1
|
Calixto CPG. Molecular aspects of heat stress sensing in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70069. [PMID: 40085177 PMCID: PMC11908636 DOI: 10.1111/tpj.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Heat stress impacts all aspects of life, from evolution to global food security. Therefore, it becomes essential to understand how plants respond to heat stress, especially in the context of climate change. The heat stress response (HSR) involves three main components: sensing, signal transduction, and cellular reprogramming. Here, I focus on the heat stress sensing component. How can cells detect heat stress if it is not a signalling particle? To answer this question, I have looked at the molecular definition of heat stress. It can be defined as any particular rise in the optimum growth temperature that leads to higher-than-normal levels of reactive molecular species and macromolecular damage to biological membranes, proteins, and nucleic acid polymers (DNA and RNA). It is precisely these stress-specific alterations that are detected by heat stress sensors, upon which they would immediately trigger the appropriate level of the HSR. In addition, the work towards thermotolerance is complemented by a second type of response, here called the cellular homeostasis response (CHR). Upon mild and extreme temperature changes, the CHR is triggered by plant thermosensors, which are responsible for monitoring temperature information. Heat stress sensors and thermosensors are distinct types of molecules, each with unique modes of activation and functions. While many recent reviews provide a comprehensive overview of plant thermosensors, there remains a notable gap in the review literature regarding an in-depth analysis of plant heat stress sensors. Here, I attempt to summarise our current knowledge of the cellular sensors involved in triggering the plant HSR.
Collapse
|
2
|
Zuo Y, Abbas A, Dauda SO, Chen C, Bose J, Donovan-Mak M, Wang Y, He J, Zhang P, Yan Z, Chen ZH. Function of key ion channels in abiotic stresses and stomatal dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109574. [PMID: 39903947 DOI: 10.1016/j.plaphy.2025.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Climate changes disrupt environmental and soil conditions that affect ionic balance in plants, presenting significant challenges to their survival and productivity. Membrane transporters are crucial for maintaining ionic homeostasis and regulating the movement of substances across plasma and organellar membranes, particularly under abiotic stresses. Among these abiotic stress-responsive mechanisms, stomata are critical for regulating water loss and carbon dioxide uptake, reflecting a plant's ability to respond and adapt to abiotic stresses effectively. This review highlights the role of ion transporters, including both anion and cation transporters in plant abiotic stress responses. It explores the interplay between different ion channels and regulatory components that enable plants to withstand key abiotic stresses such as drought, salinity, and heat. Moreover, we emphasized the contributions of three essential types of ion channels - potassium, anion, and calcium to abiotic stress-related stomatal regulation. These ion channels orchestrate complex signaling networks that allow plants to modulate stomatal behavior and maintain physiological balance under adverse conditions. This article provides valuable molecular and physiological insights into the mechanisms of ion transport and regulation for plants to adapt to environmental challenges. Thus, this review offers a useful foundation for developing innovative strategies to enhance crop resilience and performance in an era of increasingly unpredictable and harsh climates.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Asad Abbas
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Chen Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China; The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Jayakumar Bose
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Michelle Donovan-Mak
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jing He
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peng Zhang
- The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
3
|
Tomoi T, Yoshida Y, Ohe S, Kabeya Y, Hasebe M, Morohoshi T, Murata T, Sakamoto J, Tamada Y, Kamei Y. Infrared laser-induced gene expression in single cells characterized by quantitative imaging in Physcomitrium patens. Commun Biol 2024; 7:1448. [PMID: 39506095 PMCID: PMC11541703 DOI: 10.1038/s42003-024-07141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
A spatiotemporal understanding of gene function requires the precise control of gene expression in each cell. Here, we use an infrared laser-evoked gene operator (IR-LEGO) system to induce gene expression at the single-cell level in the moss Physcomitrium patens by heating a living cell with an IR laser and thereby activating the heat shock response. We identify the laser irradiation conditions that provide higher inducibility with lower invasiveness by changing the laser power and irradiation duration. Furthermore, we quantitatively characterize the induction profile of the heat shock response using a heat-induced fluorescence reporter system after the IR laser irradiation of single cells under different conditions. Our data indicate that IR laser irradiation with long duration leads to higher inducibility according to increase in the laser power but not vice versa, and that the higher laser power even without conferring apparent damage to the cells decelerates and/or delayed gene induction. We define the temporal shift in expression as a function of onset and duration according to laser power and irradiation duration. This study contributes to the versatile application of IR-LEGO in plants and improves our understanding of heat shock-induced gene expression.
Collapse
Affiliation(s)
- Takumi Tomoi
- Innovation Department, Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, Utsunomiya, Japan.
- School of Engineering, Utsunomiya University, Utsunomiya, Japan.
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan.
| | - Yuka Yoshida
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan
| | - Suguru Ohe
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
| | - Yukiko Kabeya
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Tomohiro Morohoshi
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan.
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan.
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan.
- Robotics, Engineering and Agriculture-technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan.
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan.
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
4
|
Marchetti F, Distéfano AM, Cainzos M, Setzes N, Cascallares M, López GA, Zabaleta E, Carolina Pagnussat G. Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways. ANNALS OF BOTANY 2024; 134:367-384. [PMID: 38953500 PMCID: PMC11341678 DOI: 10.1093/aob/mcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
5
|
Guo Z, Zuo Y, Wang S, Zhang X, Wang Z, Liu Y, Shen Y. Early signaling enhance heat tolerance in Arabidopsis through modulating jasmonic acid synthesis mediated by HSFA2. Int J Biol Macromol 2024; 267:131256. [PMID: 38556243 DOI: 10.1016/j.ijbiomac.2024.131256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Given the detrimental impact of global warming on crop production, it is particularly important to understand how plants respond and adapt to higher temperatures. Using the non-invasive micro-test technique and laser confocal microscopy, we found that the cascade process of early signals (K+, H2O2, H+, and Ca2+) ultimately resulted in an increase in the cytoplasmic Ca2+ concentration when Arabidopsis was exposed to heat stress. Quantitative real-time PCR demonstrated that heat stress significantly up-regulated the expression of CAM1, CAM3 and HSFA2; however, after CAM1 and CAM3 mutation, the upregulation of HSFA2 was reduced. In addition, heat stress affected the expression of LOX3 and OPR3, which was not observed when HSFA2 was mutated. Luciferase reporter gene expression assay and electrophoretic mobility shift assay showed that HSFA2 regulated the expression of both genes. Determination of jasmonic acid (JA) content showed that JA synthesis was promoted by heat stress, but was damaged when HSFA2 and OPR3 were mutated. Finally, physiological experiments showed that JA reduced the relative electrical conductivity of leaves, enhanced chlorophyll content and relative water content, and improved the survival rate of Arabidopsis under heat stress. Together, our results reveal a new pathway for Arabidopsis to sense and transmit heat signals; HSFA2 is involved in the JA synthesis, which can act as a defensive compound improving Arabidopsis heat tolerance.
