1
|
Shao N, Cai K, Hong Y, Wu L, Luo Q. USP9X suppresses ferroptosis in diabetic kidney disease by deubiquitinating Nrf2 in vitro. Ren Fail 2025; 47:2458761. [PMID: 39967230 PMCID: PMC11841168 DOI: 10.1080/0886022x.2025.2458761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates many critical genes associated with iron storage and transportation, the activity of which is influenced by E3 ligase-mediated ubiquitination. We wondered whether there is a deubiquitinase that mediates the deubiquitination of Nrf2 to stabilize Nrf2 expression and further prevent diabetic kidney disease (DKD). High glucose (HG) was applied to induce an in vitro model of DKD. The effects of HG on HK-2 cell viability, apoptosis, Fe2+ level, Nrf2, and ubiquitin-specific protease 9X (USP9X) were assessed by cell counting kit-8 (CCK-8) assay, flow cytometry, iron assay, and Western blot. The direct interaction between Nrf2 and USP9X was analyzed using co-immunoprecipitation and ubiquitination assay. After transfection and ferrostatin-1 (Fer-1) intervention, Nrf2 and USP9X levels, cell viability, apoptosis, and Fe2+ level were tested again. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) contents, and ferroptosis-related markers were assessed by ROS assay kit, ELISA, and Western blot. HG reduced cell viability and levels of USP9X and Nrf2, while elevating apoptosis and Fe2+ level. An interaction between USP9X and Nrf2 has been verified and USP9X deubiquitinated Nrf2. Nrf2 up-regulation augmented the viability, GSH content, and ferroptosis-related protein expressions, while suppressing the apoptosis, Fe2+ level, MDA, and ROS content in HG-mediated HK-2 cells, which was reversed by USP9X silencing. Fer-1 offset the combined modulation of Nrf2 and siUSP9X on HG-induced HK-2 cells. USP9X mediates Nrf2 deubiquitinase to hamper the ferroptosis in DKD in vitro.
Collapse
Affiliation(s)
- Ningjun Shao
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Kedan Cai
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Yue Hong
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Lingping Wu
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Qun Luo
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
2
|
Qiu L, Liu H, Chen S, Wu Y, Yan J. Ferroptosis contributed to endoplasmic reticulum stress in preterm birth by targeting LHX1 and IRE-1. Cell Signal 2025; 132:111777. [PMID: 40157471 DOI: 10.1016/j.cellsig.2025.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Preterm birth (PTB) significantly contributed to neonatal mortality, emphasizing the need for a detailed understanding of its pathogenesis. This study aimed to explore the involvement of ferroptosis, an iron-dependent cell death process, in PTB and investigated the possible crosstalk with endoplasmic reticulum stress (ERS). First, we explored the occurrence of ferroptosis in placenta samples from PTB parturients. Then we established a ferroptosis cell model was established by subjecting trophoblast cells to hypoxia/reoxygenation (H/R), and found the ERS was induced in H/R exposed cells and was attenuated by ferroptosis inhibition using Fer-1, suggesting that ferroptosis could induce ERS. Meanwhile, we also induced ERS in trophoblast cells via tunicamycin (TM) treatment. Ferroptosis inhibition with Fer-1 alleviated TM-induced ER stress. TM treatment reduced trophoblast cell viability and migration while promoted apoptosis and autophagy, effects that were reversed by ferroptosis inhibition. Thus, targeting ferroptosis might help mitigate ER stress-related pathophysiological changes in PTB. Mechanically, we found two ERS mediators LIM homeobox 1 (LHX1)/Inositol-requiring enzyme 1 (IRE-1) were also upregulated in H/R treated cells. Silencing LHX1 or IRE-1 was demonstrated to reverse the H/R-induced ferroptosis. Additionally, rescue assays further revealed that LHX1 promoted ferroptosis by regulating IRE-1. In conclusion, ferroptosis contributed to ERS and was critically involved in PTB, highlighting the LHX1/IRE-1 axis as a promising therapeutic target for mitigating ferroptosis-related complications. These findings offered a foundation for innovative interventions in preterm birth.
