1
|
Folahan JT, Barabutis N. NEK kinases in cell cycle regulation, DNA damage response, and cancer progression. Tissue Cell 2025; 94:102811. [PMID: 40037068 PMCID: PMC11912005 DOI: 10.1016/j.tice.2025.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
The NIMA-related kinase (NEK) family of serine/threonine kinases is essential for the regulation of cell cycle progression, mitotic spindle assembly, and genomic stability. In this review, we explore the structural and functional diversity of NEK kinases, highlighting their roles in both canonical and non-canonical cellular processes. We examine recent preclinical findings on NEK inhibition, showcasing promising results for NEK-targeted therapies, particularly in cancer types characterized by high NEK expression. We discussed the therapeutic potential of targeting NEKs as modulators of cell cycle and DDR pathways, with a focus on identifying strategies to exploit NEK activity for enhanced treatment efficacy. Future research directions are proposed to further elucidate NEK-mediated mechanisms and to develop selective inhibitors that target NEK-related pathways.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
2
|
Fan X, Sun L, Qin Y, Liu Y, Wu S, Du L. The Role of HSP90 Molecular Chaperones in Depression: Potential Mechanisms. Mol Neurobiol 2025; 62:708-717. [PMID: 38896156 DOI: 10.1007/s12035-024-04284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Major depressive disorder (MDD) is characterized by high rates of disability and death and has become a public health problem that threatens human life and health worldwide. HPA axis disorder and neuroinflammation are two common biological abnormalities in MDD patients. Hsp90 is an important molecular chaperone that is widely distributed in the organism. Hsp90 binds to the co-chaperone and goes through a molecular chaperone cycle to complete its regulation of the client protein. Numerous studies have demonstrated that Hsp90 regulates how the HPA axis reacts to stress and how GR, the HPA axis' responsive substrate, matures. In addition, Hsp90 exhibits pro-inflammatory effects that are closely related to neuroinflammation in MDD. Currently, Hsp90 inhibitors have made some progress in the treatment of a variety of human diseases, but they still need to be improved. Further insight into the role of Hsp90 in MDD provides new ideas for the development of new antidepressant drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Lei Sun
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Ye Qin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
3
|
Damianos A, Kalinichenko VV. The Plant Hormone Indole-3-Acetic Acid Helps the Endothelial Barrier Seal after Lung Injury. Am J Respir Cell Mol Biol 2024; 71:264-266. [PMID: 38857531 PMCID: PMC11376239 DOI: 10.1165/rcmb.2024-0209ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Affiliation(s)
- Andreas Damianos
- Division of Neonatology and Pulmonary Biology Department of Pediatrics Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
- University of Cincinnati Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute University of Arizona Phoenix, Arizona
- Division of Neonatology Phoenix Children's Hospital Phoenix, Arizona
| |
Collapse
|
4
|
Liu X, Liu B, Luo X, Liu Z, Tan X, Zhu K, Ouyang F. Research progress on the role of p53 in pulmonary arterial hypertension. Respir Investig 2024; 62:541-550. [PMID: 38643536 DOI: 10.1016/j.resinv.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a devastating disease characterized by increased pulmonary vascular resistance and pulmonary arterial pressure. At present, the definitive pathology of PAH has not been elucidated and its effective treatment remains lacking. Despite PAHs having multiple pathogeneses, the cancer-like characteristics of cells have been considered the main reason for PAH progression. RECENT FINDINGS p53 protein, an important tumor suppressor, regulates a multitude of gene expressions to maintain normal cellular functions and suppress the progression of malignant tumors. Recently, p53 has been found to exert multiple biological effects on cardiovascular diseases. Since PAH shares similar metabolic features with cancer cells, the regulatory roles of p53 in PAH are mainly the induction of cell cycle, inhibition of cell proliferation, and promotion of apoptosis. SUMMARY This paper summarized the advanced findings on the molecular mechanisms and regulatory functions of p53 in PAH, aiming to reveal the potential therapeutic targets for PAH.