Collapse
Affiliation(s)
- Zhujuan Guo
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yixin Zuo
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
6
|
Zhou X, Peng T, Zeng Y, Cai Y, Zuo Q, Zhang L, Dong S, Liu Y. Chromosome-level genome assembly of Niphotrichum japonicum provides new insights into heat stress responses in mosses. FRONTIERS IN PLANT SCIENCE 2023; 14:1271357. [PMID: 37920716 PMCID: PMC10619864 DOI: 10.3389/fpls.2023.1271357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
With a diversity of approximately 22,000 species, bryophytes (hornworts, liverworts, and mosses) represent a major and diverse lineage of land plants. Bryophytes can thrive in many extreme environments as they can endure the stresses of drought, heat, and cold. The moss Niphotrichum japonicum (Grimmiaceae, Grimmiales) can subsist for extended periods under heat and drought conditions, providing a good candidate for studying the genetic basis underlying such high resilience. Here, we de novo assembled the genome of N. japonicum using Nanopore long reads combined with Hi-C scaffolding technology to anchor the 191.61 Mb assembly into 14 pseudochromosomes. The genome structure of N. japonicum's autosomes is mostly conserved and highly syntenic, in contrast to the sparse and disordered genes present in its sex chromosome. Comparative genomic analysis revealed the presence of 10,019 genes exclusively in N. japonicum. These genes may contribute to the species-specific resilience, as demonstrated by the gene ontology (GO) enrichment. Transcriptome analysis showed that 37.44% (including 3,107 unique genes) of the total annotated genes (26,898) exhibited differential expression as a result of heat-induced stress, and the mechanisms that respond to heat stress are generally conserved across plants. These include the upregulation of HSPs, LEAs, and reactive oxygen species (ROS) scavenging genes, and the downregulation of PPR genes. N. japonicum also appears to have distinctive thermal mechanisms, including species-specific expansion and upregulation of the Self-incomp_S1 gene family, functional divergence of duplicated genes, structural clusters of upregulated genes, and expression piggybacking of hub genes. Overall, our study highlights both shared and species-specific heat tolerance strategies in N. japonicum, providing valuable insights into the heat tolerance mechanism and the evolution of resilient plants.
Collapse
Affiliation(s)
- Xuping Zhou
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Peng
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuying Zeng
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Zuo
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Li Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| |
Collapse
|
7
|
Koselski M, Hoernstein SNW, Wasko P, Reski R, Trebacz K. Long-Distance Electrical and Calcium Signals Evoked by Hydrogen Peroxide in Physcomitrella. PLANT & CELL PHYSIOLOGY 2023; 64:880-892. [PMID: 37233615 PMCID: PMC10434737 DOI: 10.1093/pcp/pcad051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 05/27/2023]
Abstract
Electrical and calcium signals in plants are some of the basic carriers of information that are transmitted over a long distance. Together with reactive oxygen species (ROS) waves, electrical and calcium signals can participate in cell-to-cell signaling, conveying information about different stimuli, e.g. abiotic stress, pathogen infection or mechanical injury. There is no information on the ability of ROS to evoke systemic electrical or calcium signals in the model moss Physcomitrella nor on the relationships between these responses. Here, we show that the external application of hydrogen peroxide (H2O2) evokes electrical signals in the form of long-distance changes in the membrane potential, which transmit through the plant instantly after stimulation. The responses were calcium-dependent since their generation was inhibited by lanthanum, a calcium channel inhibitor (2 mM), and EDTA, a calcium chelator (0.5 mM). The electrical signals were partially dependent on glutamate receptor (GLR) ion channels since knocking-out the GLR genes only slightly reduced the amplitude of the responses. The basal part of the gametophyte, which is rich in protonema cells, was the most sensitive to H2O2. The measurements carried out on the protonema expressing fluorescent calcium biosensor GCaMP3 proved that calcium signals propagated slowly (>5 µm/s) and showed a decrement. We also demonstrate upregulation of a stress-related gene that appears in a distant section of the moss 8 min after the H2O2 treatment. The results help understand the importance of both types of signals in the transmission of information about the appearance of ROS in the plant cell apoplast.
Collapse
Affiliation(s)
- Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Sebastian N. W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg 79104, Germany
| | - Piotr Wasko
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestrasse 18, Freiburg 79104, Germany
| | - Kazimierz Trebacz
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| |
Collapse
|
8
|
Mikami K, Khoa HV. Membrane Fluidization Governs the Coordinated Heat-Inducible Expression of Nucleus- and Plastid Genome-Encoded Heat Shock Protein 70 Genes in the Marine Red Alga Neopyropia yezoensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112070. [PMID: 37299052 DOI: 10.3390/plants12112070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Heat shock protein 70 (HSP70) is an evolutionarily conserved protein chaperone in prokaryotic and eukaryotic organisms. This family is involved in the maintenance of physiological homeostasis by ensuring the proper folding and refolding of proteins. The HSP70 family in terrestrial plants can be divided into cytoplasm, endoplasmic reticulum (ER)-, mitochondrion (MT)-, and chloroplast (CP)-localized HSP70 subfamilies. In the marine red alga Neopyropia yezoensis, the heat-inducible expression of two cytoplasmic HSP70 genes has been characterized; however, little is known about the presence of other HSP70 subfamilies and their expression profiles under heat stress conditions. Here, we identified genes encoding one MT and two ER HSP70 proteins and confirmed their heat-inducible expression at 25 °C. In addition, we determined that membrane fluidization directs gene expression for the ER-, MT-, and CP-localized HSP70 proteins as with cytoplasmic HSP70s. The gene for the CP-localized HSP70 is carried by the chloroplast genome; thus, our results indicate that membrane fluidization is a trigger for the coordinated heat-driven induction of HSP70 genes harbored by the nuclear and plastid genomes in N. yezoensis. We propose this mechanism as a unique regulatory system common in the Bangiales, in which the CP-localized HSP70 is usually encoded in the chloroplast genome.