Collapse
Affiliation(s)
- Liyin Qiu
- Department of Obstetrics, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hui Liu
- Department of Histology and Embryology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Shali Chen
- Department of Obstetrics, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Yiting Wu
- Department of Obstetrics, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Jianying Yan
- Department of Obstetrics, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
3
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
4
|
Jiang J, Hu S, Hu K, Xiao L, Lin J, Chen Y, Zhang D, Ou Y, Zhang J, Yuan L, Wang W, Yu P. Novel impact of metal ion-induced cell death on diabetic cardiomyopathy pathogenesis and therapy. Apoptosis 2025; 30:1152-1181. [PMID: 40042744 DOI: 10.1007/s10495-025-02090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 06/16/2025]
Abstract
Diabetes mellitus is a common chronic metabolic disease, with its prevalence escalating annually. Diabetic cardiomyopathy is a leading cause of mortality among diabetic patients, characterized by intricate metabolic disturbances and myocardial cell demise. Various forms of cellular death pathways including apoptosis, pyroptosis, autophagic cell death, necroptosis, ferroptosis, and entosis have been identified in diabetic cardiomyopathy. Inhibiting myocardial cell death pathways has shown promise in mitigating diabetic cardiomyopathy progression. However, there are still gaps in understanding the role of metal ions in diabetic cardiomyopathy pathogenesis. Recent research endeavors have found that iron, copper, zinc, calcium, manganese and other metal elements related to cell death play an intricate and critical role in the pathogenesis and progression of diabetic cardiomyopathy. Notably, many animal studies have shown that the development and progression of diabetic cardiomyopathy can be alleviated by inhibiting the cell death process induced by these metal ions. Therefore, we review the molecular mechanisms underlying the death of various metal ions and the potential pathophysiological roles they play in diabetic cardiomyopathy. In addition, the value of these metal ions in the treatment of diabetic cardiomyopathy is also described.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Shengnan Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Leyang Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jitao Lin
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999007, Hong Kong
| | - Yangliu Ou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Linhui Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan University, Haikou, 570311, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Ruan Y, Zhang L, Zhang L, Zhu K. Therapeutic Approaches Targeting Ferroptosis in Cardiomyopathy. Cardiovasc Drugs Ther 2025; 39:595-613. [PMID: 37930587 DOI: 10.1007/s10557-023-07514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The term cardiomyopathy refers to a group of heart diseases that cause severe heart failure over time. Cardiomyopathies have been proven to be associated with ferroptosis, a non-apoptotic form of cell death. It has been shown that some small molecule drugs and active ingredients of herbal medicine can regulate ferroptosis, thereby alleviating the development of cardiomyopathy. This article reviews recent discoveries about ferroptosis, its role in the pathogenesis of cardiomyopathy, and the therapeutic options for treating ferroptosis-associated cardiomyopathy. The article aims to provide insights into the basic mechanisms of ferroptosis and its treatment to prevent cardiomyopathy and related diseases.