Collapse
Affiliation(s)
- Xiangyang Liu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Biao Liu
- Department of Cardiovascular Medicine, Taojiang County People's Hospital, No.328 Taohuaxi Road, Taohuajiang Town, Taojiang County, Yiyang City, 413499, Hunan, China
| | - Xin Luo
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Zhenfang Liu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Xiaoli Tan
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Ke Zhu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China.
| | - Fan Ouyang
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China.
| |
Collapse
|
5
|
Barabutis N, Akhter MS. Unfolded protein response suppression potentiates LPS-induced barrier dysfunction and inflammation in bovine pulmonary artery endothelial cells. Tissue Barriers 2024; 12:2232245. [PMID: 37436424 DOI: 10.1080/21688370.2023.2232245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
The development of novel strategies to counteract diseases related to barrier dysfunction is a priority, since sepsis and acute respiratory distress syndrome are still associated with high mortality rates. In the present study, we focus on the effects of the unfolded protein response suppressor (UPR) 4-Phenylbutyrate (4-PBA) in Lipopolysaccharides (LPS)-induced endothelial injury, to investigate the effects of that compound in the corresponding damage. 4-PBA suppressed binding immunoglobulin protein (BiP) - a UPR activation marker - and potentiated LPS - induced signal transducer and activator of transcription 3 (STAT3) and extracellular signal‑regulated protein kinase (ERK) 1/2 activation. In addition to those effects, 4-PBA enhanced paracellular hyperpermeability in inflamed bovine pulmonary endothelial cells, and did not affect cell viability in moderate concentrations. Our observations suggest that UPR suppression due to 4-PBA augments LPS-induced endothelial injury, as well as the corresponding barrier disruption.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
6
|
Colunga Biancatelli RML, Solopov PA, Day T, Gregory B, Osei-nkansah M, Dimitropoulou C, Catravas JD. HSP70 Is a Critical Regulator of HSP90 Inhibitor's Effectiveness in Preventing HCl-Induced Chronic Lung Injury and Pulmonary Fibrosis. Int J Mol Sci 2024; 25:1920. [PMID: 38339194 PMCID: PMC10856755 DOI: 10.3390/ijms25031920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Exposure to hydrochloric acid (HCl) can provoke acute and chronic lung injury. Because of its extensive production for industrial use, frequent accidental exposures occur, making HCl one of the top five chemicals causing inhalation injuries. There are no Food and Drug Administration (FDA)-approved treatments for HCl exposure. Heat shock protein 90 (HSP90) inhibitors modulate transforming growth factor-β (TGF-β) signaling and the development of chemical-induced pulmonary fibrosis. However, little is known on the role of Heat Shock Protein 70 (HSP70) during injury and treatment with HSP90 inhibitors. We hypothesized that administration of geranylgeranyl-acetone (GGA), an HSP70 inducer, or gefitinib (GFT), an HSP70 suppressant, alone or in combination with the HSP90 inhibitor, TAS-116, would improve or worsen, respectively, HCl-induced chronic lung injury in vivo and endothelial barrier dysfunction in vitro. GGA, alone, improved HCl-induced human lung microvascular endothelial cells (HLMVEC) barrier dysfunction and, in combination with TAS-116, improved the protective effect of TAS-116. In mice, GGA reduced HCl toxicity and while TAS-116 alone blocked HCl-induced chronic lung injury, co-administration with GGA, resulted in further improvement. Conversely, GFT potentiated HCl-induced barrier dysfunction and impaired the antidotal effects of TAS-116. We conclude that combined treatments with HSP90 inhibitors and HSP70 inducers may represent a novel therapeutic approach to manage HCl-induced chronic lung injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruben M. L. Colunga Biancatelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.A.S.); (T.D.); (B.G.); (C.D.); (J.D.C.)
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Pavel A. Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.A.S.); (T.D.); (B.G.); (C.D.); (J.D.C.)
| | - Tierney Day
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.A.S.); (T.D.); (B.G.); (C.D.); (J.D.C.)
| | - Betsy Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.A.S.); (T.D.); (B.G.); (C.D.); (J.D.C.)
| | - Michael Osei-nkansah
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.A.S.); (T.D.); (B.G.); (C.D.); (J.D.C.)
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Christiana Dimitropoulou
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.A.S.); (T.D.); (B.G.); (C.D.); (J.D.C.)