Collapse
Affiliation(s)
- Koji Mikami
- School of Food Industrial Sciences, Miyagi University, Hatatate 2-2-1, Sendai 982-0215, Japan
| | - Ho Viet Khoa
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-Cho, Hakodate 041-8611, Japan
| |
Collapse
|
9
|
Kolupaev YE, Yemets AI, Yastreb TO, Blume YB. The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1128439. [PMID: 36824204 PMCID: PMC9941552 DOI: 10.3389/fpls.2023.1128439] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Nitric oxide and hydrogen sulfide, as important signaling molecules (gasotransmitters), are involved in many functions of plant organism, including adaptation to stress factors of various natures. As redox-active molecules, NO and H2S are involved in redox regulation of functional activity of many proteins. They are also involved in maintaining cell redox homeostasis due to their ability to interact directly and indirectly (functionally) with ROS, thiols, and other molecules. The review considers the involvement of nitric oxide and hydrogen sulfide in plant responses to low and high temperatures. Particular attention is paid to the role of gasotransmitters interaction with other signaling mediators (in particular, with Ca2+ ions and ROS) in the formation of adaptive responses to extreme temperatures. Pathways of stress-induced enhancement of NO and H2S synthesis in plants are considered. Mechanisms of the NO and H2S effect on the activity of some proteins of the signaling system, as well as on the state of antioxidant and osmoprotective systems during adaptation to stress temperatures, were analyzed. Possibilities of practical use of nitric oxide and hydrogen sulfide donors as inductors of plant adaptive responses are discussed.
Collapse
Affiliation(s)
- Yuriy E. Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Alla I. Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana O. Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Yaroslav B. Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
10
|
Kolupaev YE, Yastreb TO, Ryabchun NI, Yemets AI, Dmitriev OP, Blume YB. Cellular Mechanisms of the Formation of Plant Adaptive Responses to High Temperatures. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
11
|
Li P, Jiang J, Zhang G, Miao S, Lu J, Qian Y, Zhao X, Wang W, Qiu X, Zhang F, Xu J. Integrating GWAS and transcriptomics to identify candidate genes conferring heat tolerance in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1102938. [PMID: 36699845 PMCID: PMC9868562 DOI: 10.3389/fpls.2022.1102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Rice (Oryza sativa L.) production is being challenged by global warming. Identifying new loci and favorable alleles associated with heat tolerance is crucial to developing rice heat-tolerant varieties. METHODS We evaluated the heat tolerance at the seedling stage using 620 diverse rice accessions. A total of six loci associated with heat tolerance were identified by a genome-wide association study (GWAS) with ~2.8 million single nucleotide polymorphisms (SNPs). RESULTS Among the six detected loci, qHT7 harbored the strongest association signal and the most associated SNPs. By comparing the transcriptomes of two representative accessions with contrasting heat tolerance, LOC_Os07g48710 (OsVQ30) was selected as a promising candidate gene in qHT7 due to the significant difference in its expression level between the two accessions. Haplotype 4 (Hap4) of LOC_Os07g48710 was determined as the favorable haplotype for heat tolerance via the gene-based haplotype analysis. The heat-tolerant haplotype LOC_Os07g48710Hap4 is highly enriched in the tropical Geng/Japonica accessions, and its frequency has decreased significantly during the improvement process of rice varieties. DISCUSSION Based on the GWAS and transcriptomics integrated results, a hypothetical model modulated by qHT7 in response to heat stress was proposed. Our results provide valuable candidate genes for improving rice heat tolerance through molecular breeding.
Collapse
Affiliation(s)
- Pingping Li
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Jing Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guogen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Siyu Miao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbing Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yukang Qian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xianjin Qiu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Fan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
12
|
El-Sappah AH, Rather SA, Wani SH, Elrys AS, Bilal M, Huang Q, Dar ZA, Elashtokhy MMA, Soaud N, Koul M, Mir RR, Yan K, Li J, El-Tarabily KA, Abbas M. Heat Stress-Mediated Constraints in Maize ( Zea mays) Production: Challenges and Solutions. FRONTIERS IN PLANT SCIENCE 2022; 13:879366. [PMID: 35615131 PMCID: PMC9125997 DOI: 10.3389/fpls.2022.879366] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/30/2022] [Indexed: 05/05/2023]
Abstract
An increase in temperature and extreme heat stress is responsible for the global reduction in maize yield. Heat stress affects the integrity of the plasma membrane functioning of mitochondria and chloroplast, which further results in the over-accumulation of reactive oxygen species. The activation of a signal cascade subsequently induces the transcription of heat shock proteins. The denaturation and accumulation of misfolded or unfolded proteins generate cell toxicity, leading to death. Therefore, developing maize cultivars with significant heat tolerance is urgently required. Despite the explored molecular mechanism underlying heat stress response in some plant species, the precise genetic engineering of maize is required to develop high heat-tolerant varieties. Several agronomic management practices, such as soil and nutrient management, plantation rate, timing, crop rotation, and irrigation, are beneficial along with the advanced molecular strategies to counter the elevated heat stress experienced by maize. This review summarizes heat stress sensing, induction of signaling cascade, symptoms, heat stress-related genes, the molecular feature of maize response, and approaches used in developing heat-tolerant maize varieties.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Shabir A. Rather
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops Khudwani Anantnag, SKUAST–Kashmir, Srinagar, India
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Muhammad Bilal
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Qiulan Huang
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | - Zahoor Ahmad Dar
- Dryland Agriculture Research Station, SKUAST–Kashmir, Srinagar, India
| | | | - Nourhan Soaud
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
13
|
Membrane-Fluidization-Dependent and -Independent Pathways Are Involved in Heat-Stress-Inducible Gene Expression in the Marine Red Alga Neopyropia yezoensis. Cells 2022; 11:cells11091486. [PMID: 35563791 PMCID: PMC9100149 DOI: 10.3390/cells11091486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Heat stress responses are complex regulatory processes, including sensing, signal transduction, and gene expression. However, the exact mechanisms of these processes in seaweeds are not well known. We explored the relationship between membrane physical states and gene expression in the red alga Neopyropia yezoensis. To analyze heat-stress-induced gene expression, we identified two homologs of the heat-inducible high temperature response 2 (HTR2) gene in Neopyropia seriata, named NyHTR2 and NyHTR2L. We found conservation of HTR2 homologs only within the order Bangiales; their products contained a novel conserved cysteine repeat which we designated the Bangiales cysteine-rich motif. A quantitative mRNA analysis showed that expression of NyHTR2 and NyHTR2L was induced by heat stress. However, the membrane fluidizer benzyl alcohol (BA) did not induce expression of these genes, indicating that the effect of heat was not due to membrane fluidization. In contrast, expression of genes encoding multiprotein-bridging factor 1 (NyMBF1) and HSP70s (NyHSP70-1 and NyHSP70-2) was induced by heat stress and by BA, indicating that it involved a membrane-fluidization-dependent pathway. In addition, dark treatment under heat stress promoted expression of NyHTR2, NyHTR2L, NyMBF1, and NyHSP70-2, but not NyHSP70-1; expression of NyHTR2 and NyHTR2L was membrane-fluidization-independent, and that of other genes was membrane-fluidization-dependent. These findings indicate that the heat stress response in N. yezoensis involves membrane-fluidization-dependent and -independent pathways.
