1
|
Mitra P, Deshmukh AS. Proteostasis is a key driver of the pathogenesis in Apicomplexa. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119824. [PMID: 39168412 DOI: 10.1016/j.bbamcr.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Proteostasis, including protein folding mediated by molecular chaperones, protein degradation, and stress response pathways in organelles like ER (unfolded protein response: UPR), are responsible for cellular protein quality control. This is essential for cell survival as it regulates and reprograms cellular processes. Here, we underscore the role of the proteostasis pathway in Apicomplexan parasites with respect to their well-characterized roles as well as potential roles in many parasite functions, including survival, multiplication, persistence, and emerging drug resistance. In addition to the diverse physiological importance of proteostasis in Apicomplexa, we assess the potential of the pathway's components as chemotherapeutic targets.
Collapse
Affiliation(s)
- Pallabi Mitra
- BRIC-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | | |
Collapse
|
2
|
Ahmad T, Alhammadi BA, Almaazmi SY, Arafa S, Blatch GL, Dutta T, Gestwicki JE, Keyzers RA, Shonhai A, Singh H. Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update. Cell Stress Chaperones 2024; 29:326-337. [PMID: 38518861 PMCID: PMC10990865 DOI: 10.1016/j.cstres.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Bushra A Alhammadi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Shaikha Y Almaazmi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Sahar Arafa
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Gregory L Blatch
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.
| | - Tanima Dutta
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Robert A Keyzers
- Centre for Biodiscovery & School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| |
Collapse
|
3
|
Singh H, Almaazmi SY, Dutta T, Keyzers RA, Blatch GL. In silico identification of modulators of J domain protein-Hsp70 interactions in Plasmodium falciparum: a drug repurposing strategy against malaria. Front Mol Biosci 2023; 10:1158912. [PMID: 37621993 PMCID: PMC10445141 DOI: 10.3389/fmolb.2023.1158912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Plasmodium falciparum is a unicellular, intracellular protozoan parasite, and the causative agent of malaria in humans, a deadly vector borne infectious disease. A key phase of malaria pathology, is the invasion of human erythrocytes, resulting in drastic remodeling by exported parasite proteins, including molecular chaperones and co-chaperones. The survival of the parasite within the human host is mediated by P. falciparum heat shock protein 70s (PfHsp70s) and J domain proteins (PfJDPs), functioning as chaperones-co-chaperones partnerships. Two complexes have been shown to be important for survival and pathology of the malaria parasite: PfHsp70-x-PFE0055c (exported); and PfHsp70-2-PfSec63 (endoplasmic reticulum). Virtual screening was conducted on the drug repurposing library, the Pandemic Response Box, to identify small-molecules that could specifically disrupt these chaperone complexes. Five top ranked compounds possessing preferential binding affinity for the malarial chaperone system compared to the human system, were identified; three top PfHsp70-PfJDP binders, MBX 1641, zoliflodacin and itraconazole; and two top J domain binders, ezetimibe and a benzo-diazepinone. These compounds were validated by repeat molecular dockings and molecular dynamics simulation, resulting in all the compounds, except for MBX 1461, being confirmed to bind preferentially to the malarial chaperone system. A detailed contact analysis of the PfHsp70-PfJDP binders identified two different types of modulators, those that potentially inhibit complex formation (MBX 1461), and those that potentially stabilize the complex (zoliflodacin and itraconazole). These data suggested that zoliflodacin and itraconazole are potential novel modulators specific to the malarial system. A detailed contact analysis of the J domain binders (ezetimibe and the benzo-diazepinone), revealed that they bound with not only greater affinity but also a better pose to the malarial J domain compared to that of the human system. These data suggested that ezetimibe and the benzo-diazepinone are potential specific inhibitors of the malarial chaperone system. Both itraconazole and ezetimibe are FDA-approved drugs, possess anti-malarial activity and have recently been repurposed for the treatment of cancer. This is the first time that such drug-like compounds have been identified as potential modulators of PfHsp70-PfJDP complexes, and they represent novel candidates for validation and development into anti-malarial drugs.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Tanima Dutta
- Department of Diagnostic Genomics, Path West Nedlands, QEII Medical Centre, Nedlands, WA, Australia
| | - Robert A. Keyzers
- Centre for Biodiscovery & School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
4
|
Almaazmi SY, Kaur RP, Singh H, Blatch GL. The Plasmodium falciparum exported J domain proteins fine-tune human and malarial Hsp70s: pathological exploitation of proteostasis machinery. Front Mol Biosci 2023; 10:1216192. [PMID: 37457831 PMCID: PMC10349383 DOI: 10.3389/fmolb.2023.1216192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular proteostasis requires a network of molecular chaperones and co-chaperones, which facilitate the correct folding and assembly of other proteins, or the degradation of proteins misfolded beyond repair. The function of the major chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90), is regulated by a cohort of co-chaperone proteins. The J domain protein (JDP) family is one of the most diverse co-chaperone families, playing an important role in functionalizing the Hsp70 chaperone system to form a powerful protein quality control network. The intracellular malaria parasite, Plasmodium falciparum, has evolved the capacity to invade and reboot mature human erythrocytes, turning them into a vehicles of pathology. This process appears to involve the harnessing of both the human and parasite chaperone machineries. It is well known that malaria parasite-infected erythrocytes are highly enriched in functional human Hsp70 (HsHsp70) and Hsp90 (HsHsp90), while recent proteomics studies have provided evidence that human JDPs (HsJDPs) may also be enriched, but at lower levels. Interestingly, P. falciparum JDPs (PfJDPs) are the most prominent and diverse family of proteins exported into the infected erythrocyte cytosol. We hypothesize that the exported PfJPDs may be an evolutionary consequence of the need to boost chaperone power for specific protein folding pathways that enable both survival and pathogenesis of the malaria parasite. The evidence suggests that there is an intricate network of PfJDP interactions with the exported malarial Hsp70 (PfHsp70-x) and HsHsp70, which appear to be important for the trafficking of key malarial virulence factors, and the proteostasis of protein complexes of human and parasite proteins associated with pathology. This review will critically evaluate the current understanding of the role of exported PfJDPs in pathological exploitation of the proteostasis machinery by fine-tuning the chaperone properties of both human and malarial Hsp70s.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Rupinder P. Kaur
- The Department of Chemistry, Guru Nanak Dev University College Verka, Amritsar, Punjab, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
5
|
Munera López J, Alonso AM, Figueras MJ, Saldarriaga Cartagena AM, Hortua Triana MA, Diambra L, Vanagas L, Deng B, Moreno SNJ, Angel SO. Analysis of the Interactome of the Toxoplasma gondii Tgj1 HSP40 Chaperone. Proteomes 2023; 11:9. [PMID: 36976888 PMCID: PMC10056330 DOI: 10.3390/proteomes11010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan that causes toxoplasmosis in humans and animals. Central to its dissemination and pathogenicity is the ability to rapidly divide in the tachyzoite stage and infect any type of nucleated cell. Adaptation to different cell contexts requires high plasticity in which heat shock proteins (Hsps) could play a fundamental role. Tgj1 is a type I Hsp40 of T. gondii, an ortholog of the DNAJA1 group, which is essential during the tachyzoite lytic cycle. Tgj1 consists of a J-domain, ZFD, and DNAJ_C domains with a CRQQ C-terminal motif, which is usually prone to lipidation. Tgj1 presented a mostly cytosolic subcellular localization overlapping partially with endoplasmic reticulum. Protein-protein Interaction (PPI) analysis showed that Tgj1 could be implicated in various biological pathways, mainly translation, protein folding, energy metabolism, membrane transport and protein translocation, invasion/pathogenesis, cell signaling, chromatin and transcription regulation, and cell redox homeostasis among others. The combination of Tgj1 and Hsp90 PPIs retrieved only 70 interactors linked to the Tgj1-Hsp90 axis, suggesting that Tgj1 would present specific functions in addition to those of the Hsp70/Hsp90 cycle, standing out invasion/pathogenesis, cell shape motility, and energy pathway. Within the Hsp70/Hsp90 cycle, translation-associated pathways, cell redox homeostasis, and protein folding were highly enriched in the Tgj1-Hsp90 axis. In conclusion, Tgj1 would interact with a wide range of proteins from different biological pathways, which could suggest a relevant role in them.