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23509, USA; (P.A.S.); (T.D.); (B.G.); (C.D.); (J.D.C.)
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23509, USA
| |
Collapse
|
7
|
Wang L, Li Z, Lu T, Su L, Mao C, Zhang Y, Zhang X, Jiang X, Xie H, Yu X. The potential mechanism of Choulingdan mixture in improving acute lung injury based on HPLC-Q-TOF-MS, network pharmacology and in vivo experiments. Biomed Chromatogr 2023; 37:e5709. [PMID: 37533317 DOI: 10.1002/bmc.5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Choulingdan mixture (CLDM) is an empirical clinical prescription for the adjuvant treatment of acute lung injury (ALI). CLDM has been used for almost 30 years in the clinic. However, its mechanism for improving ALI still needs to be investigated. In this study, high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) was applied to characterize the overall chemical composition of CLDM. A total of 93 ingredients were characterized, including 25 flavonoids, 20 organic acids, 11 saponins, nine terpenoids, seven tannins and 21 other compounds. Then network pharmacology was applied to predict the potential bioactive components, target genes and signaling pathways of CLDM in improving ALI. Additionally, molecular docking was performed to demonstrate the interaction between the active ingredients and the disease targets. Finally, animal experiments further confirmed that CLDM significantly inhibits pulmonary inflammation, pulmonary edema and oxidative stress in lipopolysaccharide-induced ALI mice by inhibiting the PI3K-AKT signaling pathway. This study enhanced the amount and accuracy of compounds of CLDM and provided new insights into CLDM preventing and treating ALI.
Collapse
Affiliation(s)
- Lili Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyan Li
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiting Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinrui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofeng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Yu
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Barabutis N. Heat shock protein 90 inhibition in the endothelium. Front Med (Lausanne) 2023; 10:1255488. [PMID: 37746080 PMCID: PMC10513060 DOI: 10.3389/fmed.2023.1255488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
9
|
Wang YX, Yu TF, Wang CX, Wei JT, Zhang SX, Liu YW, Chen J, Zhou YB, Chen M, Ma YZ, Lan JH, Zheng JC, Li F, Xu ZS. Heat shock protein TaHSP17.4, a TaHOP interactor in wheat, improves plant stress tolerance. Int J Biol Macromol 2023; 246:125694. [PMID: 37414309 DOI: 10.1016/j.ijbiomac.2023.125694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Adaptation to drought and salt stresses is a fundamental part of plant cell physiology and is of great significance for crop production under environmental stress. Heat shock proteins (HSPs) are molecular chaperones that play a crucial role in folding, assembling, translocating, and degrading proteins. However, their underlying mechanisms and functions in stress tolerance remain elusive. Here, we identified the HSP TaHSP17.4 in wheat by analyzing the heat stress-induced transcriptome. Further analysis showed that TaHSP17.4 was significantly induced under drought, salt, and heat stress treatments. Intriguingly, yeast-two-hybrid analysis showed that TaHSP17.4 interacts with the HSP70/HSP90 organizing protein (HOP) TaHOP, which plays a significant role in linking HSP70 and HSP90. We found that TaHSP17.4- and TaHOP-overexpressing plants have a higher proline content and a lower malondialdehyde content than wild-type plants under stress conditions and display strong tolerance to drought, salt, and heat stress. Additionally, qRT-PCR analysis showed that stress-responsive genes relevant to reactive oxygen species scavenging and abscisic acid signaling pathways were significantly induced in TaHSP17.4- and TaHOP-overexpressing plants under stress conditions. Together, our findings provide insight into HSP functions in wheat and two novel candidate genes for improvement of wheat varieties.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China
| | - Chun-Xiao Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ji-Tong Wei
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Shuang-Xi Zhang
- Institute of Crop Science, Ningxia Academy of Agriculture and Forestry Sciences, Yongning 750105, China