Collapse
|
14
|
Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, Gupta NK, Rajput VD, Garg NK, Maheshwari C, Hasan M, Gupta S, Jatwa TK, Kumar R, Yadav AK, Prasad PVV. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int J Mol Sci 2022; 23:2838. [PMID: 35269980 PMCID: PMC8911405 DOI: 10.3390/ijms23052838] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Collapse
Affiliation(s)
- Malu Ram Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia;
| | - Jogendra Singh
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla 171001, India;
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
| | - Pushpika Udawat
- Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur 313001, India;
| | - Narendra Kumar Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Nitin Kumar Garg
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Chirag Maheshwari
- Division of Biochemistry, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Muzaffar Hasan
- Division of Agro Produce Processing, Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sunita Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Tarun Kumar Jatwa
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Rakesh Kumar
- Division of Agronomy, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal 132001, India;
| | - Arvind Kumar Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
15
|
Haider S, Iqbal J, Naseer S, Shaukat M, Abbasi BA, Yaseen T, Zahra SA, Mahmood T. Unfolding molecular switches in plant heat stress resistance: A comprehensive review. PLANT CELL REPORTS 2022; 41:775-798. [PMID: 34401950 DOI: 10.1007/s00299-021-02754-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant heat stress response is a multi-factorial trait that is precisely regulated by the complex web of transcription factors from various families that modulate heat stress responsive gene expression. Global warming due to climate change affects plant growth and development throughout its life cycle. Adds to this, the frequent occurrence of heat waves is drastically reducing the global crop yield. Molecular plant scientists can help crop breeders by providing genetic markers associated with stress resistance. Plant heat stress response (HSR), however, is a multi-factorial trait and using a single stress resistance trait might not be ideal to develop thermotolerant crops. Transcription factors participate in regulation of plant biological processes and environmental stress responses. Recent studies have revealed that plant HSR is precisely regulated by the complex web of transcription factors from various families. These transcription factors enhance plant heat stress tolerance by regulating the expression level of several stress-responsive genes independently or in cross talk with different other transcription factors. This review explores how signaling pathways triggered by heat stress are regulated by multiple transcription factor families. To our knowledge, we for the first time analyze the role of major transcription factor families in plant HSR along with their regulatory mechanisms. In the end, we will also discuss the potential of emerging technologies to improve thermotolerance in plants.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muzzafar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Syeda Anber Zahra
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Pakistan Academy of Sciences, Islamabad, Pakistan.
| |
Collapse
|
16
|
Saini N, Nikalje GC, Zargar SM, Suprasanna P. Molecular insights into sensing, regulation and improving of heat tolerance in plants. PLANT CELL REPORTS 2022; 41:799-813. [PMID: 34676458 DOI: 10.1007/s00299-021-02793-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Climate-change-mediated increase in temperature extremes has become a threat to plant productivity. Heat stress-induced changes in growth pattern, sensitivity to pests, plant phonologies, flowering, shrinkage of maturity period, grain filling, and increased senescence result in significant yield losses. Heat stress triggers multitude of cellular, physiological and molecular responses in plants beginning from the early sensing followed by signal transduction, osmolyte synthesis, antioxidant defense, and heat stress-associated gene expression. Several genes and metabolites involved in heat perception and in the adaptation response have been isolated and characterized in plants. Heat stress responses are also regulated by the heat stress transcription factors (HSFs), miRNAs and transcriptional factors which together form another layer of regulatory circuit. With the availability of functionally validated candidate genes, transgenic approaches have been applied for developing heat-tolerant transgenic maize, tobacco and sweet potato. In this review, we present an account of molecular mechanisms of heat tolerance and discuss the current developments in genetic manipulation for heat tolerant crops for future sustainable agriculture.
Collapse
Affiliation(s)
- Nupur Saini
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vidyalaya, Raipur, 492012, India
| | - Ganesh Chandrakant Nikalje
- PG Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, Ulhasnagar, 421003, India.