Collapse
Affiliation(s)
- Jonathan Munera López
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Andrés Mariano Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Maria Julia Figueras
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Ana María Saldarriaga Cartagena
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Miryam A. Hortua Triana
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Luis Diambra
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, Burlington, VT 05405, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sergio Oscar Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| |
Collapse
|
6
|
Almaazmi SY, Singh H, Dutta T, Blatch GL. Exported J domain proteins of the human malaria parasite. Front Mol Biosci 2022; 9:978663. [PMID: 36120546 PMCID: PMC9470956 DOI: 10.3389/fmolb.2022.978663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
The heat shock protein 40 (Hsp40) family, also called J domain proteins (JDPs), regulate their Hsp70 partners by ensuring that they are engaging the right substrate at the right time and in the right location within the cell. A number of JDPs can serve as co-chaperone for a particular Hsp70, and so one generally finds many more JDPs than Hsp70s in the cell. In humans there are 13 Hsp70s and 49 JDPs. The human malaria parasite, Plasmodium falciparum, has dedicated an unusually large proportion of its genome to molecular chaperones, with a disproportionately high number of JDPs (PfJDPs) of 49 members. Interestingly, just under half of the PfJDPs are exported into the host cell during the asexual stage of the life cycle, when the malaria parasite invades mature red blood cells. Recent evidence suggests that these PfJDPs may be functionalizing both host and parasite Hsp70s within the infected red blood cell, and thereby driving the renovation of the host cell towards pathological ends. PfJDPs have been found to localize to the host cytosol, mobile structures within the host cytosol (so called “J Dots”), the host plasma membrane, and specialized structures associated with malaria pathology such as the knobs. A number of these exported PfJDPs are essential, and there is growing experimental evidence that they are important for the survival and pathogenesis of the malaria parasite. This review critiques our understanding of the important role these exported PfJDPs play at the host-parasite interface.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Tanima Dutta
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- PathWest Nedlands, QEII Medical Centre, Nedlands, WA, Australia
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- *Correspondence: Gregory L. Blatch,
| |
Collapse
|
7
|
Barth J, Schach T, Przyborski JM. HSP70 and their co-chaperones in the human malaria parasite P. falciparum and their potential as drug targets. Front Mol Biosci 2022; 9:968248. [PMID: 35992276 PMCID: PMC9388776 DOI: 10.3389/fmolb.2022.968248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
As part of their life-cycle, malaria parasites undergo rapid cell multiplication and division, with one parasite giving rise to over 20 new parasites within the course of 48 h. To support this, the parasite has an extremely high metabolic rate and level of protein biosynthesis. Underpinning these activities, the parasite encodes a number of chaperone/heat shock proteins, belonging to various families. Research over the past decade has revealed that these proteins are involved in a number of essential processes within the parasite, or within the infected host cell. Due to this, these proteins are now being viewed as potential targets for drug development, and we have begun to characterize their properties in more detail. In this article we summarize the current state of knowledge about one particular chaperone family, that of the HSP70, and highlight their importance, function, and potential co-chaperone interactions. This is then discussed with regard to the suitability of these proteins and interactions for drug development.
Collapse
|
8
|
Blatch GL. Plasmodium falciparum Molecular Chaperones: Guardians of the Malaria Parasite Proteome and Renovators of the Host Proteome. Front Cell Dev Biol 2022; 10:921739. [PMID: 35652103 PMCID: PMC9149364 DOI: 10.3389/fcell.2022.921739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of the most severe form of malaria in humans. The malaria parasite has had to develop sophisticated mechanisms to preserve its proteome under the changing stressful conditions it confronts, particularly when it invades host erythrocytes. Heat shock proteins, especially those that function as molecular chaperones, play a key role in protein homeostasis (proteostasis) of P. falciparum. Soon after invading erythrocytes, the malaria parasite exports a large number of proteins including chaperones, which are responsible for remodeling the infected erythrocyte to enable its survival and pathogenesis. The infected host cell has parasite-resident and erythrocyte-resident chaperones, which appear to play a vital role in the folding and functioning of P. falciparum proteins and potentially host proteins. This review critiques the current understanding of how the major chaperones, particularly the Hsp70 and Hsp40 (or J domain proteins, JDPs) families, contribute to proteostasis of the malaria parasite-infected erythrocytes.
Collapse
Affiliation(s)
- Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.,Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Tintó-Font E, Cortés A. Malaria parasites do respond to heat. Trends Parasitol 2022; 38:435-449. [PMID: 35301987 DOI: 10.1016/j.pt.2022.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
The capacity of malaria parasites to respond to changes in their environment at the transcriptional level has been the subject of debate, but recent evidence has unambiguously demonstrated that Plasmodium spp. can produce adaptive transcriptional responses when exposed to some specific types of stress. These include metabolic conditions and febrile temperature. The Plasmodium falciparum protective response to thermal stress is similar to the response in other organisms, but it is regulated by a transcription factor evolutionarily unrelated to the conserved transcription factor that drives the heat shock (HS) response in most eukaryotes. Of the many genes that change expression during HS, only a subset constitutes an authentic response that contributes to parasite survival.