| | - Yong-Wei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, College of Agronomy, Fengyang 233100, China
| | - Feng Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| |
Collapse
|
10
|
Colunga Biancatelli RML, Solopov PA, Gregory B, Khodour Y, Catravas JD. HSP90 Inhibitors Modulate SARS-CoV-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation and Barrier Dysfunction. Front Physiol 2022; 13:812199. [PMID: 35388292 PMCID: PMC8979060 DOI: 10.3389/fphys.2022.812199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 5 million deaths worldwide. Multiple reports indicate that the endothelium is involved during SARS-Cov-2-related disease (COVID-19). Indeed, COVID-19 patients display increased thrombophilia with arterial and venous embolism and lung microcapillary thrombotic disease as major determinants of deaths. The pathophysiology of endothelial dysfunction in COVID-19 is not completely understood. We have investigated the role of subunit 1 of the SARS-CoV-2 spike protein (S1SP) in eliciting endothelial barrier dysfunction, characterized dose and time relationships, and tested the hypothesis that heat shock protein 90 (HSP90) inhibitors would prevent and repair such injury. S1SP activated (phosphorylated) IKBα, STAT3, and AKT and reduced the expression of intercellular junctional proteins, occludin, and VE-cadherin. HSP90 inhibitors (AT13387 and AUY-922) prevented endothelial barrier dysfunction and hyperpermeability and reduced IKBα and AKT activation. These two inhibitors also blocked S1SP-mediated barrier dysfunction and loss of VE-cadherin. These data suggest that spike protein subunit 1 can elicit, by itself, direct injury to the endothelium and suggest a role of HSP90 inhibitors in preserving endothelial functionality.
Collapse
Affiliation(s)
| | - Pavel A. Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Betsy Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Yara Khodour
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
11
|
Colunga Biancatelli RML, Solopov P, Dimitropoulou C, Gregory B, Day T, Catravas JD. The Heat Shock Protein 90 Inhibitor, AT13387, Protects the Alveolo-Capillary Barrier and Prevents HCl-Induced Chronic Lung Injury and Pulmonary Fibrosis. Cells 2022; 11:1046. [PMID: 35326496 PMCID: PMC8946990 DOI: 10.3390/cells11061046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Hydrochloric acid (HCl) exposure causes asthma-like conditions, reactive airways dysfunction syndrome, and pulmonary fibrosis. Heat Shock Protein 90 (HSP90) is a molecular chaperone that regulates multiple cellular processes. HSP90 inhibitors are undergoing clinical trials for cancer and are also being studied in various pre-clinical settings for their anti-inflammatory and anti-fibrotic effects. Here we investigated the ability of the heat shock protein 90 (HSP90) inhibitor AT13387 to prevent chronic lung injury induced by exposure to HCl in vivo and its protective role in the endothelial barrier in vitro. We instilled C57Bl/6J mice with 0.1N HCl (2 µL/g body weight, intratracheally) and after 24 h began treatment with vehicle or AT13387 (10 or 15 mg/kg, SC), administered 3×/week; we analyzed histological, functional, and molecular markers 30 days after HCl. In addition, we monitored transendothelial electrical resistance (TER) and protein expression in a monolayer of human lung microvascular endothelial cells (HLMVEC) exposed to HCl (0.02 N) and treated with vehicle or AT13387 (2 µM). HCl provoked persistent alveolar inflammation; activation of profibrotic pathways (MAPK/ERK, HSP90); increased deposition of collagen, fibronectin and elastin; histological evidence of fibrosis; and a decline in lung function reflected in a downward shift in pressure-volume curves, increased respiratory system resistance (Rrs), elastance (Ers), tissue damping (G), and hyperresponsiveness to methacholine. Treatment with 15 mg/kg AT13387reduced alveolar inflammation, fibrosis, and NLRP3 staining; blocked activation of ERK and HSP90; and attenuated the deposition of collagen and the development of chronic lung injury and airway hyperreactivity. In vitro, AT13387 prevented HCl-induced loss of barrier function and AKT, ERK, and ROCK1 activation, and restored HSP70 and cofilin expression. The HSP90 inhibitor, AT13387, represents a promising drug candidate for chronic lung injury that can be administered subcutaneously in the field, and at low, non-toxic doses.