Collapse
Affiliation(s)
- Yanqian Ruan
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lina Zhang
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Keyang Zhu
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Jin C, Ye Y, Gao L, Zhong Z, Zhou C, Wu X, Li X, Zhou G, Chen S, Wei Y, Cai L, Liu S, Xu J. Biological function of RNA-binding proteins in myocardial infarction: a potential emerging therapeutic limelight. Cell Biosci 2025; 15:65. [PMID: 40413549 PMCID: PMC12102849 DOI: 10.1186/s13578-025-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Myocardial infarction (MI) is currently one of the most fatal cardiovascular diseases worldwide. The screening, treatment, and prognosis of MI are top priorities for cardiovascular centers globally due to its characteristic occult onset, high lethality, and poor prognosis. MI is caused by coronary artery occlusion induced by coronary atherosclerotic plaque blockage or other factors, leading to ischemic necrosis and apoptosis of cardiomyocytes. Although significant advancements have been made in the study of cardiomyocytes at the cellular and molecular levels, RNA-binding proteins (RBPs) have not been extensively explored in the context of MI. RBPs, as key regulators coordinating cell differentiation and tissue homeostasis, exhibit specific functions in gene transcription, RNA modification and processing, and post-transcriptional gene expression. By binding to their target RNA, RBPs coordinate various RNA dynamics, including cellular metabolism, subcellular localization, and translation efficiency, thereby controlling the expression of encoded proteins. Classical RBPs, including HuR, hnRNPs, and RBM family molecules, have been identified as critical regulators in myocardial hypoxia, oxidative stress, pro-inflammatory responses, and fibrotic repair. These RBPs exert their effects by modulating key pathophysiological pathways in MI, thereby influencing specific cardiac outcomes. Additionally, specific RBPs, such as QKI and fused in sarcoma (FUS), are implicated in the apoptotic pathways activated during MI. This apoptotic pathway represents a significant molecular phenotype in MI, offering novel perspectives and insights for mitigating cardiomyocyte apoptosis and attenuating the progression of MI. Therefore, this review systematically summarizes the role of RBPs in the main pathophysiological stages of MI and explores their potential therapeutic prospects.
Collapse
Affiliation(s)
- Chenyang Jin
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidong Cai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Gong G, Wan W, Zhang X, Chen X, Yin J. Management of ROS and Regulatory Cell Death in Myocardial Ischemia-Reperfusion Injury. Mol Biotechnol 2025; 67:1765-1783. [PMID: 38852121 DOI: 10.1007/s12033-024-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/10/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is fatal to patients, leading to cardiomyocyte death and myocardial remodeling. Reactive oxygen species (ROS) and oxidative stress play important roles in MIRI. There is a complex crosstalk between ROS and regulatory cell deaths (RCD) in cardiomyocytes, such as apoptosis, pyroptosis, autophagy, and ferroptosis. ROS is a double-edged sword. A reasonable level of ROS maintains the normal physiological activity of myocardial cells. However, during myocardial ischemia-reperfusion, excessive ROS generation accelerates myocardial damage through a variety of biological pathways. ROS regulates cardiomyocyte RCD through various molecular mechanisms. Targeting the removal of excess ROS has been considered an effective way to reverse myocardial damage. Many studies have applied antioxidant drugs or new advanced materials to reduce ROS levels to alleviate MIRI. Although the road from laboratory to clinic has been difficult, many scholars still persevere. This article reviews the molecular mechanisms of ROS inhibition to regulate cardiomyocyte RCD, with a view to providing new insights into prevention and treatment strategies for MIRI.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xinghu Zhang
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xiangxuan Chen
- Department of Cardiology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Jiangsu Medical Vocational College, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Nanjing Medical University Kangda College, Nanjing, 211100, China.
| |
Collapse
|
8
|
Yang X, Wu H, Liu D, Zhou G, Zhang D, Yang Q, Liu Y, Li Y. The link between ferroptosis and autophagy in myocardial ischemia/reperfusion injury: new directions for therapy. J Cardiovasc Transl Res 2025; 18:408-423. [PMID: 39885084 DOI: 10.1007/s12265-025-10590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Myocardial ischemia/reperfusion (I/R)-induced cell death, such as autophagy and ferroptosis, is a major contributor to cardiac injury. Regulating cell death may be key to mitigating myocardial ischemia/reperfusion injury (MI/RI). Autophagy is a crucial physiological process involving cellular self-digestion and compensation, responsible for degrading excess or malfunctioning long-lived proteins and organelles. During MI/RI, autophagy plays both "survival" and "death" roles. A growing body of research indicates that ferroptosis is a type of autophagy-dependent cell death. This article provides a comprehensive review of the functions of autophagy and ferroptosis in MI/RI, as well as the molecules mediating their interaction. Understanding the link between autophagy and ferroptosis may offer new therapeutic directions for MI/RI, bearing significant clinical implications.