Collapse
Affiliation(s)
- Elisabet Tintó-Font
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Alfred Cortés
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain; ICREA, Barcelona 08010, Catalonia, Spain.
| |
Collapse
|
10
|
Daniyan MO. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:205-236. [PMID: 34569027 DOI: 10.1007/978-3-030-78397-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Plasmodium falciparum, the parasitic agent that is responsible for a severe and dangerous form of human malaria, has a history of long years of cohabitation with human beings with attendant negative consequences. While there have been some gains in the fight against malaria through the application of various control measures and the use of chemotherapeutic agents, and despite the global decline in malaria cases and associated deaths, the continual search for new and effective therapeutic agents is key to achieving sustainable development goals. An important parasite survival strategy, which is also of serious concern to the scientific community, is the rate at which the parasites continually develop resistance to drugs. Among the key players in the parasite's ability to develop resistance, maintain cellular integrity, and survives within an unusual environment of the red blood cells are the molecular chaperones of the heat shock proteins (HSP) family. HSPs constitute a novel avenue for antimalarial drug discovery and by exploring their ubiquitous nature and multifunctional activities, they may be suitable targets for the discovery of multi-targets antimalarial drugs, needed to fight incessant drug resistance. In this chapter, features of selected families of plasmodial HSPs that can be exploited in drug discovery are presented. Also, known applications of HSPs in small molecule screening, their potential usefulness in high throughput drug screening, as well as possible challenges are highlighted.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| |
Collapse
|
11
|
The Role of Hsp70s in the Development and Pathogenicity of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569021 DOI: 10.1007/978-3-030-78397-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The main agent of human malaria, the protozoa, Plasmodium falciparum is known to infect liver cells, subsequently invading the host erythrocyte, leading to the manifestation of clinical outcomes of the disease. As part of its survival in the human host, P. falciparum employs several heat shock protein (Hsp) families whose primary purpose is to ensure cytoprotection through their molecular chaperone role. The parasite expresses six Hsp70s that localise to various subcellular organelles of the parasite, with one, PfHsp70-x, being exported to the infected human erythrocyte. The role of these Hsp70s in the survival and pathogenicity of malaria has received immense research attention. Several studies have reported on their structure-function features, network partnerships, and elucidation of their potential substrates. Apart from their role in cytoprotection and pathogenicity, Hsp70s are implicated in antimalarial drug resistance. As such, they are deemed potential antimalarial drug candidates, especially suited for co-targeting in combination therapies. In addition, Hsp70 is implicated in host immune modulation. The current report highlights the various structure-function features of these proteins, their roles in the development of malaria, current and prospective efforts being employed towards targeting them in malaria intervention efforts.
Collapse
|
12
|
Introductory Chapter: The Importance of Heat Shock Proteins in Survival and Pathogenesis of the Malaria Parasite Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569019 DOI: 10.1007/978-3-030-78397-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Malaria did not die with the end of the age of western colonization but is still a major public health issue in large parts of the world. Despite repeated and concerted efforts to eradicate this disease, it has proved remarkably resilient, and constant vigilance and continuous research are required to discover new chinks in the parasite's armor and alleviate the suffering at both the individual and societal levels. A deeper understanding of the fundamental processes underlying parasite survival, propagation, virulence, and ability to cause disease is the key to the development of desperately needed new therapies and prophylactic drugs. Malaria parasites, by the nature of their lifecycle, are subject to a number of environmental and cellular stresses which they must overcome to survive. To this end, they express a number of heat shock proteins (HSPs), molecules specialized on buffering the effects of external stimuli, but which are also essential for normal cellular biochemistry. In this introductory chapter, I give a brief overview of the diversity of structure, function, and importance of these HSPs, and highlight some of the current and future research questions in this field. Additionally, this chapter acts as a bridge to the other chapters in this book. These chapters, I think you will agree, demonstrate that with regard to HSPs malaria parasites, as in so many things, obey the adage "Same same, but different."
Collapse
|
13
|
Mathews ES, Jezewski AJ, Odom John AR. Protein Prenylation and Hsp40 in Thermotolerance of Plasmodium falciparum Malaria Parasites. mBio 2021; 12:e0076021. [PMID: 34182772 PMCID: PMC8262983 DOI: 10.1128/mbio.00760-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
During its complex life cycle, the malaria parasite survives dramatic environmental stresses, including large temperature shifts. Protein prenylation is required during asexual replication of Plasmodium falciparum, and the canonical heat shock protein 40 protein (HSP40; PF3D7_1437900) is posttranslationally modified with a 15-carbon farnesyl isoprenyl group. In other organisms, farnesylation of Hsp40 orthologs controls their localization and function in resisting environmental stress. In this work, we find that plastidial isopentenyl pyrophosphate (IPP) synthesis and protein farnesylation are required for malaria parasite survival after cold and heat shock. Furthermore, loss of HSP40 farnesylation alters its membrane attachment and interaction with proteins in essential pathways in the parasite. Together, this work reveals that farnesylation is essential for parasite survival during temperature stress. Farnesylation of HSP40 may promote thermotolerance by guiding distinct chaperone-client protein interactions.