Collapse
Affiliation(s)
- Ruben M. L. Colunga Biancatelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (C.D.); (B.G.); (T.D.); (J.D.C.)
| | - Pavel Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (C.D.); (B.G.); (T.D.); (J.D.C.)
| | - Christiana Dimitropoulou
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (C.D.); (B.G.); (T.D.); (J.D.C.)
| | - Betsy Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (C.D.); (B.G.); (T.D.); (J.D.C.)
| | - Tierney Day
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (C.D.); (B.G.); (T.D.); (J.D.C.)
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (C.D.); (B.G.); (T.D.); (J.D.C.)
- School of Medical Diagnostics & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
12
|
Kubra KT, Uddin MA, Akhter MS, Leo AJ, Siejka A, Barabutis N. P53 mediates the protective effects of metformin in inflamed lung endothelial cells. Int Immunopharmacol 2021; 101:108367. [PMID: 34794886 DOI: 10.1016/j.intimp.2021.108367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
The endothelial barrier regulates interstitial fluid homeostasis by transcellular and paracellular means. Dysregulation of this semipermeable barrier may lead to vascular leakage, edema, and accumulation of pro-inflammatory cytokines, inducing microvascular hyperpermeability. Investigating the molecular pathways involved in those events will most probably provide novel therapeutic possibilities in pathologies related to endothelial barrier dysfunction. Metformin (MET) is an anti-diabetic drug, opposes malignancies, inhibits cellular transformation, and promotes cardiovascular protection. In the current study, we assess the protective effects of MET in LPS-induced lung endothelial barrier dysfunction and evaluate the role of P53 in mediating the beneficial effects of MET in the vasculature. We revealed that this biguanide (MET) opposes the LPS-induced dysregulation of the lung microvasculature, since it suppressed the formation of filamentous actin stress fibers, and deactivated cofilin. To investigate whether P53 is involved in those phenomena, we employed the fluorescein isothiocyanate (FITC) - dextran permeability assay, to measure paracellular permeability. Our observations suggest that P53 inhibition increases paracellular permeability, and MET prevents those effects. Our results contribute towards the understanding of the lung endothelium and reveal the significant role of P53 in the MET-induced barrier enhancement.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Antoinette J Leo
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
13
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
14
|
Qian L, Li JZ, Sun X, Chen JB, Dai Y, Huang QX, Jin YJ, Duan QN. Safinamide prevents lipopolysaccharide (LPS)-induced inflammation in macrophages by suppressing TLR4/NF-κB signaling. Int Immunopharmacol 2021; 96:107712. [PMID: 34162132 DOI: 10.1016/j.intimp.2021.107712] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Inflammation is a basal host defense response that eliminates the causes and consequences of infection and tissue injury. Macrophages are the primary immune cells involved in the inflammatory response. When activated by LPS, macrophages release various pro-inflammatory cytokines, chemokines, inflammatory mediators, and MMPs. However, unbridled inflammation causes further damage to tissues. Safinamide is a selective and reversible monoamine oxidase B (MAOB) inhibitor that has been used for the treatment of Parkinson's disease. In this study, we aimed to investigate whether safinamide has effects on LPS-treated macrophages. Our results show that safinamide inhibited the expression of pro-inflammatory cytokines such as IL-1α, TNF-α, and IL-6. Furthermore, safinamide suppressed the production of CXCL1 and CCL2, thereby preventing leukocyte migration. In addition, safinamide reduced iNOS-derived NO, COX-2-derived PGE2, MMP-2, and MMP-9. Importantly, the functions of safinamide mentioned above were found to be dependent on its inhibitory effect on the TLR4/NF-κB signaling pathway. Our data indicates that safinamide may exert a protective effect against inflammatory response.
Collapse
Affiliation(s)
- LuLu Qian
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jun-Zhao Li
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - XueMei Sun
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jie-Bin Chen
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying Dai
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qiu-Xiang Huang
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying-Ji Jin
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qing-Ning Duan
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China.