Collapse
Affiliation(s)
- Xiaoting Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, HuBei Province, China
| | - Hui Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China.
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Di Liu
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huang Shi, HuBei Province, China
| | - Gang Zhou
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Dong Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Qingzhuo Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yanfang Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, HuBei Province, China
| | - Yi Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, HuBei Province, China
| |
Collapse
|
9
|
Ma Y, Wang X, Li Y, Zhao J, Zhou X, Wang X. Mechanisms Associated with Mitophagy and Ferroptosis in Cerebral Ischemia-reperfusion Injury. J Integr Neurosci 2025; 24:26458. [PMID: 40152564 DOI: 10.31083/jin26458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke (IS) constitutes a major threat to human health. Vascular recanalization by intravenous thrombolysis and mechanical thrombolysis remain the most significant and effective methods for relief of ischemia. Key elements of these treatments include achieving blood-vessel recanalization, restoring brain-tissue reperfusion, and preserving the ischemic penumbra. However, in achieving the therapeutic goals of vascular recanalization, secondary damage to brain tissue from cerebral ischemia-reperfusion injury (CIRI) must also be addressed. Despite advancements in understanding the pathological processes associated with CIRI, effective interventions to prevent its onset and progression are still lacking. Recent research has indicated that mitophagy and ferroptosis are critical mechanisms in the development of CIRI, and significantly contribute to the onset and progression of IS and CIRI because of common targets and co-occurrence mechanisms. Therefore, exploring and summarizing the potential connections between mitophagy and ferroptosis during CIRI is crucial. In the present review, we mainly focused on the mechanisms of mitochondrial autophagy and ferroptosis, and their interaction, in the development of CIRI. We believe that the data show a strong relationship between mitochondrial autophagy and ferroptosis with interactive regulation. This information may underpin new potential approaches for the prevention and treatment of IS and subsequent CIRI.
Collapse
Affiliation(s)
- Yugang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xuebin Wang
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Yahui Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Gerontology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, 250399 Jinan, Shandong, China
| | - Xue Zhou
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Division of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xingchen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| |
Collapse
|
10
|
Yang T, Zhang S, Nie K, Peng X, Huo J, Fu X, Zhang Y. WWOX-mediated p53/SAT1 and NRF2/FPN1 axis contribute to toosendanin-induced ferroptosis in hepatocellular carcinoma. Biochem Pharmacol 2025; 233:116790. [PMID: 39894307 DOI: 10.1016/j.bcp.2025.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Although ferroptosis as an emerging way exhibits tremendous promising in the therapy of hepatocellular carcinoma (HCC), the novel therapeutic agents targeting ferroptosis are still scarce. In our previous study, we found that the natural products toosendanin (TSN) possessed significant anti-proliferative efficacy by regulating WW domain-containing oxidoreductase (WWOX) in HCC. However, there is very limited understanding about TSN-induced ferroptosis, and the role of WWOX in ferroptosis has not been studied. In present study, we investigated the effect and underlying molecular mechanisms of TSN in WWOX-mediated ferroptosis in HCC. We found that TSN induced ferroptosis in HCC cells and its effect was dependent on WWOX. RNA-seq and RT-qPCR assay identified that TSN significantly increased spermidine/spermine N1-acetyltransferase 1 (SAT1) expression while decreased solute carrier family 40 member 1 (SLC40A1) expression, which play vital roles in ferrous ion transport. Further dual-luciferase reporter assay and Co-IP assay revealed that TSN-induced WWOX activation controlled the transcriptional activity of p53 and NF-E2-related factor 2 (NRF2) by regulating their interaction. Meanwhile, IF assay and WB assay confirmed that TSN increased the nuclear distribution of p-WWOX and p-p53 dimers, but impeded the nuclear translocation of NRF2 by inducing its ubiquitination degradation, ultimately regulating the transcription of their downstream target genes. In addition, the results from cell viability assay and the tumor xenograft model verified that co-treatment of TSN, ML385 (NRF2 inhibitor), and MIRA-1 (p53 activator) could effectively inhibit HCC cells growth in the presence of Fer-1 (ferroptosis inhibitor) in vitro and in vivo. Overall, our study contributes to the necessary understanding of the molecular mechanisms of WWOX-mediated ferroptosis regulation, and identifies TSN as a potential therapeutic agent targeting ferroptosis for HCC.