Collapse
Affiliation(s)
- Emily S. Mathews
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J. Jezewski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Disease, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Chakafana G, Mudau PT, Zininga T, Shonhai A. Characterisation of a unique linker segment of the Plasmodium falciparum cytosol localised Hsp110 chaperone. Int J Biol Macromol 2021; 180:272-285. [PMID: 33741370 DOI: 10.1016/j.ijbiomac.2021.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum expresses two essential cytosol localised chaperones; PfHsp70-1 and PfHsp70-z. PfHsp70-z (Hsp110 homologue) is thought to facilitate nucleotide exchange function of PfHsp70-1. PfHsp70-1 is a refoldase, while PfHsp70-z is restricted to holdase chaperone function. The structural features delineating functional specialisation of these chaperones remain unknown. Notably, PfHsp70-z possesses a unique linker segment which could account for its distinct functions. Using recombinant forms of PfHsp70-1, PfHsp70-z and E. coli Hsp70 (DnaK) as well as their linker switch mutant forms, we explored the effects of the linker mutations by conducting several assays such as circular dichroism, intrinsic and extrinsic fluorescence coupled to biochemical and in cellular analyses. Our findings demonstrate that the linker of PfHsp70-z modulates global conformation of the chaperone, regulating several functions such as client protein binding, chaperone- and ATPase activities. In addition, as opposed to the flexible linker of PfHsp70-1, the PfHsp70-z linker is rigid, thus regulating its notable thermal stability, making it an effective stress buffer. Our findings suggest a crucial role for the linker in streamlining the functions of these two chaperones. The findings further explain how these distinct chaperones cooperate to ensure survival of P. falciparum particularly under the stressful human host environment.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa; Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pertunia T Mudau
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa; Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
15
|
Dutta T, Singh H, Gestwicki JE, Blatch GL. Exported plasmodial J domain protein, PFE0055c, and PfHsp70-x form a specific co-chaperone-chaperone partnership. Cell Stress Chaperones 2021; 26:355-366. [PMID: 33236291 PMCID: PMC7925779 DOI: 10.1007/s12192-020-01181-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of a severe form of malaria in humans, accounting for very high worldwide fatality rates. At the molecular level, survival of the parasite within the human host is mediated by P. falciparum heat shock proteins (PfHsps) that provide protection during febrile episodes. The ATP-dependent chaperone activity of Hsp70 relies on the co-chaperone J domain protein (JDP), with which it forms a chaperone-co-chaperone complex. The exported P. falciparum JDP (PfJDP), PFA0660w, has been shown to stimulate the ATPase activity of the exported chaperone, PfHsp70-x. Furthermore, PFA0660w has been shown to associate with another exported PfJDP, PFE0055c, and PfHsp70-x in J-dots, highly mobile structures found in the infected erythrocyte cytosol. Therefore, the present study aims to conduct a structural and functional characterization of the full-length exported PfJDP, PFE0055c. Recombinant PFE0055c was successfully expressed and purified and found to stimulate the basal ATPase activity of PfHsp70-x to a greater extent than PFA0660w but, like PFA0660w, did not significantly stimulate the basal ATPase activity of human Hsp70. Small-molecule inhibition assays were conducted to determine the effect of known inhibitors of JDPs (chalcone, C86) and Hsp70 (benzothiazole rhodacyanines, JG231 and JG98) on the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. In this study, JG231 and JG98 were found to inhibit both the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. C86 only inhibited the PFE0055c-stimulated ATPase activity of PfHsp70-x, consistent with PFE0055c binding to PfHsp70-x through its J domain. This research has provided further insight into the molecular basis of the interaction between these exported plasmodial chaperones, which could inform future antimalarial drug discovery studies.
Collapse
Affiliation(s)
- Tanima Dutta
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.
- The Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
16
|
Structural-functional diversity of malaria parasite's PfHSP70-1 and PfHSP40 chaperone pair gives an edge over human orthologs in chaperone-assisted protein folding. Biochem J 2021; 477:3625-3643. [PMID: 32893851 DOI: 10.1042/bcj20200434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Plasmodium falciparum, the human malaria parasite harbors a metastable proteome which is vulnerable to proteotoxic stress conditions encountered during its lifecycle. How parasite's chaperone machinery is able to maintain its aggregation-prone proteome in functional state, is poorly understood. As HSP70-40 system forms the central hub in cellular proteostasis, we investigated the protein folding capacity of PfHSP70-1 and PfHSP40 chaperone pair and compared it with human orthologs (HSPA1A and DNAJA1). Despite the structural similarity, we observed that parasite chaperones and their human orthologs exhibit striking differences in conformational dynamics. Comprehensive biochemical investigations revealed that PfHSP70-1 and PfHSP40 chaperone pair has better protein folding, aggregation inhibition, oligomer remodeling and disaggregase activities than their human orthologs. Chaperone-swapping experiments suggest that PfHSP40 can also efficiently cooperate with human HSP70 to facilitate the folding of client-substrate. SPR-derived kinetic parameters reveal that PfHSP40 has higher binding affinity towards unfolded substrate than DNAJA1. Interestingly, the observed slow dissociation rate of PfHSP40-substrate interaction allows PfHSP40 to maintain the substrate in folding-competent state to minimize its misfolding. Structural investigation through small angle x-ray scattering gave insights into the conformational architecture of PfHSP70-1 (monomer), PfHSP40 (dimer) and their complex. Overall, our data suggest that the parasite has evolved functionally diverged and efficient chaperone machinery which allows the human malaria parasite to survive in hostile conditions. The distinct allosteric landscapes and interaction kinetics of plasmodial chaperones open avenues for the exploration of small-molecule based antimalarial interventions.
Collapse
|
17
|
Role of the J Domain Protein Family in the Survival and Pathogenesis of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:97-123. [PMID: 34569022 DOI: 10.1007/978-3-030-78397-6_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA). PFA0660w and PFE0055c are associated with an exported plasmodial Hsp70 (PfHsp70-x) within novel mobile structures called J-dots, which have been proposed to be dedicated to the trafficking of key membrane proteins such as erythrocyte membrane protein 1 (PfEMP1). Well over half of the PfJDPs appear to be essential, including the J-dot PfJDP, PFE0055c, while others have been found to be required for growth under febrile conditions (e.g. PFA0110w, the ring-infected erythrocyte surface antigen protein [RESA]) or involved in pathogenesis (e.g. PF10_0381 has been shown to be important for protrusions of the infected red blood cell membrane, the so-called knobs). Here we review what is known about those PfJDPs that have been well characterised, and may be directly or indirectly involved in the survival and pathogenesis of the malaria parasite.
Collapse
|
18
|
Shonhai A, Blatch GL. Heat Shock Proteins of Malaria: Highlights and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:237-246. [PMID: 34569028 DOI: 10.1007/978-3-030-78397-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The deadliest malaria parasite of humans, Plasmodium falciparum, is an obligate parasite that has had to develop mechanisms for survival under the unfavourable conditions it confronts within host cells. The chapters in the book "Heat Shock Proteins of Malaria" provide a critique of the evidence that heat shock proteins (Hsps) play a key role in the survival of P. falciparum in host cells. The role of the plasmodial Hsp arsenal is not limited to the protection of the parasite cell (largely through their role as molecular chaperones), as some of these proteins also promote the pathological development of malaria. This is largely due to the export of a large number of these proteins into the infected erythrocyte cytosol. Although P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main virulence factor for the malaria parasite, some of the exported plasmodial Hsps appear to augment parasite virulence. While this book largely delves into experimentally validated information on the role of Hsps in the development and pathogenicity of malaria, some of the information is based on hypotheses yet to be fully tested. Therefore, here we highlight what we know to be definite roles of plasmodial Hsps. Furthermore, we distill information that could provide practical insights on the options available for future research directions, including interventions against malaria that may target the role of Hsps in the development of the disease.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou, South Africa.
