1
|
Temviriyanukul P, Chansawhang A, Inthachat W, Supasawat P, Phochantachinda S, Pitchakarn P, Chantong B. Phikud navakot extract acts as an ER stress inhibitor to ameliorate ER stress and neuroinflammation. Heliyon 2024; 10:e39700. [PMID: 39524867 PMCID: PMC11543883 DOI: 10.1016/j.heliyon.2024.e39700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The prevalence of neurological disorders (NDs) such as Alzheimer's disease (AD) is increasing globally, and the lack of effective pharmacological interventions presents a significant health risk. Multiple mechanisms including the activation of oxidative stress, amyloid pathway, ER stress, and neuroinflammation have been implicated in AD; therefore, multi-targeted agents against these mechanisms may be preferable to single-target agents. Phikud Navakot (PN), a Thai traditional medicine combining nine herbs, has been shown to reduce oxidative stress and neuroinflammation of neuronal and microglia cells and the coculture between them, indicating the promising role of PN extract as anti-AD. This study evaluated the neuroprotective effects of PN extract against oxidative stress, amyloid pathway, endoplasmic reticulum stress (ER stress), and neuroinflammation using neuronal and microglia cells, as well as in a Drosophila model of AD. Results showed that PN extract reduced oxidative stress, lipid peroxidation, pro-inflammatory cytokines, amyloid pathway, and ER stress induced by aluminum chloride (AlCl3, AD-induced agent) or thapsigargin (TG, an ER stress activator) in both neurons and microglia cells. PN extract also reduced oxidative stress, ER-stress-related genes, and neurotoxic peptides (amyloid beta) in a Drosophila model of AD. Data indicated that PN extract may function as an anti-AD agent by targeting multiple mechanisms as described. This research also revealed for the first time that PN extract acted as an ER stress inhibitor.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Punchaya Supasawat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Boonrat Chantong
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
2
|
Kim DY, Park SH, Yoon Z, Kim J, Kang MK, Kang YH. Eucalyptol Ameliorates Retinal Microvascular Defects through Modulating ER Stress and Angiopoietin-Tie Signaling in Diabetic Eyes. Int J Mol Sci 2024; 25:7826. [PMID: 39063066 PMCID: PMC11277354 DOI: 10.3390/ijms25147826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Loss of the inner blood-retinal barrier (BRB) integrity is a main feature of ocular diseases such as diabetic macular edema. However, there is a lack of clarity on how inner BRB function is modulated within the diabetic retina. The current study examined whether eucalyptol inhibited inner BRB destruction and aberrant retinal angiogenesis in 33 mM glucose-exposed human retinal microvascular endothelial (RVE) cells and db/db mice. This study further examined the molecular mechanisms underlying endothelial dysfunction including retinal endoplasmic reticulum (ER) stress and angiopoietin (Ang)/Tie axis in conjunction with vascular endothelial growth factor (VEGF). Eucalyptol is a naturally occurring monoterpenoid and an achiral aromatic component of many plants including eucalyptus leaves. Nontoxic eucalyptol reduced the production of amyloid-β (Aβ) protein in glucose-loaded RVE cells and in diabetic mice. This natural compound blocked apoptosis of Aβ-exposed RVE cells in diabetic mouse eyes by targeting ER stress via the inhibition of PERK-eIF2α-ATF4-CHOP signaling. Eucalyptol promoted activation of the Ang-1/Tie-2 pathway and dual inhibition of Ang-2/VEGF in Aβ-exposed RVE cells and in diabetic eyes. Supply of eucalyptol reversed the induction of junction proteins in glucose/Aβ-exposed RVE cells within the retina and reduced permeability. In addition, oral administration of eucalyptol reduced vascular leaks in diabetic retinal vessels. Taken together, these findings clearly show that eucalyptol inhibits glucose-induced Aβ-mediated ER stress and manipulates Ang signaling in diabetic retinal vessels, which ultimately blocks abnormal angiogenesis and loss of inner BRB integrity. Therefore, eucalyptol provides new treatment strategies for diabetes-associated RVE defects through modulating diverse therapeutic targets including ER stress, Ang-1/Tie-2 signaling, and Ang-2/VEGF.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea; (D.Y.K.); (Z.Y.); (J.K.)
| | - Sin-Hye Park
- Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Zaee Yoon
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea; (D.Y.K.); (Z.Y.); (J.K.)
| | - Jimin Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea; (D.Y.K.); (Z.Y.); (J.K.)
| | - Min-Kyung Kang
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea; (D.Y.K.); (Z.Y.); (J.K.)