Collapse
Affiliation(s)
- Tianfeng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Suyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Kun Nie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China
| | - Yanmin Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China.
| |
Collapse
|
11
|
Xie L, He Q, Wu H, Shi W, Xiao X, Yu T. Hydrogen Sulfide Sustained Release Donor Alleviates Spinal Cord Ischemia-Reperfusion-Induced Neuron Death by Inhibiting Ferritinophagy-Mediated Ferroptosis. CNS Neurosci Ther 2025; 31:e70366. [PMID: 40168041 PMCID: PMC11960479 DOI: 10.1111/cns.70366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
AIMS Spinal cord ischemia-reperfusion injury (SCIRI) is a disastrous complication that cannot be completely prevented in thoracoabdominal aneurysm surgery, leading to sensory and motor dysfunction and even paraparesis, causing tremendous socioeconomic burden. Ferritinophagy is a form of autophagic ferroptosis, which is a contributor to SCIRI. Hydrogen sulfide (H2S) has been reported to be neuroprotective in various diseases. However, it remains unclear whether H2S alleviates SCIRI-induced neural death via regulating ferritinophagy-mediated ferroptosis. The aim of this study was to explore their relationship and interaction in SCIRI. RESULTS The results demonstrate that Nissl bodies and motor function were obviously lost in SCIRI rats. Meanwhile, SCIRI led to a significant increase in DHE-positive neurons, TUNEL-positive neurons, LC3-positive neurons, and ferritin-positive neurons, downregulation of GPx4, Slc7a11, p62, and ferritin expression, and upregulation of LC3 II/I and NCOA4 expression. Additionally, there was upregulation of the level of MDA, GSH, and Fe2+. Finally, we found that H2S could significantly relieve neuronal death and loss of motor function in SCIRI rats by inhibiting ferritinophagy and ferroptosis. CONCLUSION Ferroptosis and ferritinophagy play a crucial role in the etiopathogenesis of SCIRI, and H2S exerts neuroprotection by inhibiting ferritinophagy-mediated ferroptosis.
Collapse
Affiliation(s)
- Lei Xie
- Department of Orthopedic Surgery, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
| | - Qiuping He
- Department of Orthopedic Surgery, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
| | - Hang Wu
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
- Department of Orthopedics, the Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
| | - Weipeng Shi
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
- Department of Orthopedics, the Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| |
Collapse
|
12
|
Zhang Y, Du W, Kong T, Hua T, Ma H, Hu Y, Pan S, Ling B, Yang M, Cheng C. Targeted temperature management alleviates post-resuscitation myocardial dysfunction by inhibiting ferroptosis. Cell Death Discov 2025; 11:71. [PMID: 39984437 PMCID: PMC11845627 DOI: 10.1038/s41420-025-02356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/19/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Targeted temperature management (TTM) is a vital intervention for cardiac arrest survivors to mitigate post-resuscitation myocardial dysfunction (PRMD). However, the optimal temperature for TTM remains a topic of debate. This study investigates the effects of TTM at different temperatures and explores the underlying mechanisms using in vivo and in vitro models of myocardial ischemia/reperfusion (I/R) injury following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). We found that TTM at 33 °C significantly improved post-resuscitation hemodynamics and myocardial function, reducing both myocardial and mitochondrial damage in the rat model of CA/CPR. Additionally, Deferoxamin (DFO), as an iron chelating agent, also demonstrated protective effects against PRMD. Both in vitro and in vivo experiments confirmed that hypothermia at 33 °C and DFO mitigated mitochondrial damage, oxidative stress, lipid peroxidation, and iron overload, while suppressing ferritinophagy and ferroptosis. Furthermore, TTM at 33 °C and DFO facilitated the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), with Nrf2 activation leading to inhibited ferritinophagy and enhanced iron export. Our findings indicate that TTM at 33° C, as opposed to 36° C, significantly alleviates PRMD and reduced myocardial damage by inhibiting ferroptosis. Theses protective effects are associated with Nrf2 activation and modulation of iron homeostasis. Moreover, DFO not only suppressed ferroptosis through its iron chelation properties but also by activating the Nrf2 axis.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Weiwei Du
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ting Kong
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Department of General Practice Department, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Tianfeng Hua
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Honghao Ma
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yan Hu
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Sinong Pan
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Bingrui Ling
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Min Yang
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Cheng Cheng
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230088, Anhui, China.