| |
Collapse
|
15
|
Barabutis N, Akhter MS, Kubra KT, Uddin MA. Restoring the endothelial barrier function in the elderly. Mech Ageing Dev 2021; 196:111479. [PMID: 33819492 PMCID: PMC8017911 DOI: 10.1016/j.mad.2021.111479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 02/08/2023]
Abstract
Endothelial barrier dysfunction in the elderly has been associated with severe disorders, including acute respiratory distress syndrome, sepsis and COVID-19. Herein we deliver an opinion regarding the development of alternative therapeutic avenues to counteract the pathogenesis of the corresponding diseases.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
16
|
Barabutis N. Insights on supporting the aging brain microvascular endothelium. AGING BRAIN 2021; 1. [PMID: 33681752 PMCID: PMC7932454 DOI: 10.1016/j.nbas.2021.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Blood brain barrier hyperpermeability has been associated with age-related affective disorders, including depression, mania, anxiety, Alzheimer’s and Parkinson’s disease. Our recent efforts suggest that a promising therapeutic approach may arise due to the activation of the unfolded protein response (UPR) element in the affected tissues. Growth hormone releasing hormone antagonists and heat shock protein 90 inhibitors have been shown to induce UPR. This mechanism (UPR) has been associated with tissue repairing processes.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
17
|
Abstract
Recent evidence suggest that the endothelial barrier function is enhanced by the mild activation of the unfolded protein response (UPR), which aims to suppress abnormal increases of endoplasmic reticulum stress. Heat shock protein 90 inhibitors and growth hormone releasing hormone antagonists exert the capacity to activate this multifaceted cellular mechanism (UPR). Thus, investigations on the signalling network involved in those events, may deliver exciting opportunities in diseases related to endothelial barrier dysfunction. The diverse spectrum of those pathologies include sepsis and Acute Respiratory Distress Syndrome (ARDS).
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
18
|
Uddin MA, Akhter MS, Kubra KT, Whitaker KE, Shipley SL, Smith LM, Barabutis N. Hsp90 inhibition protects the brain microvascular endothelium against oxidative stress. BRAIN DISORDERS 2021; 1. [PMID: 33569547 PMCID: PMC7869856 DOI: 10.1016/j.dscb.2020.100001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The brain endothelium is an integral element of the blood-brain barrier (BBB). Dysfunction of this formation due to increased generation of reactive oxygen species (ROS) progresses the establishment of neurological disorders including stroke and traumatic brain injury. Heat shock protein 90 inhibitors are anti-inflammatory agents, and their activities are mediated, at least in part, by P53. This is a tumor suppressor protein which regulates the opposing activities of Rac1 and RhoA in the cellular cytoskeleton. In the present study we investigated the role of Hsp90 inhibitors in the H2O2-induced brain endothelium breakdown, by employing human cerebral microvascular endothelial cells (hCMEC/D3). Our findings suggest that H2O2 downregulates P53 by enhancing the P53 suppressor mouse double minute 2 homolog (MDM2), as well as by increasing the apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref1). The H2O2 – triggered violation of the brain endothelium barrier was reflected in measurements of transendothelial resistance, and the increased expression of the key cytoskeletal modulators cofilin and myosin light chain 2 (MLC2). Treatment of the hCMEC/D3 cells with Hsp90 inhibitors counteracted those events, and reduced the generation of the hydrogen peroxide – induced reactive oxygen species. Hence, our study suggests that Hsp90 inhibition supports the BBB integrity, and may represent a promising therapeutic approach for disorders associated with brain endothelium breakdown; including COVID-19.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Kathryn E Whitaker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Summer L Shipley
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Landon M Smith
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
19
|
Uddin MA, Akhter MS, Kubra KT, Siejka A, Barabutis N. Metformin in acute respiratory distress syndrome: An opinion. Exp Gerontol 2020; 145:111197. [PMID: 33310152 PMCID: PMC7834182 DOI: 10.1016/j.exger.2020.111197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022]
Abstract
Senior individuals are more susceptible to the irreversible outcomes of endothelial barrier dysfunction, the hallmark of Acute Respiratory Distress Syndrome (ARDS). The Severe Acute Respiratory Syndrome Coronovirus 2 (SARS-CoV-2) - inflicted ARDS delivers the devastating outcomes of the COVID-19 worldwide. Endothelial hyperpermeability has been associated with both the progression and establishment of the COVID-19 - related respiratory failure. In the present study we investigated the in vitro effects of Metformin in the permeability of bovine pulmonary artery endothelial cells. Our preliminary results suggest that moderate doses (0.1, 0.5, 1.0 mM) of this anti-diabetic agent enhance the vascular barrier integrity, since it produces an increase in the transendothelial resistance of endothelial monolayers. Thus, we speculate that Metformin may deliver a new therapeutic possibility in ARDS, alone or in combination with other barrier enhancers.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