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190019, India
| | - Penna Suprasanna
- Ex-Scientist, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, 400085, India.
| |
Collapse
|
17
|
Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H, Ahmad Y, Daud H, Abbasi NL, Mahmood T. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. PLANT CELL REPORTS 2021; 40:2247-2271. [PMID: 33890138 DOI: 10.1007/s00299-021-02696-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muzaffar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Haleema Bibi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yumna Ahmad
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hina Daud
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nayyab Laiba Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
18
|
Bourgine B, Guihur A. Heat Shock Signaling in Land Plants: From Plasma Membrane Sensing to the Transcription of Small Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:710801. [PMID: 34434209 PMCID: PMC8381196 DOI: 10.3389/fpls.2021.710801] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 05/08/2023]
Abstract
Heat stress events are major factors limiting crop productivity. During summer days, land plants must anticipate in a timely manner upcoming mild and severe temperature. They respond by accumulating protective heat-shock proteins (HSPs), conferring acquired thermotolerance. All organisms synthetize HSPs; many of which are members of the conserved chaperones families. This review describes recent advances in plant temperature sensing, signaling, and response. We highlight the pathway from heat perception by the plasma membrane through calcium channels, such as cyclic nucleotide-gated channels, to the activation of the heat-shock transcription factors (HSFs). An unclear cellular signal activates HSFs, which act as essential regulators. In particular, the HSFA subfamily can bind heat shock elements in HSP promoters and could mediate the dissociation of bound histones, leading to HSPs transcription. Although plants can modulate their transcriptome, proteome, and metabolome to protect the cellular machinery, HSP chaperones prevent, use, and revert the formation of misfolded proteins, thereby avoiding heat-induced cell death. Remarkably, the HSP20 family is mostly tightly repressed at low temperature, suggesting that a costly mechanism can become detrimental under unnecessary conditions. Here, the role of HSP20s in response to HS and their possible deleterious expression at non-HS temperatures is discussed.
Collapse
Affiliation(s)
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Guihur A, Fauvet B, Finka A, Quadroni M, Goloubinoff P. Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance. PLANT, CELL & ENVIRONMENT 2021; 44:2117-2133. [PMID: 33314263 PMCID: PMC8359368 DOI: 10.1111/pce.13975] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defences that can keep heat-labile membranes and proteins functional. A gradual morning pre-exposure to increasing sub-damaging temperatures induces heat-shock proteins (HSPs) that are central to the onset of plant acquired thermotolerance (AT). To gain knowledge on the mechanisms of AT in the model land plant Physcomitrium patens, we used label-free LC-MS/MS proteomics to quantify the accumulated and depleted proteins before and following a mild heat-priming treatment. High protein crowding is thought to promote protein aggregation, whereas molecular chaperones prevent and actively revert aggregation. Yet, we found that heat priming (HP) did not accumulate HSP chaperones in chloroplasts, although protein crowding was six times higher than in the cytosol. In contrast, several HSP20s strongly accumulated in the cytosol, yet contributing merely 4% of the net mass increase of heat-accumulated proteins. This is in poor concordance with their presumed role at preventing the aggregation of heat-labile proteins. The data suggests that under mild HP unlikely to affect protein stability. Accumulating HSP20s leading to AT, regulate the activity of rare and specific signalling proteins, thereby preventing cell death under noxious heat stress.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and AquacultureUniversity of ZadarZadarCroatia
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
20
|
Marchetti F, Cainzos M, Cascallares M, Distéfano AM, Setzes N, López GA, Zabaleta E, Pagnussat GC. Heat stress in Marchantia polymorpha: Sensing and mechanisms underlying a dynamic response. PLANT, CELL & ENVIRONMENT 2021; 44:2134-2149. [PMID: 33058168 DOI: 10.1111/pce.13914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Sensing and response to high temperatures are crucial to prevent heat-related damage and to preserve cellular and metabolic functions. The response to heat stress is a complex and coordinated process that involves several subcellular compartments and multi-level regulatory networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In this review, we provide an insight into the most recent advances in elucidating the molecular mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on the signaling pathways and genes that were identified in Marchantia, our analyses indicate that although with specific particularities, the core components of the heat stress response seem conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to study heat stress response and signaling pathways during plant evolution, but also provide key and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of high temperatures around the world as a result of global warming, this knowledge provides a new set of molecular tools with potential agronomical applications.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
21
|
De Rosa V, Vizzotto G, Falchi R. Cold Hardiness Dynamics and Spring Phenology: Climate-Driven Changes and New Molecular Insights Into Grapevine Adaptive Potential. FRONTIERS IN PLANT SCIENCE 2021; 12:644528. [PMID: 33995442 PMCID: PMC8116538 DOI: 10.3389/fpls.2021.644528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Climate change has become a topic of increasing significance in viticulture, severely challenged by this issue. Average global temperatures are increasing, but frost events, with a large variability depending on geographical locations, have been predicted to be a potential risk for grapevine cultivation. Grape cold hardiness encompasses both midwinter and spring frost hardiness, whereas the avoidance of spring frost damage due to late budbreak is crucial in cold resilience. Cold hardiness kinetics and budbreak phenology are closely related and affected by bud's dormancy state. On the other hand, budbreak progress is also affected by temperatures during both winter and spring. Genetic control of bud phenology in grapevine is still largely undiscovered, but several studies have recently aimed at identifying the molecular drivers of cold hardiness loss and the mechanisms that control deacclimation and budbreak. A review of these related traits and their variability in different genotypes is proposed, possibly contributing to develop the sustainability of grapevine production as climate-related challenges rise.
Collapse
|
22
|
Weigand C, Kim SH, Brown E, Medina E, Mares M, Miller G, Harper JF, Choi WG. A Ratiometric Calcium Reporter CGf Reveals Calcium Dynamics Both in the Single Cell and Whole Plant Levels Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:777975. [PMID: 34975960 PMCID: PMC8718611 DOI: 10.3389/fpls.2021.777975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/17/2021] [Indexed: 05/02/2023]
Abstract
Land plants evolved to quickly sense and adapt to temperature changes, such as hot days and cold nights. Given that calcium (Ca2+) signaling networks are implicated in most abiotic stress responses, heat-triggered changes in cytosolic Ca2+ were investigated in Arabidopsis leaves and pollen. Plants were engineered with a reporter called CGf, a ratiometric, genetically encoded Ca2+ reporter with an mCherry reference domain fused to an intensiometric Ca2+ reporter GCaMP6f. Relative changes in [Ca2+]cyt were estimated based on CGf's apparent K D around 220 nM. The ratiometric output provided an opportunity to compare Ca2+ dynamics between different tissues, cell types, or subcellular locations. In leaves, CGf detected heat-triggered cytosolic Ca2+ signals, comprised of three different signatures showing similarly rapid rates of Ca2+ influx followed by differing rates of efflux (50% durations ranging from 5 to 19 min). These heat-triggered Ca2+ signals were approximately 1.5-fold greater in magnitude than blue light-triggered signals in the same leaves. In contrast, growing pollen tubes showed two different heat-triggered responses. Exposure to heat caused tip-focused steady growth [Ca2+]cyt oscillations to shift to a pattern characteristic of a growth arrest (22%), or an almost undetectable [Ca2+]cyt (78%). Together, these contrasting examples of heat-triggered Ca2+ responses in leaves and pollen highlight the diversity of Ca2+ signals in plants, inviting speculations about their differing kinetic features and biological functions.