| | - Young-Hee Kang
- Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea;
| |
Collapse
|
3
|
Sanghai N, Tranmer GK. Biochemical and Molecular Pathways in Neurodegenerative Diseases: An Integrated View. Cells 2023; 12:2318. [PMID: 37759540 PMCID: PMC10527779 DOI: 10.3390/cells12182318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are defined by a myriad of complex aetiologies. Understanding the common biochemical molecular pathologies among NDDs gives an opportunity to decipher the overlapping and numerous cross-talk mechanisms of neurodegeneration. Numerous interrelated pathways lead to the progression of neurodegeneration. We present evidence from the past pieces of literature for the most usual global convergent hallmarks like ageing, oxidative stress, excitotoxicity-induced calcium butterfly effect, defective proteostasis including chaperones, autophagy, mitophagy, and proteosome networks, and neuroinflammation. Herein, we applied a holistic approach to identify and represent the shared mechanism across NDDs. Further, we believe that this approach could be helpful in identifying key modulators across NDDs, with a particular focus on AD, PD, and ALS. Moreover, these concepts could be applied to the development and diagnosis of novel strategies for diverse NDDs.
Collapse
Affiliation(s)
- Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Geoffrey K. Tranmer
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Jo SL, Yang H, Lee HW, Hong EJ. Curcumae radix Reduces Endoplasmic Reticulum Stress in Mice with Chronic Neuroinflammation. Biomedicines 2023; 11:2107. [PMID: 37626603 PMCID: PMC10452873 DOI: 10.3390/biomedicines11082107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/27/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is a condition in which the ER protein-folding machinery is impaired, leading to the accumulation of improperly folded proteins and triggering an unfolded-protein response. Excessive ER stress causes cell death and contributes to the development of chronic diseases. Interestingly, there is a bidirectional relationship between ER stress and the nuclear factor-kappa B (NF-κB) pathway. Curcumin, a natural polyphenolic compound found in Curcumae radix, exerts its neuroprotective effects by regulating ER stress and inflammation. Therefore, investigating the potential protective and regulatory effects of curcumin on ER stress, inflammation, and neurodegeneration under chronic neuroinflammatory conditions is of great interest. Mice were pretreated with Curcumae radix extract (CRE) for 19 days and then treated with CRE plus lipopolysaccharide for 1 week. We monitored pro-inflammatory cytokine levels in the serum and ER stress-, inflammation-, and neurodegeneration-related markers in the mouse cerebrum and hippocampus using Western blotting and qRT-PCR. CRE reduced Interleukin-1 beta levels in the blood and brain of mice with lipopolysaccharide-induced chronic inflammation. CRE also suppressed the expression of markers related to the ER stress and NF-κB signaling pathways. The expression of neurodegeneration-related markers was reduced in the mouse cerebrum and hippocampus. CRE exerts neuroprotective effects under chronic inflammatory conditions via multifaceted anti-inflammatory and ER stress-pathway regulatory mechanisms.
Collapse
Affiliation(s)
- Seong-Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
5
|
Wang C, Chang Y, Zhu J, Ma R, Li G. Dual Role of Inositol-requiring Enzyme 1α–X-box Binding protein 1 Signaling in Neurodegenerative Diseases. Neuroscience 2022; 505:157-170. [DOI: 10.1016/j.neuroscience.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
6
|
Devina T, Wong YH, Hsiao CW, Li YJ, Lien CC, Cheng IHJ. Endoplasmic reticulum stress induces Alzheimer's disease-like phenotypes in the neuron derived from the induced pluripotent stem cell with D678H mutation on amyloid precursor protein. J Neurochem 2022; 163:26-39. [PMID: 35943292 DOI: 10.1111/jnc.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/12/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is mainly caused by the interaction of genetic and environmental factors. The impact of environmental factors on the genetic mutation in the amyloid precursor protein (APP) is not well characterized. We hypothesized that Endoplasmic Reticulum (ER) stress would promote disease for the patient carrying the APP D678H mutation. Therefore, we analyzed the impact of a familial AD mutation on amyloid precursor protein (APP D678H) under ER stress. Induced pluripotent stem cell (iPSC) from APP D678H mutant carrier was differentiated into neurons, which were then analyzed for AD-like changes. Immunocytochemistry and whole-cell patch-clamp recording revealed that the derived neurons on day 28 after differentiation showed neuronal markers and electrophysiological properties similar to those of mature neurons. However, the APP D678H mutant neurons did not have significant alterations in the levels of amyloid-β (Aβ) and phosphorylated tau (pTau) compared to its isogenic wild-type neuron. Only under ER stress, the neurons with the APP D678H mutation had more Aβ and pTau via immune detection assays. The higher level of Aβ in the APP D678H mutant neurons was probably due to the increased level of β-site APP cleaving enzyme (BACE1) and decreased level of Aβ degrading enzymes under ER stress. Increased Aβ and pTau under ER stress reduced the N-methyl-D-aspartate receptor (NMDAR) in Western blot analysis and altered electrophysiological properties in the mutant neurons. Our study provides evidence that the interaction between genetic mutation and ER stress would induce AD-like changes.