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia. .,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa. .,The Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia. .,Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates.
| |
Collapse
|
19
|
Lebepe CM, Matambanadzo PR, Makhoba XH, Achilonu I, Zininga T, Shonhai A. Comparative Characterization of Plasmodium falciparum Hsp70-1 Relative to E. coli DnaK Reveals the Functional Specificity of the Parasite Chaperone. Biomolecules 2020; 10:biom10060856. [PMID: 32512819 PMCID: PMC7356358 DOI: 10.3390/biom10060856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Hsp70 is a conserved molecular chaperone. How Hsp70 exhibits specialized functions across species remains to be understood. Plasmodium falciparum Hsp70-1 (PfHsp70-1) and Escherichia coli DnaK are cytosol localized molecular chaperones that are important for the survival of these two organisms. In the current study, we investigated comparative structure-function features of PfHsp70-1 relative to DnaK and a chimeric protein, KPf, constituted by the ATPase domain of DnaK and the substrate binding domain (SBD) of PfHsp70-1. Recombinant forms of the three Hsp70s exhibited similar secondary and tertiary structural folds. However, compared to DnaK, both KPf and PfHsp70-1 were more stable to heat stress and exhibited higher basal ATPase activity. In addition, PfHsp70-1 preferentially bound to asparagine rich peptide substrates, as opposed to DnaK. Recombinant P. falciparum adenosylmethionine decarboxylase (PfAdoMetDC) co-expressed in E. coli with either KPf or PfHsp70-1 was produced as a fully folded product. Co-expression of PfAdoMetDC with heterologous DnaK in E. coli did not promote folding of the former. However, a combination of supplementary GroEL plus DnaK improved folding of PfAdoMetDC. These findings demonstrated that the SBD of PfHsp70-1 regulates several functional features of the protein and that this molecular chaperone is tailored to facilitate folding of plasmodial proteins.
Collapse
Affiliation(s)
- Charity Mekgwa Lebepe
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
| | - Pearl Rutendo Matambanadzo
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
| | - Xolani Henry Makhoba
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Tawanda Zininga
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
- Correspondence:
| |
Collapse
|
20
|
Screening for Small Molecule Modulators of Trypanosoma brucei Hsp70 Chaperone Activity Based upon Alcyonarian Coral-Derived Natural Products. Mar Drugs 2020; 18:md18020081. [PMID: 32012664 PMCID: PMC7074166 DOI: 10.3390/md18020081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/17/2022] Open
Abstract
The Trypanosoma brucei Hsp70/J-protein machinery plays an essential role in survival, differentiation, and pathogenesis of the protozoan parasite, and is an emerging target against African Trypanosomiasis. This study evaluated a set of small molecules, inspired by the malonganenones and nuttingins, as modulators of the chaperone activity of the cytosolic heat inducible T. brucei Hsp70 and constitutive TbHsp70.4 proteins. The compounds were assessed for cytotoxicity on both the bloodstream form of T. b. brucei parasites and a mammalian cell line. The compounds were then investigated for their modulatory effect on the aggregation suppression and ATPase activities of the TbHsp70 proteins. A structure-activity relationship for the malonganenone-class of alkaloids is proposed based upon these results.
Collapse
|
21
|
Structural insights into the binding mechanism of Plasmodium falciparum exported Hsp40-Hsp70 chaperone pair. Comput Biol Chem 2019; 83:107099. [DOI: 10.1016/j.compbiolchem.2019.107099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022]
|
22
|
Zininga T, Shonhai A. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Int J Mol Sci 2019; 20:E5930. [PMID: 31775392 PMCID: PMC6929125 DOI: 10.3390/ijms20235930] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Obligate protozoan parasites of the kinetoplastids and apicomplexa infect human cells to complete their life cycles. Some of the members of these groups of parasites develop in at least two systems, the human host and the insect vector. Survival under the varied physiological conditions associated with the human host and in the arthropod vectors requires the parasites to modulate their metabolic complement in order to meet the prevailing conditions. One of the key features of these parasites essential for their survival and host infectivity is timely expression of various proteins. Even more importantly is the need to keep their proteome functional by maintaining its functional capabilities in the wake of physiological changes and host immune responses. For this reason, molecular chaperones (also called heat shock proteins)-whose role is to facilitate proteostasis-play an important role in the survival of these parasites. Heat shock protein 90 (Hsp90) and Hsp70 are prominent molecular chaperones that are generally induced in response to physiological stress. Both Hsp90 and Hsp70 members are functionally regulated by nucleotides. In addition, Hsp70 and Hsp90 cooperate to facilitate folding of some key proteins implicated in cellular development. In addition, Hsp90 and Hsp70 individually interact with other accessory proteins (co-chaperones) that regulate their functions. The dependency of these proteins on nucleotide for their chaperone function presents an Achille's heel, as inhibitors that mimic ATP are amongst potential therapeutic agents targeting their function in obligate intracellular human parasites. Most of the promising small molecule inhibitors of parasitic heat shock proteins are either antibiotics or anticancer agents, whose repurposing against parasitic infections holds prospects. Both cancer cells and obligate human parasites depend upon a robust protein quality control system to ensure their survival, and hence, both employ a competent heat shock machinery to this end. Furthermore, some inhibitors that target chaperone and co-chaperone networks also offer promising prospects as antiparasitic agents. The current review highlights the progress made so far in design and application of small molecule inhibitors against obligate intracellular human parasites of the kinetoplastida and apicomplexan kingdoms.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou 0950, South Africa;
| |
Collapse
|
23
|
Chakafana G, Zininga T, Shonhai A. Comparative structure-function features of Hsp70s of Plasmodium falciparum and human origins. Biophys Rev 2019; 11:591-602. [PMID: 31280465 PMCID: PMC6682331 DOI: 10.1007/s12551-019-00563-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 01/18/2023] Open
Abstract