Collapse
Affiliation(s)
- Chrystle Weigand
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Emily Medina
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Moises Mares
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Jeffrey F. Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
- *Correspondence: Jeffrey F. Harper,
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
- Won-Gyu Choi,
| |
Collapse
|
23
|
Liu Y, Liu X, Wang X, Gao K, Qi W, Ren H, Hu H, Sun D, Bai J, Zheng S. Heterologous expression of heat stress-responsive AtPLC9 confers heat tolerance in transgenic rice. BMC PLANT BIOLOGY 2020; 20:514. [PMID: 33176681 PMCID: PMC7656764 DOI: 10.1186/s12870-020-02709-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As global warming becomes increasingly severe, it is urgent that we enhance the heat tolerance of crops. We previously reported that Arabidopsis thaliana PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C9 (AtPLC9) promotes heat tolerance. RESULTS In this study, we ectopically expressed AtPLC9 in rice to examine its potential to improve heat tolerance in this important crop. Whereas AtPLC9 did not improve rice tolerance to salt, drought or cold, transgenic rice did exhibit greater heat tolerance than the wild type. High-throughput RNA-seq revealed extensive and dynamic transcriptome reprofiling in transgenic plants after heat stress. Moreover, the expression of some transcription factors and calcium ion-related genes showed specific upregulation in transgenic rice after heat stress, which might contribute to the enhanced heat tolerance. CONCLUSIONS This study provides preliminary guidance for using AtPLC9 to improve heat tolerance in cereal crops and, more broadly, highlights that heterologous transformation can assist with molecular breeding.
Collapse
Affiliation(s)
- Yuliang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinye Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xue Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Kang Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Weiwei Qi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Haorui Hu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Shijiazhuang No.1 High School, Pingan North Street, Shijiazhuang, 050010, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- South 2nd ring east road 20, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050016, China.
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- South 2nd ring east road 20, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050016, China.
| |
Collapse
|
24
|
Paradiso A, Domingo G, Blanco E, Buscaglia A, Fortunato S, Marsoni M, Scarcia P, Caretto S, Vannini C, de Pinto MC. Cyclic AMP mediates heat stress response by the control of redox homeostasis and ubiquitin-proteasome system. PLANT, CELL & ENVIRONMENT 2020; 43:2727-2742. [PMID: 32876347 DOI: 10.1111/pce.13878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Heat stress (HS), causing impairment in several physiological processes, is one of the most damaging environmental cues for plants. To counteract the harmful effects of high temperatures, plants activate complex signalling networks, indicated as HS response (HSR). Expression of heat shock proteins (HSPs) and adjustment of redox homeostasis are crucial events of HSR, required for thermotolerance. By pharmacological approaches, the involvement of cAMP in triggering plant HSR has been recently proposed. In this study, to investigate the role of cAMP in HSR signalling, tobacco BY-2 cells overexpressing the 'cAMP-sponge', a genetic tool that reduces intracellular cAMP levels, have been used. in vivo cAMP dampening increased HS susceptibility in a HSPs-independent way. The failure in cAMP elevation during HS caused a high accumulation of reactive oxygen species, due to increased levels of respiratory burst oxidase homolog D, decreased activities of catalase and ascorbate peroxidase, as well as down-accumulation of proteins involved in the control of redox homeostasis. In addition, cAMP deficiency impaired proteasome activity and prevented the accumulation of many proteins of ubiquitin-proteasome system (UPS). By a large-scale proteomic approach together with in silico analyses, these UPS proteins were identified in a specific cAMP-dependent network of HSR.
Collapse
Affiliation(s)
| | - Guido Domingo
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Alessio Buscaglia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | | | - Milena Marsoni
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sofia Caretto
- Institute of Sciences of Food Production, CNR, Research Division Lecce, Lecce, Italy
| | - Candida Vannini
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | | |
Collapse
|
25
|
Koselski M, Wasko P, Kupisz K, Trebacz K. Cold- and menthol-evoked membrane potential changes in the moss Physcomitrella patens: influence of ion channel inhibitors and phytohormones. PHYSIOLOGIA PLANTARUM 2019; 167:433-446. [PMID: 30629304 DOI: 10.1111/ppl.12918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Microelectrode measurements carried out on leaf cells from Physcomitrella patens revealed that a sudden temperature drop and application of menthol evoked two types of different-shaped membrane potential changes. Cold stimulation evoked spike-type responses. Menthol depolarized the cell membrane with different rates. When it reached above 1 mV s-1 , the full response was recorded. Characteristic for the full responses was also a few-minute plateau of the membrane potential recorded after depolarization. The influence of inhibitors of calcium channels (5 mM Gd3+ ), potassium channels (5 mM Ba2+ ), chloride channels (200 μM Zn2+ , 50 μM niflumic acid) and proton pumps (10 μM DES), an activator of calcium release from intracellular stores (Sr2+ ), calcium chelation (by 400 μM EGTA) and phytohormones (50 μM auxin, 50 μM abscisic acid (ABA), 500 μM salicylic acid) on cold- and menthol-evoked responses was tested. Both responses are different in respect to the ion mechanism: cold-evoked depolarizations were influenced by Ba2+ and DES; in turn, menthol-evoked potential changes were most effectively blocked by Zn2+ . Moreover, the effectiveness of menthol in generation of full responses was reduced after administration of auxin or ABA, i.e. phytohormones known for their participation in responses to cold and regulation of proton pumps. The effects of DES indicated that one of the main conditions for generation of menthol-evoked responses is inhibition of the proton pump activity. Our results indicate that perception of cold and menthol by plants proceeds in different ways due to the differences in ionic mechanism and hormone dependence of cold- and menthol-evoked responses.