Collapse
Affiliation(s)
- Tania Devina
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hui Wong
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Life Science and Institute of Genome Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiao-Wan Hsiao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Jui Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Sil A, Erfani A, Lamb N, Copland R, Riedel G, Platt B. Sex Differences in Behavior and Molecular Pathology in the 5XFAD Model. J Alzheimers Dis 2021; 85:755-778. [PMID: 34864660 DOI: 10.3233/jad-210523] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The prevalence of Alzheimer's disease (AD) is greater in women compared to men, but the reasons for this remain unknown. This sex difference has been widely neglected in experimental studies using transgenic mouse models of AD. OBJECTIVE Here, we studied behavior and molecular pathology of 5-month-old 5XFAD mice, which express mutated human amyloid precursor protein and presenilin-1 on a C57BL/6J background, versus their wild-type littermate controls, to compared both sex- and genotype-dependent differences. METHODS A novel behavioral paradigm was utilized (OF-NO-SI), comprising activity measures (Open Field, OF) arena, followed by Novel Object exploration (NO) and Social Interaction (SI) of a sex-matched conspecific. Each segment consisted of two repeated trials to assess between-trial habituation. Subsequently, brain pathology (amyloid load, stress response and inflammation markers, synaptic integrity, trophic support) was assessed using qPCR and western blotting. RESULTS Female 5XFAD mice had higher levels of human APP and amyloid-β and heightened inflammation versus males. These markers correlated with hyperactivity observed in both sexes, yet only female 5XFAD mice presented with deficits in object and social exploration. Male animals had higher expression of stress markers and neurotrophic factors irrespective of genotype, this correlated with cognitive performance. CONCLUSION The impact of sex on AD-relevant phenotypes is in line with human data and emphasizes the necessity of appropriate study design and reporting. Differential molecular profiles observed in male versus female mice offer insights into possible protective mechanisms, and hence treatment strategies.
Collapse
Affiliation(s)
- Annesha Sil
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Arina Erfani
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Nicola Lamb
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Rachel Copland
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Gernot Riedel
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
8
|
Gao LJ, Li P, Ma T, Zhong ZQ, Xu SJ. Ligustilide alleviates neurotoxicity in SH-SY5Y cells induced by Aβ 25-35 via regulating endoplasmic reticulum stress and autophagy. Phytother Res 2020; 35:1572-1584. [PMID: 33111362 DOI: 10.1002/ptr.6925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 11/11/2022]
Abstract
Ligustilide is a phenolic compound isolated from Asian plants of Umbelliferae family. This study was aimed at exploring the neuroprotective effects of Ligustilide from the perspective of endoplasmic reticulum stress (ERS) and autophagy. The Alzheimer's disease (AD) cell models were constructed by SH-SY5Y cell line, which was exposed to 20 μM Aβ25-35 . CCK-8 was used to evaluate the cell viability of Ligustilide on AD cell model. Hoechst staining and LysoTracker Red were used to test the cell apoptosis and Lysosome function, respectively. ERS in living cells were detected by Thioflavin T. The expression of autophagy-related proteins (LC3B-II/I, P62/SQSTM1, Beclin1, and Atg5), ERS marker proteins (PERK, GRP78, and CHOH), and apoptosis proteins (Bax, Bcl-2, and Caspase-12) were analyzed by Western blot analyses. Aβ25-35 could induce ERS and autophagy in a time-dependent manner in SH-SY5Y cells. We demonstrated that Ligustilide significantly decreased the rate of apoptosis, and improved the viability of cells. Simultaneously, Ligustilide effectively modulated ERS via inhibiting the over-activation of GRP78/PERK/CHOP signaling pathway. In addition, Ligustilide alleviated the accumulation of autophagy vacuoles, reduced the ratio of LC3B-II/I and the level of P62/SQSTM1. Ligustilide significantly up-regulated lysosomal acidity and the expression of Cathepsin D (CTSD). Ligustilide could rescue lysosomal function to promote autophagy flux and inhibit the over-activation of ERS. This finding may contribute to the development of new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Li-Juan Gao
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tengyun Ma
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhan-Qiong Zhong
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Jun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Liu XJ, Wei J, Shang YH, Huang HC, Lao FX. Modulation of AβPP and GSK3β by Endoplasmic Reticulum Stress and Involvement in Alzheimer's Disease. J Alzheimers Dis 2018; 57:1157-1170. [PMID: 28339396 DOI: 10.3233/jad-161111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a dementia disease with neuronal loss and synaptic impairment. This impairment is caused, at least partly, by the generation of two main AD hallmarks, namely the hyperphosphorylated tau protein comprising neurofibrillary tangles and senile plaques containing amyloid-β (Aβ) peptides. The amyloid-β protein precursor (AβPP) and glycogen synthase kinase-3β (GSK3β) are two main proteins associated with AD and are closely correlated with these hallmarks. Recently, both of the proteins were reported to be modulated by endoplasmic reticulum stress (ERS) and are involved in the pathogenesis of AD. The mechanism of ERS plus the modulation of AβPP processing and GSK3β activity by ERS in AD are summarized and explored in this review.