| |
Collapse
|
13
|
Zhang L, Duolikun M, Chen H, Wang Z, Li X, Xiao H, Dong Y, Chen H, Liu F, Fan S, Lin J, Chen L. Genome-wide KAS-Seq mapping of leukocytes in ischemia-reperfusion model reveals IL7R as a potential therapeutic target for ischemia-reperfusion injury. Sci Rep 2025; 15:6165. [PMID: 39979392 PMCID: PMC11842730 DOI: 10.1038/s41598-025-90457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Ischemia-reperfusion injury (IRI) is one of the leading causes of mortality and disability worldwide. Owing to its complex pathogenesis, there is still a lack of effective therapeutic targets in clinical practice, and exploring the mechanism and targets of IRI is still a major clinical challenge. This study aimed to explore the genetic alterations in leukocytes in peripheral blood after ischemia-reperfusion, aiming to discover new biomarkers and potential therapeutic targets. KAS-Seq (Kethoxal-assisted single-strand DNA sequencing) was used to obtain gene expression profiles of circulating leukocytes in a porcine ischemia-reperfusion model at 24, 48, and 72 h post-ischemia‒reperfusion. This method integrated genes that exhibited regular changes over time. In this study, we thoroughly analyzed the dynamic changes in gene expression post-IRI, revealing significant enrichment in key signaling pathways that regulate immune responses and T-cell activation over time. Our identification of the interleukin-7 receptor (IL7R) was particularly striking, as it plays a crucial molecular role in IRI. Additionally, using database mining technology, we confirmed the close relationship between IL7R and IRI, explored the interaction between interferon-γ (IFNG) and IL7R in T-cell activation, and clarified their joint influence on ischemia-reperfusion injury. Using KAS-Seq analysis of leukocytes from peripheral blood, we successfully delineated the temporal patterns of gene expression and changes in signal transduction pathways in porcine models of ischemia-reperfusion. Subsequent in-depth analysis identified IL7R as a potential novel therapeutic target for IRI. The pivotal role of this gene in modulating immune responses provides innovative avenues for the development of IRI treatments.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Peking University Third Hospital Cancer Center, Beijing, 100191, China
| | - Maimaitiyasen Duolikun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570100, China
| | - Hangyu Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Peking University Third Hospital Cancer Center, Beijing, 100191, China
| | - Zihao Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xuehui Li
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Hong Xiao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570100, China
| | - Yuchao Dong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Haoyu Chen
- School of Graduate, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Fengyong Liu
- Department of Interventional Radiology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jian Lin
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Beijing, 100191, China.
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570100, China.
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Beijing, 100191, China.