Collapse
Affiliation(s)
- Mateusz Koselski
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Piotr Wasko
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Kamila Kupisz
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Kazimierz Trebacz
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
26
|
Rcs Phosphorelay Activation in Cardiolipin-Deficient Escherichia coli Reduces Biofilm Formation. J Bacteriol 2019; 201:JB.00804-18. [PMID: 30782633 DOI: 10.1128/jb.00804-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is a complex process that requires a number of transcriptional, proteomic, and physiological changes to enable bacterial survival. The lipid membrane presents a barrier to communication between the machinery within bacteria and the physical and chemical features of their extracellular environment, and yet little is known about how the membrane influences biofilm development. We found that depleting the anionic phospholipid cardiolipin reduces biofilm formation in Escherichia coli cells by as much as 50%. The absence of cardiolipin activates the regulation of colanic acid synthesis (Rcs) envelope stress response, which represses the production of flagella, disrupts initial biofilm attachment, and reduces biofilm growth. We demonstrate that a reduction in the concentration of cardiolipin impairs translocation of proteins across the inner membrane, which we hypothesize activates the Rcs pathway through the outer membrane lipoprotein RcsF. Our study demonstrates a molecular connection between the composition of membrane phospholipids and biofilm formation in E. coli and suggests that altering lipid biosynthesis may be a viable approach for altering biofilm formation and possibly other multicellular phenotypes related to bacterial adaptation and survival.IMPORTANCE There is a growing interest in the role of lipid membrane composition in the physiology and adaptation of bacteria. We demonstrate that a reduction in the anionic phospholipid cardiolipin impairs biofilm formation in Escherichia coli cells. Depleting cardiolipin reduced protein translocation across the inner membrane and activated the Rcs envelope stress response. Consequently, cardiolipin depletion produced cells lacking assembled flagella, which impacted their ability to attach to surfaces and seed the earliest stage in biofilm formation. This study provides empirical evidence for the role of anionic phospholipid homeostasis in protein translocation and its effect on biofilm development and highlights modulation of the membrane composition as a potential method of altering bacterial phenotypes related to adaptation and survival.
Collapse
|
27
|
Lenzoni G, Knight MR. Increases in Absolute Temperature Stimulate Free Calcium Concentration Elevations in the Chloroplast. PLANT & CELL PHYSIOLOGY 2019; 60:538-548. [PMID: 30517735 DOI: 10.1093/pcp/pcy227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/21/2018] [Indexed: 05/18/2023]
Abstract
Plants need to sense increases in temperature to be able to adapt their physiology and development to survive; however, the mechanisms of heat perception are currently relatively poorly understood. Here we demonstrate that in response to elevated temperature, the free calcium concentration of the stroma of chloroplasts increases. This response is specific to the chloroplast, as no corresponding increase in calcium is seen in the cytosol. The chloroplast calcium response is dose dependent above a threshold. The magnitude of this calcium response is dependent upon absolute temperature, not the rate of heating. This response is dynamic: repeated stimulation leads to rapid attenuation of the response, which can be overcome by sensitization at a higher temperature. More long-term acclimation to different temperatures resets the basal sensitivity of the system, such that plants acclimated to lower temperatures are more sensitive than those acclimated to higher temperatures. The heat-induced chloroplast calcium response was partially dependent upon the calcium-sensing receptor CAS which has been shown previously to regulate other chloroplast calcium signaling responses. Taken together, our data demonstrate the ability of chloroplasts to sense absolute high temperature and produce commensurately quantitative stromal calcium response, the magnitude of which is a function of both current temperature and stress history.
Collapse
Affiliation(s)
- Gioia Lenzoni
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham, UK
| |
Collapse
|
28
|
Li B, Gao K, Ren H, Tang W. Molecular mechanisms governing plant responses to high temperatures. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:757-779. [PMID: 30030890 DOI: 10.1111/jipb.12701] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/20/2018] [Indexed: 05/20/2023]
Abstract
The increased prevalence of high temperatures (HTs) around the world is a major global concern, as they dramatically affect agronomic productivity. Upon HT exposure, plants sense the temperature change and initiate cellular and metabolic responses that enable them to adapt to their new environmental conditions. Decoding the mechanisms by which plants cope with HT will facilitate the development of molecular markers to enable the production of plants with improved thermotolerance. In recent decades, genetic, physiological, molecular, and biochemical studies have revealed a number of vital cellular components and processes involved in thermoresponsive growth and the acquisition of thermotolerance in plants. This review summarizes the major mechanisms involved in plant HT responses, with a special focus on recent discoveries related to plant thermosensing, heat stress signaling, and HT-regulated gene expression networks that promote plant adaptation to elevated environmental temperatures.
Collapse
Affiliation(s)
- Bingjie Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Kang Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
29
|
Rahmati Ishka M, Brown E, Weigand C, Tillett RL, Schlauch KA, Miller G, Harper JF. A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genomics 2018; 19:549. [PMID: 30041596 PMCID: PMC6057101 DOI: 10.1186/s12864-018-4930-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Background In flowering plants, the male gametophyte (pollen) is one of the most vulnerable cells to temperature stress. In Arabidopsis thaliana, a pollen-specific CyclicNucleotide-Gated cationChannel 16 (cngc16), is required for plant reproduction under temperature-stress conditions. Plants harboring a cncg16 knockout are nearly sterile under conditions of hot days and cold nights. To understand the underlying cause, RNA-Seq was used to compare the pollen transcriptomes of wild type (WT) and cngc16 under normal and heat stress (HS) conditions. Results Here we show that a heat-stress response (HSR) in WT pollen resulted in 2102 statistically significant transcriptome changes (≥ 2-fold changes with adjusted p-value ≤0.01), representing approximately 15% of 14,226 quantified transcripts. Of these changes, 89 corresponded to transcription factors, with 27 showing a preferential expression in pollen over seedling tissues. In contrast to WT, cngc16 pollen showed 1.9-fold more HS-dependent changes (3936 total, with 2776 differences between WT and cngc16). In a quantitative direct comparison between WT and cngc16 transcriptomes, the number of statistically significant differences increased from 21 pre-existing differences under normal conditions to 192 differences under HS. Of the 20 HS-dependent changes in WT that were most different in cngc16, half corresponded to genes encoding proteins predicted to impact cell wall features or membrane dynamics. Conclusions Results here define an extensive HS-dependent reprogramming of approximately 15% of the WT pollen transcriptome, and identify at least 27 transcription factor changes that could provide unique contributions to a pollen HSR. The number of statistically significant transcriptome differences between WT and cngc16 increased by more than 9-fold under HS, with most of the largest magnitude changes having the potential to specifically impact cell walls or membrane dynamics, and thereby potentiate cngc16 pollen to be hypersensitive to HS. However, HS-hypersensitivity could also be caused by the extensive number of differences throughout the transcriptome having a cumulative effect on multiple cellular pathways required for tip growth and fertilization. Regardless, results here support a model in which a functional HS-dependent reprogramming of the pollen transcriptome requires a specific calcium-permeable Cyclic Nucleotide-Gated cation Channel, CNGC16. Electronic supplementary material The online version of this article (10.1186/s12864-018-4930-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Rahmati Ishka
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA
| | - Chrystle Weigand
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA
| | - Richard L Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA.,Nevada INBRE Bioinformatics Core, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University, 52900, Ramat-Gan, Israel
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA.