Collapse
Affiliation(s)
- Xin-Jun Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Jun Wei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Ying-Hui Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Feng-Xue Lao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| |
Collapse
|
11
|
Prostaglandin J2 promotes O-GlcNAcylation raising APP processing by α- and β-secretases: relevance to Alzheimer's disease. Neurobiol Aging 2017; 62:130-145. [PMID: 29149631 DOI: 10.1016/j.neurobiolaging.2017.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Regulation of the amyloid precursor protein (APP) processing by α- and β-secretases is of special interest to Alzheimer's disease (AD), as these proteases prevent or mediate amyloid beta formation, respectively. Neuroinflammation is also implicated in AD. Our data demonstrate that the endogenous mediator of inflammation prostaglandin J2 (PGJ2) promotes full-length APP (FL-APP) processing by α- and β-secretases. The decrease in FL-APP was independent of proteasomal, lysosomal, calpain, caspase, and γ-secretase activities. Moreover, PGJ2-treatment promoted cleavage of secreted APP, specifically sAPPα and sAPPβ, generated by α and β-secretase, respectively. Notably, PGJ2-treatment induced caspase-dependent cleavage of sAPPβ. Mechanistically, PGJ2-treatment selectively diminished mature (O- and N-glycosylated) but not immature (N-glycosylated only) FL-APP. PGJ2-treatment also increased the overall levels of protein O-GlcNAcylation, which occurs within the nucleocytoplasmic compartment. It is known that APP undergoes O-GlcNAcylation and that the latter protects proteins from proteasomal degradation. Our results suggest that by increasing protein O-GlcNAcylation levels, PGJ2 renders mature APP less prone to proteasomal degradation, thus shunting APP toward processing by α- and β-secretases.
Collapse
|
12
|
Inhibition of PTEN Attenuates Endoplasmic Reticulum Stress and Apoptosis via Activation of PI3K/AKT Pathway in Alzheimer’s Disease. Neurochem Res 2017; 42:3052-3060. [PMID: 28819903 DOI: 10.1007/s11064-017-2338-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022]
|
13
|
Altered protein glycosylation predicts Alzheimer's disease and modulates its pathology in disease model Drosophila. Neurobiol Aging 2017; 56:159-171. [PMID: 28552182 DOI: 10.1016/j.neurobiolaging.2017.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 03/06/2017] [Accepted: 04/23/2017] [Indexed: 12/21/2022]
Abstract
The pathological hallmarks of Alzheimer's disease (AD) are pathogenic oligomers and fibrils of misfolded amyloidogenic proteins (e.g., β-amyloid and hyper-phosphorylated tau in AD), which cause progressive loss of neurons in the brain and nervous system. Although deviations from normal protein glycosylation have been documented in AD, their role in disease pathology has been barely explored. Here our analysis of available expression data sets indicates that many glycosylation-related genes are differentially expressed in brains of AD patients compared with healthy controls. The robust differences found enabled us to predict the occurrence of AD with remarkable accuracy in a test cohort and identify a set of key genes whose expression determines this classification. We then studied in vivo the effect of reducing expression of homologs of 6 of these genes in transgenic Drosophila overexpressing human tau, a well-established invertebrate AD model. These experiments have led to the identification of glycosylation genes that may augment or ameliorate tauopathy phenotypes. Our results indicate that OstDelta, l(2)not and beta4GalT7 are tauopathy suppressors, whereas pgnat5 and CG33303 are enhancers, of tauopathy. These results suggest that specific alterations in protein glycosylation may play a causal role in AD etiology.
