and HSP32 (P ≥ 0.99) post-EXB2. The hypoxia-mediated increased bio-available HSP32 and HSP72 and favourable alterations in glutathione redox, prior to exercise commencing in EXB2 compared to EXB1, may acquiesce the disturbances to redox balance encountered during the second physiologically identical exercise bout.
Collapse
Affiliation(s)
- Lee Taylor
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Department of Sport and Exercise Sciences, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Polhill Campus, Polhill Avenue, Bedford, Bedfordshire MK41 9EA, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Hom LL, Lee ECH, Apicella JM, Wallace SD, Emmanuel H, Klau JF, Poh PYS, Marzano S, Armstrong LE, Casa DJ, Maresh CM. Eleven days of moderate exercise and heat exposure induces acclimation without significant HSP70 and apoptosis responses of lymphocytes in college-aged males. Cell Stress Chaperones 2012; 17:29-39. [PMID: 21796498 PMCID: PMC3227846 DOI: 10.1007/s12192-011-0283-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/09/2011] [Accepted: 07/13/2011] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3(+)CD4(+) T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO(2max)) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30-50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3(+) and CD4(+) (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70(+) lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.
Collapse
Affiliation(s)
- Lindsay L. Hom
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Elaine Choung-Hee Lee
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04634 USA
- PO Box 35, Old Bar Harbor Road, Salisbury Cove, ME 04672 USA
| | - Jenna M. Apicella
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Sean D. Wallace
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Holly Emmanuel
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Jennifer F. Klau
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Paula Y. S. Poh
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Stefania Marzano
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Lawrence E. Armstrong
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Douglas J. Casa
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Carl M. Maresh
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
50
|
Kuennen M, Gillum T, Dokladny K, Bedrick E, Schneider S, Moseley P. Thermotolerance and heat acclimation may share a common mechanism in humans. Am J Physiol Regul Integr Comp Physiol 2011; 301:R524-33. [PMID: 21613575 DOI: 10.1152/ajpregu.00039.2011] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermotolerance and heat acclimation are key adaptation processes that have been hitherto viewed as separate phenomena. Here, we provide evidence that these processes may share a common basis, as both may potentially be governed by the heat shock response. We evaluated the effects of a heat shock response-inhibitor (quercetin; 2,000 mg/day) on established markers of thermotolerance [gastrointestinal barrier permeability, plasma TNF-α, IL-6, and IL-10 concentrations, and leukocyte heat shock protein 70 (HSP70) content]. Heat acclimation reduced body temperatures, heart rate, and physiological strain during exercise/heat stress) in male subjects (n = 8) completing a 7-day heat acclimation protocol. These same subjects completed an identical protocol under placebo supplementation (placebo). Gastrointestinal barrier permeability and TNF-α were increased on the 1st day of exercise/heat stress in quercetin; no differences in these variables were reported in placebo. Exercise HSP70 responses were increased, and plasma cytokines (IL-6, IL-10) were decreased on the 7th day of heat acclimation in placebo; with concomitant reductions in exercise body temperatures, heart rate, and physiological strain. In contrast, gastrointestinal barrier permeability remained elevated, HSP70 was not increased, and IL-6, IL-10, and exercise body temperatures were not reduced on the 7th day of heat acclimation in quercetin. While exercise heart rate and physiological strain were reduced in quercetin, this occurred later in exercise than with placebo. Consistent with the concept that thermotolerance and heat acclimation are related through the heat shock response, repeated exercise/heat stress increases cytoprotective HSP70 and reduces circulating cytokines, contributing to reductions in cellular and systemic markers of heat strain. Exercising under a heat shock response-inhibitor prevents both cellular and systemic heat adaptations.
Collapse
Affiliation(s)
- Matthew Kuennen
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, USA.
| | | | | | | | | | | |
Collapse
|