20
|
Uddin MA, Akhter MS, Kubra KT, Barabutis N. P53 deficiency potentiates LPS-Induced acute lung injury in vivo. Curr Res Physiol 2020; 3:30-33. [PMID: 32724900 PMCID: PMC7386399 DOI: 10.1016/j.crphys.2020.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) represent a significant cause of morbidity and mortality in critically ill hospitalized patients. Emerging evidence suggest that the expression levels of P53 in the lungs are associated with the supportive effects of heat shock protein 90 inhibitors and growth hormone releasing hormone antagonists in the endothelium. In the current study, we employed an in vivo model of intratracheal administration of lipopolysaccharides (LPS)-induced ALI to investigate the role of P53 in counteracting LPS-induced lung inflammatory responses. In wild type mice, LPS induced the expression of IL-1α, IL-1β, and TNFα in the lungs, increased bronchoalveolar lavage fluid protein concentration, and activated cofilin. Remarkably; those responses were more potent in P53 knockout mice, suggesting the crucial role of P53 in orchestrating rigorous endothelial defenses against inflammatory stimuli. The present study supports previous endeavors on the protective role of P53 against lung inflammatory disease, and enrich our knowledge on the development of medical countermeasures against ARDS.
Collapse
Affiliation(s)
| | | | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| |
Collapse
|
21
|
Barabutis N. P53 in acute respiratory distress syndrome. Cell Mol Life Sci 2020; 77:4725-4727. [PMID: 32886127 PMCID: PMC7471635 DOI: 10.1007/s00018-020-03629-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
P53 is a tumor suppressor protein, associated with strong anti-inflammatory activities. Recent evidence suggest that this transcription factor counteracts lung inflammatory diseases, including the lethal acute respiratory distress syndrome. Herein we provide a brief discussion on the relevant topic.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
22
|
Barabutis N. Unfolded protein response in the COVID-19 context. AGING AND HEALTH RESEARCH 2020; 1:100001. [PMID: 33330852 PMCID: PMC7569417 DOI: 10.1016/j.ahr.2020.100001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) maintains cellular homeostasis by regulating key elements of cellular growth and defense. Recent evidence suggests that this mechanism affects the vascular barrier function, by modulating lung endothelial permeability. Dysregulation of this barrier contributes in the irreversible outcomes of the SARS-CoV-2 - inflicted acute respiratory distress syndrome (ARDS). Thus, it is highly probable that the targeted activation of those UPR components in charge of repairing the destructed lung endothelium of the COVID-19 patients, may deliver a promising therapeutic possibility for those subjected to the devastating outcomes of the ongoing pandemic.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
23
|
Abstract
Acute Respiratory Distress Syndrome is a severe disorder affecting thousands of individuals worldwide. The available medical countermeasures do not sufficiently suppress the unacceptable high mortality rates associated with those in need. Thus, intense efforts aim to delineate the function of the lung endothelium, so to deliver new therapeutic approaches against this disease. The present manuscript attempts to shed light on the interrelations between the unfolded protein response and autophagy towards lung disease, to deliver a new line of possible therapeutic approaches against the ferocious Acute Respiratory Distress Syndrome.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
24
|
Kubra KT, Uddin MA, Akhter MS, Barabutis N. Luminespib counteracts the Kifunensine-induced lung endothelial barrier dysfunction. Curr Res Toxicol 2020; 1:111-115. [PMID: 33094291 PMCID: PMC7575137 DOI: 10.1016/j.crtox.2020.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unfolded protein response (UPR) suppression by Kifunensine has been associated with lung hyperpermeability, the hallmark of Acute Respiratory Distress Syndrome. The present study investigates the effects of the heat shock protein 90 inhibitor Luminespib (AUY-922) towards the Kifunensine-triggered lung endothelial dysfunction. Our results indicate that the UPR inducer Luminespib counteracts the effects of Kifunensine in both human and bovine lung endothelial cells. Hence, we suggest that UPR manipulation may serve as a promising therapeutic strategy against potentially lethal respiratory disorders, including the ARDS related to COVID-19.