The heat shock protein 70 (Hsp70) family of molecular chaperones are crucial for the survival and pathogenicity of the main agent of malaria, Plasmodium falciparum. Hsp70 is central to cellular proteostasis and some of its isoforms are essential for survival of the malaria parasite. In addition, they are also implicated in the development of antimalarial drug resistance. For these reasons, they are thought to be potential drug targets, especially in antimalarial combination therapies. However, their high sequence conservation across species presents a hurdle with respect to their selective targeting. The human genome encodes 17 Hsp70 isoforms while P. falciparum encodes for only 6. The structural architecture of Hsp70s is typically characterized by a highly conserved N-terminal nucleotide-binding domain (NBD) and a less conserved C-terminal substrate-binding domain (SBD). The two domains are connected by a highly conserved linker. In spite of their fairly high sequence conservation, Hsp70s from various species possess unique signature motifs that appear to uniquely influence their function. In addition, their cooperation with co-chaperones further regulates their functional specificity. In the current review, bioinformatics tools were used to identify conserved and unique signature motifs in Hsp70s of P. falciparum versus their human counterparts. We discuss the common and distinctive structure-function features of these proteins. This information is important towards elucidating the prospects of selective targeting of parasite heat shock proteins as part of antimalarial design efforts.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bags X5050, Thohoyandou, 0950, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bags X5050, Thohoyandou, 0950, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bags X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
24
|
Behl A, Kumar V, Bisht A, Panda JJ, Hora R, Mishra PC. Cholesterol bound Plasmodium falciparum co-chaperone 'PFA0660w' complexes with major virulence factor 'PfEMP1' via chaperone 'PfHsp70-x'. Sci Rep 2019; 9:2664. [PMID: 30804381 PMCID: PMC6389991 DOI: 10.1038/s41598-019-39217-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/20/2018] [Indexed: 01/31/2023] Open
Abstract
Lethality of Plasmodium falciparum caused malaria results from ‘cytoadherence’, which is mainly effected by exported Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. Several exported P. falciparum proteins (exportome) including chaperones alongside cholesterol rich microdomains are crucial for PfEMP1 translocation to infected erythrocyte surface. An exported Hsp40 (heat shock protein 40) ‘PFA0660w’ functions as a co-chaperone of ‘PfHsp70-x’, and these co-localize to specialized intracellular mobile structures termed J-dots. Our studies attempt to understand the function of PFA0660w-PfHsp70-x chaperone pair using recombinant proteins. Biochemical assays reveal that N and C-terminal domains of PFA0660w and PfHsp70-x respectively are critical for their activity. We show the novel direct interaction of PfHsp70-x with the cytoplasmic tail of PfEMP1, and binding of PFA0660w with cholesterol. PFA0660w operates both as a chaperone and lipid binding molecule via its separate substrate and cholesterol binding sites. PfHsp70-x interacts with cholesterol bound PFA0660w and PfEMP1 simultaneously in vitro to form a complex. Collectively, our results and the past literature support the hypothesis that PFA0660w-PfHsp70-x chaperone pair assists PfEMP1 transport across the host erythrocyte through cholesterol containing ‘J-dots’. These findings further the understanding of PfEMP1 export in malaria parasites, though their in vivo validation remains to be performed.
Collapse
Affiliation(s)
- Ankita Behl
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vikash Kumar
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anjali Bisht
- Institute of Nano Science and Technology, Mohali, India
| | - Jiban J Panda
- Institute of Nano Science and Technology, Mohali, India
| | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
25
|
Jha P, Laskar S, Dubey S, Bhattacharyya MK, Bhattacharyya S. Plasmodium Hsp40 and human Hsp70: A potential cochaperone-chaperone complex. Mol Biochem Parasitol 2017; 214:10-13. [PMID: 28322872 DOI: 10.1016/j.molbiopara.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/25/2017] [Accepted: 03/08/2017] [Indexed: 11/27/2022]
Abstract
Out of the total forty four members of Plasmodium falciparum Hsp40 protein family, nineteen of them possess a PEXEL motif, and are predicted to be exported into the cytosol of an infected RBC. It is speculated that the human Hsp70 (hHsp70), which resides into the cytosol of the host erythrocyte, along with the exported PfHsp40s assists in the folding of parasitic proteins, thus playing a crucial role in the establishment of virulence. However, till date no experimental evidence supports this hypothesis. Our work establishes that the PEXEL motifs containing Type II PfDNAJ proteins specifically interact with hHsp70 (HSPA1A). It suggests that there exists a specific factor in PfDNAJ that determines the choice of cognate Hsp70. This opens up an interesting avenue of malaria research.
Collapse
Affiliation(s)
- Payal Jha
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Shyamasree Laskar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Swati Dubey
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Mrinal K Bhattacharyya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India.
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Telangana, 500046, India.
| |
Collapse
|
26
|
Suazo KF, Schaber C, Palsuledesai CC, Odom John AR, Distefano MD. Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci Rep 2016; 6:38615. [PMID: 27924931 PMCID: PMC5141570 DOI: 10.1038/srep38615] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/09/2016] [Indexed: 01/28/2023] Open
Abstract
Severe malaria due to Plasmodium falciparum infection remains a serious threat to health worldwide and new therapeutic targets are highly desirable. Small molecule inhibitors of prenyl transferases, enzymes that catalyze the post-translational isoprenyl modifications of proteins, exhibit potent antimalarial activity. The antimalarial actions of prenyltransferase inhibitors indicate that protein prenylation is required for malaria parasite development. In this study, we used a chemical biology strategy to experimentally characterize the entire complement of prenylated proteins in the human malaria parasite. In contrast to the expansive mammalian and fungal prenylomes, we find that P. falciparum possesses a restricted set of prenylated proteins. The prenylome of P. falciparum is dominated by Rab GTPases, in addition to a small number of prenylated proteins that also appear to function primarily in membrane trafficking. Overall, we found robust experimental evidence for a total of only thirteen prenylated proteins in P. falciparum, with suggestive evidence for an additional two probable prenyltransferase substrates. Our work contributes to an increasingly complete picture of essential, post-translational hydrophobic modifications in blood-stage P. falciparum.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Chad Schaber
- Departments of Pediatrics and of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | | | - Audrey R Odom John
- Departments of Pediatrics and of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
27
|
Nyakundi DO, Vuko LAM, Bentley SJ, Hoppe H, Blatch GL, Boshoff A. Plasmodium falciparum Hep1 Is Required to Prevent the Self Aggregation of PfHsp70-3. PLoS One 2016; 11:e0156446. [PMID: 27253881 PMCID: PMC4890766 DOI: 10.1371/journal.pone.0156446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/14/2016] [Indexed: 11/29/2022] Open
Abstract
The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria.
Collapse
Affiliation(s)
- David O. Nyakundi
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Loyiso A. M. Vuko
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria 8001, Australia
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
- * E-mail:
| |
Collapse
|
28
|
Daniyan MO, Boshoff A, Prinsloo E, Pesce ER, Blatch GL. The Malarial Exported PFA0660w Is an Hsp40 Co-Chaperone of PfHsp70-x. PLoS One 2016; 11:e0148517. [PMID: 26845441 PMCID: PMC4742251 DOI: 10.1371/journal.pone.0148517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-dependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria.