| |
Collapse
|
14
|
Tekiyeh Maroof N, Mehrzadi S, Naseroleslami M, Aboutaleb N. Apelin13 Loaded Nano-Niosomes Confer Cardioprotection in a Rat Model of Myocardial Ischemia Reperfusion by Targeting the Nrf2/HO-1 Pathway. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10597-z. [PMID: 39971890 DOI: 10.1007/s12265-025-10597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Although apelin-13 has cardioprotective impact, its short half-life in the bloodstream has challenged its clinical application. Using nanocarriers can increase the bioavailability, functionality, and stability of drugs. Current investigation aims to find whether apelin13-loaded nano-niosomes confer cardioprotection in an animal model of myocardial ischemia/reperfusion injury (MI/R) via suppressing ferroptosis, targeting Nrf2 pathway, and AMPK/GSK-3β axis. Ligation of the left anterior coronary artery descending was done to establish the MI/R model and 15 μg/kg of apelin13-loaded nano-niosomes were intramyocardially administrated. Echocardiography, RT-PCR, immunohistochemistry, western blot, ELISA kits, and H&E staining were applied to measure the related indicators. Treatment with both apelin13 and apelin13 loaded nano-niosomes could improve cardiac function and attenuate oxidative stress, myocardial inflammatory factors, and hence ferroptosis by activating the Nrf2 and its downstream proteins HO1, NQO1, AMPK/GSK-3β signaling pathway. In conclusion, apelin13-loaded nano-niosomes are effective MI therapeutic agents against MI/R-induced ferroptosis by activation of Nrf2 via AMPK/GSK-3β axis.
Collapse
Affiliation(s)
- Neda Tekiyeh Maroof
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Wang Z, Wu C, Yin D, Dou K. Ferroptosis: mechanism and role in diabetes-related cardiovascular diseases. Cardiovasc Diabetol 2025; 24:60. [PMID: 39920799 PMCID: PMC11806630 DOI: 10.1186/s12933-025-02614-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
Cardiovascular diseases represent the principal cause of death and comorbidity among people with diabetes. Ferroptosis, an iron-dependent non-apoptotic regulated cellular death characterized by lipid peroxidation, is involved in the pathogenesis of diabetic cardiovascular diseases. The susceptibility to ferroptosis in diabetic hearts is possibly related to myocardial iron accumulation, abnormal lipid metabolism and excess oxidative stress under hyperglycemia conditions. Accumulating evidence suggests ferroptosis can be the therapeutic target for diabetic cardiovascular diseases. This review summarizes ferroptosis-related mechanisms in the pathogenesis of diabetic cardiovascular diseases and novel therapeutic choices targeting ferroptosis-related pathways. Further study on ferroptosis-mediated cardiac injury can enhance our understanding of the pathophysiology of diabetic cardiovascular diseases and provide more potential therapeutic choices.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Yin
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kefei Dou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Li M, Hu Y, Wu X, Tong J, Tao J, Tang A, Ji Y, Yao Y, Tao F, Liang C. Placental Ferroptosis May Be Involved in Prenatal Arsenic Exposure Induced Cognitive Impairment in Offspring. Biol Trace Elem Res 2025:10.1007/s12011-025-04525-0. [PMID: 39912999 DOI: 10.1007/s12011-025-04525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
The association between prenatal arsenic (As) exposure and offspring's cognition is still unclear, and the underlying etiology has also not been elucidated. Based on the Ma'anshan Birth Cohort (MABC) study in China, 1814 mother-child pairs were included in this study, and the association of As levels in cord serum with preschoolers' intelligence scores was explored. To validate the results from population study, in vivo models were adopted to observe the association between prenatal As exposure and spatial learning and memory abilities of mice offsprings. The As-exposure induced ferroptosis in the placenta of human beings as well as C57BL/6 J mice and HTR-8/SVneo cells was explored in order to clarify the potential cause of impairment of offspring's cognition related to As exposure, respectively. In the population study, we observed a significant inverse association between natural logarithm transformed (ln) As levels and preschoolers' intelligence scores, especially for the fluid reasoning index (FRI) [(β (95%CI): - 1.07 (- 1.98, - 0.16)] and working memory index (WMI) [β (95%CI): - 1.51 (- 2.76, - 0.25)]. Meanwhile, the data from in vivo models revealed that the learning and memory abilities of offspring mice decreased after prenatal As exposure. The occurrence of ferroptosis-like characteristics in the placenta and HTR-8/SVneo cells after As exposure was observed, accompanying with evident oxidative stress, iron accumulation, mitochondrial damage, and decreased protein levels of GPX4, xCT, and FTH1 (or FPN1). Notably, the ferroptosis-like alterations induced by NaAsO2 can be effectively alleviated by N-acetylcysteine (NAC) and ferrostatin-1 (Fer-1) treatment in HTR-8/SVneo cells, respectively. In conclusion, prenatal As exposure associates with impairment of offspring's cognition, and placental ferroptosis may be involved in the association. Further studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Mengzhu Li