| |
Collapse
|
30
|
Rütgers M, Muranaka LS, Schulz-Raffelt M, Thoms S, Schurig J, Willmund F, Schroda M. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2017; 40:2987-3001. [PMID: 28875560 DOI: 10.1111/pce.13060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 05/06/2023]
Abstract
A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered.
Collapse
Affiliation(s)
- Mark Rütgers
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663, Kaiserslautern, Germany
| | - Ligia Segatto Muranaka
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663, Kaiserslautern, Germany
| | - Miriam Schulz-Raffelt
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663, Kaiserslautern, Germany
| | - Sylvia Thoms
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663, Kaiserslautern, Germany
| | - Juliane Schurig
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663, Kaiserslautern, Germany
| | - Felix Willmund
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663, Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663, Kaiserslautern, Germany
| |
Collapse
|
31
|
Lorenzo CD, Sanchez-Lamas M, Antonietti MS, Cerdán PD. Emerging Hubs in Plant Light and Temperature Signaling. Photochem Photobiol 2015; 92:3-13. [DOI: 10.1111/php.12535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 09/02/2015] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | - Pablo D. Cerdán
- Fundación Instituto Leloir; IIBBA-CONICET; Buenos Aires Argentina
- Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
32
|
Kolupaev YE, Karpets YV, Dmitriev AP. Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715050047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Finka A, Sood V, Quadroni M, Rios PDL, Goloubinoff P. Quantitative proteomics of heat-treated human cells show an across-the-board mild depletion of housekeeping proteins to massively accumulate few HSPs. Cell Stress Chaperones 2015; 20:605-20. [PMID: 25847399 PMCID: PMC4463922 DOI: 10.1007/s12192-015-0583-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 11/18/2022] Open
Abstract
Classic semiquantitative proteomic methods have shown that all organisms respond to a mild heat shock by an apparent massive accumulation of a small set of proteins, named heat-shock proteins (HSPs) and a concomitant slowing down in the synthesis of the other proteins. Yet unexplained, the increased levels of HSP messenger RNAs (mRNAs) may exceed 100 times the ensuing relative levels of HSP proteins. We used here high-throughput quantitative proteomics and targeted mRNA quantification to estimate in human cell cultures the mass and copy numbers of the most abundant proteins that become significantly accumulated, depleted, or unchanged during and following 4 h at 41 °C, which we define as mild heat shock. This treatment caused a minor across-the-board mass loss in many housekeeping proteins, which was matched by a mass gain in a few HSPs, predominantly cytosolic HSPCs (HSP90s) and HSPA8 (HSC70). As the mRNAs of the heat-depleted proteins were not significantly degraded and less ribosomes were recruited by excess new HSP mRNAs, the mild depletion of the many housekeeping proteins during heat shock was attributed to their slower replenishment. This differential protein expression pattern was reproduced by isothermal treatments with Hsp90 inhibitors. Unexpectedly, heat-treated cells accumulated 55 times more new molecules of HSPA8 (HSC70) than of the acknowledged heat-inducible isoform HSPA1A (HSP70), implying that when expressed as net copy number differences, rather than as mere "fold change" ratios, new biologically relevant information can be extracted from quantitative proteomic data. Raw data are available via ProteomeXchange with identifier PXD001666.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Laboratoire de Biophysique Statistique, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vishal Sood
- Laboratoire de Biophysique Statistique, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Manfredo Quadroni
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Schroda M, Hemme D, Mühlhaus T. The Chlamydomonas heat stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:466-480. [PMID: 25754362 DOI: 10.1111/tpj.12816] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 05/18/2023]
Abstract
Heat waves occurring at increased frequency as a consequence of global warming jeopardize crop yield safety. One way to encounter this problem is to genetically engineer crop plants toward increased thermotolerance. To identify entry points for genetic engineering, a thorough understanding of how plant cells perceive heat stress and respond to it is required. Using the unicellular green alga Chlamydomonas reinhardtii as a model system to study the fundamental mechanisms of the plant heat stress response has several advantages. Most prominent among them is the suitability of Chlamydomonas for studying stress responses system-wide and in a time-resolved manner under controlled conditions. Here we review current knowledge on how heat is sensed and signaled to trigger temporally and functionally grouped sub-responses termed response elements to prevent damage and to maintain cellular homeostasis in plant cells.
Collapse
Affiliation(s)
- Michael Schroda
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
| | - Dorothea Hemme
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
| |
Collapse
|
35
|
Martins TV, Evans MJ, Woolfenden HC, Morris RJ. Towards the Physics of Calcium Signalling in Plants. PLANTS (BASEL, SWITZERLAND) 2013; 2:541-88. [PMID: 27137393 PMCID: PMC4844391 DOI: 10.3390/plants2040541] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 12/21/2022]
Abstract
Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted.
Collapse
Affiliation(s)
- Teresa Vaz Martins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew J Evans
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hugh C Woolfenden
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|