Collapse
|
14
|
Jiang S, Tang L, Zhao N, Yang W, Qiu Y, Chen HZ. A Systems View of the Differences between APOE ε4 Carriers and Non-carriers in Alzheimer's Disease. Front Aging Neurosci 2016; 8:171. [PMID: 27462267 PMCID: PMC4941795 DOI: 10.3389/fnagi.2016.00171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
APOE ε4 is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and accounts for 50-65% of late-onset AD. Late-onset AD patients carrying or not carrying APOE ε4 manifest many clinico-pathological distinctions. Thus, we applied a weighted gene co-expression network analysis to identify specific co-expression modules in AD based on APOE ε4 stratification. Two specific modules were identified in AD APOE ε4 carriers and one module was identified in non-carriers. The hub genes of one module of AD APOE ε4 carriers were ISOC1, ENO3, GDF10, GNB3, XPO4, ACLY and MATN2. The other module of AD APOE ε4 carriers consisted of 10 hub genes including ANO3, ARPP21, HPCA, RASD2, PCP4 and ADORA2A. The module of AD APOE ε4 non-carriers consisted of 16 hub genes including DUSP5, TNFRSF18, ZNF331, DNAJB5 and RIN1. The module of AD APOE ε4 carriers including ISOC1 and ENO3 and the module of non-carriers contained the most highly connected hub gene clusters. mRNA expression of the genes in the cluster of the ISOC1 and ENO3 module of carriers was shown to be correlated in a time-dependent manner under APOE ε4 treatment but not under APOE ε3 treatment. In contrast, mRNA expression of the genes in the cluster of non-carriers' module was correlated under APOE ε3 treatment but not under APOE ε4 treatment. The modules of carriers demonstrated genetic bases and were mainly enriched in hereditary disorders and neurological diseases, energy metabolism-associated signaling and G protein-coupled receptor-associated pathways. The module including ISOC1 and ENO3 harbored two conserved promoter motifs in its hub gene cluster that could be regulated by common transcription factors and miRNAs. The module of non-carriers was mainly enriched in neurological, immunological and cardiovascular diseases and was correlated with Parkinson's disease. These data demonstrate that AD in APOE ε4 carriers involves more genetic factors and particular biological processes, whereas AD in APOE ε4 non-carriers shares more common pathways with other types of diseases. The study reveals differential genetic bases and pathogenic and pathological processes between carriers and non-carriers, providing new insight into the mechanisms of the differences between APOE ε4 carriers and non-carriers in AD.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Ling Tang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Na Zhao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong
| | - Yu Qiu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| |
Collapse
|
15
|
Gong H, Feng L. Computational analysis of the roles of ER-Golgi network in the cell cycle. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 4:S3. [PMID: 25522186 PMCID: PMC4290691 DOI: 10.1186/1752-0509-8-s4-s3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND ER-Golgi network plays an important role in the processing, sorting and transport of proteins, and it's also a site for many signaling pathways that regulate the cell cycle. Accumulating evidence suggests that, the stressed ER and malfunction of Golgi apparatus are associated with the pathogenesis of cancer and Alzheimer's disease (AD). Our previous work discovered and verified that altering the expression levels of target SNARE and GEF could modulate the size of Golgi apparatus. Moreover, Golgi's structure and size undergo dramatic changes during the development of several diseases. It is of importance to investigate the roles of ER-Golgi network in the cell cycle progression and some diseases. RESULTS In this work, we first develop a computational model to study the ER stress-induced and Golgi-related apoptosis-survival signaling pathways. Then, we propose and apply both asynchronous and synchronous model checking methods, which extend our previous verification technique, to automatically and formally analyze the ER-Golgi-regulated signaling pathways in the cell cycle progression through verifying some computation tree temporal logic formulas. CONCLUSIONS The proposed asynchronous and synchronous verification technique has advantages for large network analysis and verification over traditional simulation methods. Using the model checking method, we verified several Alzheimer's disease and cancer-related properties, and also identified important proteins (NFκB, ATF4, ASK1 and TRAF2) in the ER-Golgi network, which might be responsible for the pathogenesis of cancer and AD. Our studies indicate that targeting the ER stress-induced and Golgi-related pathways might serve as potent therapeutic targets for the treatment of cancer and Alzheimer's disease.
Collapse
|
16
|
Plácido AI, Oliveira CR, Moreira PI, Pereira CMF. Enhanced Amyloidogenic Processing of Amyloid Precursor Protein and Cell Death Under Prolonged Endoplasmic Reticulum Stress in Brain Endothelial Cells. Mol Neurobiol 2014; 51:571-90. [DOI: 10.1007/s12035-014-8819-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
|