Collapse
Affiliation(s)
| | | | | | - Nektarios Barabutis
- Corresponding author at: School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States of America.
| |
Collapse
|
25
|
Barabutis N. A glimpse at growth hormone-releasing hormone cosmos. Clin Exp Pharmacol Physiol 2020; 47:1632-1634. [PMID: 32289177 PMCID: PMC7426234 DOI: 10.1111/1440-1681.13324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
Growth hormone-releasing hormone is a hypothalamic neuropeptide, which regulates the secretion of growth hormone by the anterior pituitary gland. Recent evidence suggest that it exerts growth factor activities in a diverse variety of in vivo and in vitro experimental malignancies, which are counteracted by growth hormone-releasing hormone antagonists. Those peptides support lung endothelial barrier integrity by suppressing major inflammatory pathways and by inducing the endothelial defender P53. The present effort provides information regarding the effects of growth hormone-releasing hormone in the regulation of P53 and the unfolded protein response. Furthermore, it suggests the possible application of growth hormone-releasing hormone antagonists towards the management of acute lung injury, including the lethal acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
26
|
Uddin MA, Barabutis N. P53 in the impaired lungs. DNA Repair (Amst) 2020; 95:102952. [PMID: 32846356 PMCID: PMC7437512 DOI: 10.1016/j.dnarep.2020.102952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Our laboratory is focused on investigating the supportive role of P53 towards the maintenance of lung homeostasis. Acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, pulmonary fibrosis, bronchial asthma, pulmonary arterial hypertension, pneumonia and tuberculosis are respiratory pathologies, associated with dysfunctions of this endothelium defender (P53). Herein we review the evolving role of P53 towards the aforementioned inflammatory disorders, to potentially reveal new therapeutic possibilities in pulmonary disease.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA.
| |
Collapse
|
27
|
Barabutis N. Unfolded Protein Response in Lung Health and Disease. Front Med (Lausanne) 2020; 7:344. [PMID: 32850879 PMCID: PMC7406640 DOI: 10.3389/fmed.2020.00344] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is a complex element, destined to protect the cells against a diverse variety of extracellular and intracellular challenges. UPR activation devises highly efficient responses to counteract cellular threats. If those activities fail, it will dictate cellular execution. The current work focuses on the role of UPR in pulmonary function, by immersing into the highly interrelated network that operates toward the endothelial barrier function. A highly sophisticated UPR manipulation shall reveal new therapeutic possibilities against inflammatory lung disease, such as acute lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
28
|
Uddin MA, Kubra KT, Sonju JJ, Akhter MS, Seetharama J, Barabutis N. Effects of Heat Shock Protein 90 Inhibition In the Lungs. MEDICINE IN DRUG DISCOVERY 2020; 6. [PMID: 32728665 PMCID: PMC7390472 DOI: 10.1016/j.medidd.2020.100046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inhibition of Hsp90 is associated with anti-inflammatory effects. We employed human lung microvascular endothelial cells to investigate the effects of the Hsp90 inhibitors 17-AAG, AUY-922 and 17-DMAG in the unfolded protein response (UPR) and viability of lung cells. Our observations indicate that moderate doses of those compounds trigger the activation of the UPR without inducing lethal effects in vitro. Indeed, AUY-922 triggered UPR activation in the lungs of C57BL/6 mice. UPR has been previously involved in the enhancement of the lung endothelial barrier function. Thus, the present study suggests that the barrier protective effects of Hsp90 inhibition in the lung microvasculature are highly probable to be associated with the activation of the UPR. Hence, the development of novel compounds which stochastically capacitate the repairing elements of UPR, may deliver new therapeutic possibilities against the severities of the acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Jois Seetharama
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
29
|
Barabutis N. P53 in RhoA regulation. Cytoskeleton (Hoboken) 2020; 77:197-201. [DOI: 10.1002/cm.21604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana Monroe Monroe USA
| |
Collapse
|