Collapse
Affiliation(s)
- Michael O. Daniyan
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Eva-Rachele Pesce
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- * E-mail: (GLB); (E-RP)
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- * E-mail: (GLB); (E-RP)
| |
Collapse
|
29
|
Przyborski JM, Diehl M, Blatch GL. Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle. Front Mol Biosci 2015; 2:34. [PMID: 26167469 PMCID: PMC4481151 DOI: 10.3389/fmolb.2015.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s), some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host–parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle.
Collapse
Affiliation(s)
| | - Mathias Diehl
- Parasitology, Philipps University Marburg Marburg, Germany
| | - Gregory L Blatch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University Melbourne, VIC, Australia ; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University Grahamstown, South Africa
| |
Collapse
|
30
|
Cockburn IL, Boshoff A, Pesce ER, Blatch GL. Selective modulation of plasmodial Hsp70s by small molecules with antimalarial activity. Biol Chem 2015; 395:1353-62. [PMID: 24854538 DOI: 10.1515/hsz-2014-0138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/12/2014] [Indexed: 11/15/2022]
Abstract
Plasmodial heat shock protein 70 (Hsp70) chaperones represent a promising new class of antimalarial drug targets because of the important roles they play in the survival and pathogenesis of the malaria parasite Plasmodium falciparum. This study assessed a set of small molecules (lapachol, bromo-β-lapachona and malonganenones A, B and C) as potential modulators of two biologically important plasmodial Hsp70s, the parasite-resident PfHsp70-1 and the exported PfHsp70-x. Compounds of interest were assessed for modulatory effects on the steady-state basal and heat shock protein 40 (Hsp40)-stimulated ATPase activities of PfHsp70-1, PfHsp70-x and human Hsp70, as well as on the protein aggregation suppression activity of PfHsp70-x. The antimalarial marine alkaloid malonganenone A was of particular interest, as it was found to have limited cytotoxicity to mammalian cell lines and exhibited the desired properties of an effective plasmodial Hsp70 modulator. This compound was found to inhibit plasmodial and not human Hsp70 ATPase activity (Hsp40-stimulated), and hindered the aggregation suppression activity of PfHsp70-x. Furthermore, malonganenone A was shown to disrupt the interaction between PfHsp70-x and Hsp40. This is the first report to show that PfHsp70-x has chaperone activity, is stimulated by Hsp40 and can be specifically modulated by small molecule compounds.
Collapse
|
31
|
Alonso-Morales A, González-López L, Cázares-Raga FE, Cortés-Martínez L, Torres-Monzón JA, Gallegos-Pérez JL, Rodríguez MH, James AA, Hernández-Hernández FDLC. Protein phosphorylation during Plasmodium berghei gametogenesis. Exp Parasitol 2015; 156:49-60. [PMID: 26008612 DOI: 10.1016/j.exppara.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Plasmodium gametogenesis within the mosquito midgut is a complex differentiation process involving signaling mediated by phosphorylation, which modulate metabolic routes and protein synthesis required to complete this development. However, the mechanisms leading to gametogenesis activation are poorly understood. We analyzed protein phosphorylation during Plasmodium berghei gametogenesis in vitro in serum-free medium using bidimensional electrophoresis (2-DE) combined with immunoblotting (IB) and antibodies specific to phosphorylated serine, threonine and tyrosine. Approximately 75 protein exhibited phosphorylation changes, of which 23 were identified by mass spectrometry. These included components of the cytoskeleton, heat shock proteins, and proteins involved in DNA synthesis and signaling pathways among others. Novel phosphorylation events support a role for these proteins during gametogenesis. The phosphorylation sites of six of the identified proteins, HSP70, WD40 repeat protein msi1, enolase, actin-1 and two isoforms of large subunit of ribonucleoside reductase were investigated using TiO2 phosphopeptides enrichment and tandem mass spectrometry. In addition, transient exposure to hydroxyurea, an inhibitor of ribonucleoside reductase, impaired male gametocytes exflagellation in a dose-dependent manner, and provides a resource for functional studies.
Collapse
Affiliation(s)
- Alberto Alonso-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México
| | - Lorena González-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México
| | - Febe Elena Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México
| | - Leticia Cortés-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México
| | - Jorge Aurelio Torres-Monzón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Avenida 19 Poniente esquina 4a Norte s/n, Colonia Centro, C.P. 62100 Tapachula, Chiapas, Mexico
| | | | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad # 655, Colonia Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, México
| | - Anthony A James
- Departments of Molecular Biology and Biochemistry, and Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México.
| |
Collapse
|
32
|
Manos-Turvey A, Brodsky JL, Wipf P. The Effect of Structure and Mechanism of the Hsp70 Chaperone on the Ability to Identify Chemical Modulators and Therapeutics. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Pesce ER, Blatch GL, Edkins AL. Hsp40 Co-chaperones as Drug Targets: Towards the Development of Specific Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_92] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Hatherley R, Clitheroe CL, Faya N, Tastan Bishop Ö. Plasmodium falciparum Hop: detailed analysis on complex formation with Hsp70 and Hsp90. Biochem Biophys Res Commun 2014; 456:440-5. [PMID: 25482441 DOI: 10.1016/j.bbrc.2014.11.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 12/29/2022]
Abstract
The heat shock organizing protein (Hop) is important in modulating the activity and co-interaction of two chaperones: heat shock protein 70 and 90 (Hsp70 and Hsp90). Recent research suggested that Plasmodium falciparum Hop (PfHop), PfHsp70 and PfHsp90 form a complex in the trophozoite infective stage. However, there has been little computational research on the malarial Hop protein in complex with other malarial Hsps. Using in silico characterization of the protein, this work showed that individual domains of Hop are evolving at different rates within the protein. Differences between human Hop (HsHop) and PfHop were identified by motif analysis. Homology modeling of PfHop and HsHop in complex with their own cytosolic Hsp90 and Hsp70 C-terminal peptide partners indicated excellent conservation of the Hop concave TPR sites bound to the C-terminal motifs of partner proteins. Further, we analyzed additional binding sites between Hop and Hsp90, and showed, for the first time, that they are distinctly less conserved between human and malaria parasite. These sites are located on the convex surface of Hop TPR2, and involved in interactions with the Hsp90 middle domain. Since the convex sites are less conserved than the concave sites, it makes their potential for malarial inhibitor design extremely attractive (as opposed to the concave sites which have been the focus of previous efforts).
Collapse
Affiliation(s)
- Rowan Hatherley
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, 6140 Grahamstown, South Africa
| | - Crystal-Leigh Clitheroe
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, 6140 Grahamstown, South Africa
| | - Ngonidzashe Faya
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, 6140 Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, 6140 Grahamstown, South Africa.
| |
Collapse
|
35
|
Abstract
SUMMARYPlasmodium falciparumdisplays a large and remarkable variety of heat shock protein 40 family members (PfHsp40s). The majority of the PfHsp40s are poorly characterized, and although the functions of some of them have been suggested, their exact mechanism of action is still elusive and their interacting partners and client proteins are unknown. TheP. falciparumheat shock protein 70 family members (PfHsp70s) have been more extensively characterized than the PfHsp40s, with certain members shown to function as molecular chaperones. However, little is known about the PfHsp70-PfHsp40 chaperone partnerships. There is mounting evidence that these chaperones are important not only in protein homoeostasis and cytoprotection, but also in protein trafficking across the parasitophorous vacuole (PV) and into the infected erythrocyte. We propose that certain members of these chaperone families work together to maintain exported proteins in an unfolded state until they reach their final destination. In this review, we critically evaluate what is known and not known about PfHsp40s and PfHsp70s.
Collapse
|
36
|
Burger A, Ludewig MH, Boshoff A. Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei. J Parasitol Res 2014; 2014:172582. [PMID: 24707395 PMCID: PMC3953656 DOI: 10.1155/2014/172582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/23/2013] [Accepted: 01/09/2014] [Indexed: 02/06/2023] Open
Abstract
The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70) is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.
Collapse
Affiliation(s)
- Adélle Burger
- Biomedical and Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Michael H. Ludewig
- Biomedical and Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Aileen Boshoff
- Biomedical and Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
37
|
Huryn DM, Resnick LO, Wipf P. Contributions of academic laboratories to the discovery and development of chemical biology tools. J Med Chem 2013; 56:7161-76. [PMID: 23672690 DOI: 10.1021/jm400132d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The academic setting provides an environment that may foster success in the discovery of certain types of small molecule tools while proving less suitable in others. For example, small molecule probes for poorly understood systems, those that exploit a specific resident expertise, and those whose commercial return is not apparent are ideally suited to be pursued in a university setting. In this review, we highlight five projects that emanated from academic research groups and generated valuable tool compounds that have been used to interrogate biological phenomena: reactive oxygen species (ROS) sensors, GPR30 agonists and antagonists, selective CB2 agonists, Hsp70 modulators, and β-amyloid PET imaging agents. By taking advantage of the unique expertise resident in university settings and the ability to pursue novel projects that may have great scientific value but with limited or no immediate commercial value, probes from academic research groups continue to provide useful tools and generate a long-term resource for biomedical researchers.
Collapse
Affiliation(s)
- Donna M Huryn
- Department of Pharmaceutical Sciences, University of Pittsburgh Chemical Diversity Center (UP-CDC) , 3501 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| | | | | |
Collapse
|
38
|
Gitau GW, Mandal P, Blatch GL, Przyborski J, Shonhai A. Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 2012; 17:191-202. [PMID: 22005844 PMCID: PMC3273567 DOI: 10.1007/s12192-011-0299-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 10/25/2022] Open
Abstract
Malaria is caused by Plasmodium species, whose transmission to vertebrate hosts is facilitated by mosquito vectors. The transition from the cold blooded mosquito vector to the host represents physiological stress to the parasite, and additionally malaria blood stage infection is characterised by intense fever periods. In recent years, it has become clear that heat shock proteins play an essential role during the parasite's life cycle. Plasmodium falciparum expresses two prominent heat shock proteins: heat shock protein 70 (PfHsp70) and heat shock protein 90 (PfHsp90). Both of these proteins have been implicated in the development and pathogenesis of malaria. In eukaryotes, Hsp70 and Hsp90 proteins are functionally linked by an essential adaptor protein known as the Hsp70-Hsp90 organising protein (Hop). In this study, recombinant P. falciparum Hop (PfHop) was heterologously produced in E. coli and purified by nickel affinity chromatography. Using specific anti-PfHop antisera, the expression and localisation of PfHop in P. falciparum was investigated. PfHop was shown to co-localise with PfHsp70 and PfHsp90 in parasites at the trophozoite stage. Gel filtration and co-immunoprecipitation experiments suggested that PfHop was present in a complex together with PfHsp70 and PfHsp90. The association of PfHop with both PfHsp70 and PfHsp90 suggests that this protein may mediate the functional interaction between the two chaperones.
Collapse
Affiliation(s)
- Grace W. Gitau
- Department of Biochemistry and Microbiology, Zululand University, Kwadlangezwa, South Africa
| | - Pradipta Mandal
- FB Biology, Philipps University Marburg, 35043 Marburg, Germany
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 South Africa
- School of Biomedical and Health Sciences, Victoria University, Melbourne, Victoria 8001 Australia
| | - Jude Przyborski
- FB Biology, Philipps University Marburg, 35043 Marburg, Germany
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Zululand University, Kwadlangezwa, South Africa
| |
Collapse
|
39
|
Sterrenberg JN, Blatch GL, Edkins AL. Human DNAJ in cancer and stem cells. Cancer Lett 2011; 312:129-42. [PMID: 21925790 DOI: 10.1016/j.canlet.2011.08.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/15/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
The heat shock protein 40kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
Collapse
Affiliation(s)
- Jason N Sterrenberg
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown South Africa
| | | | | |
Collapse
|
40
|
Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast. PLoS One 2011; 6:e20047. [PMID: 21625512 PMCID: PMC3098276 DOI: 10.1371/journal.pone.0020047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/11/2011] [Indexed: 01/06/2023] Open
Abstract
Plasmodium falciparum causes the most virulent form of malaria and encodes a large number of molecular chaperones. Because the parasite encounters radically different environments during its lifecycle, many members of this chaperone ensemble may be essential for P. falciparum survival. Therefore, Plasmodium chaperones represent novel therapeutic targets, but to establish the mechanism of action of any developed therapeutics, it is critical to ascertain the functions of these chaperones. To this end, we report the development of a yeast expression system for PfHsp70-1, a P. falciparum cytoplasmic chaperone. We found that PfHsp70-1 repairs mutant growth phenotypes in yeast strains lacking the two primary cytosolic Hsp70s, SSA1 and SSA2, and in strains harboring a temperature sensitive SSA1 allele. PfHsp70-1 also supported chaperone-dependent processes such as protein translocation and ER associated degradation, and ameliorated the toxic effects of oxidative stress. By introducing engineered forms of PfHsp70-1 into the mutant strains, we discovered that rescue requires PfHsp70-1 ATPase activity. Together, we conclude that yeast can be co-opted to rapidly uncover specific cellular activities mediated by malarial chaperones.
Collapse
|