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuan Hu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400039, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiajing Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Anni Tang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yanli Ji
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
17
|
Zhao J, Shi W, Zheng Y, Wang J, Yuan M, Anwar Y, He Y, Ma H, Wu J. Mechanism of mTOR/RILP-regulated autophagic flux in increased susceptibility to myocardial ischemia-reperfusion in diabetic mice. Front Pharmacol 2025; 15:1506401. [PMID: 39958873 PMCID: PMC11825452 DOI: 10.3389/fphar.2024.1506401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/23/2024] [Indexed: 02/18/2025] Open
Abstract
Background The increased myocardial vulnerability that occurs in diabetic patients following an ischemia-reperfusion injury (I/RI) represents a significant perioperative safety risk. A comprehensive understanding of the intrinsic mechanisms underlying this phenomenon is therefore of paramount importance. Purposes The objective of this study is to investigate the potential mechanism of action between impaired autophagic flux and increased vulnerability in diabetic myocardium. This will provide a foundation for the clinical search for effective preventive and curative measures. Methods The transcriptomic alterations in autophagy-related genes following myocardial exposure to I/RI were analyzed by single-cell sequencing. This was followed by the validation of potential mechanisms of action between impaired autophagic flux and increased susceptibility at the cellular and animal levels, respectively. Results After I/RI in diabetic myocardium, there was a significant increase in the number of CM1 subgroups and a specific downregulation of 239 autophagy-related genes led by RILP. HE staining revealed that myocardial injury was exacerbated in diabetic mice subjected to I/RI. Transmission electron microscopy revealed that the accumulation of autophagic vesicles in cardiomyocytes of diabetic mice resulted in impaired autophagic flux. qRT-PCR revealed that the expression of RILP was significantly reduced in diabetic mice subjected to I/RI. WB showed that P62 was significantly increased and RILP was significantly decreased in diabetic mice subjected to I/RI compared to healthy mice. Inhibition of mTOR during hypoxia/reoxygenation (H/R) injury restored RILP expression and attenuated cellular injury in cardiomyocytes cultured with high glucose. Conclusion Following I/RI in diabetic myocardium, an increase in the CM1 subpopulation and a reduction in RILP expression result in impaired autophagic flux. Regulation of the mTOR/RILP pathway can restore impaired autophagic flux and improve myocardial vulnerability, thereby exerting cardioprotective effects.
Collapse
Affiliation(s)
- Jiyao Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei Shi
- Catheterization Laboratory, Changji Prefecture People’s Hospital, Changji Hui Autonomous Prefecture, China
| | - Yan Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junjie Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Muzhao Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yultuz Anwar
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuxuan He
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haiping Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
18
|
Yang XC, Jin YJ, Ning R, Mao QY, Zhang PY, Zhou L, Zhang CC, Peng YC, Chen N. Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke. Chin Med 2025; 20:4. [PMID: 39755657 DOI: 10.1186/s13020-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVE Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation. METHODS The ischemic stroke model was established by middle cerebral artery occlusion/reperfusion (MCAO/R) in adult rats. These rats have been randomly divided into the EA + MCAO/R group, the MCAO/R group, the EA + MCAO/R + Brusatol group (the inhibitor of Nrf2), and the EA + MCAO/R + DMSO group, and the Sham group. The EA + MCAO/R group, EA + MCAO/R + Brusatol group, and the EA + MCAO/R + DMSO group received EA intervention 24 h after modeling for 7 consecutive days. The behavioral function was evaluated by Neurologic severity score (NSS), Garcia score, Foot-fault Test, and Rotarod Test. The infarct volume was detected by TTC staining, and the neuronal damage was observed by Nissl staining. The levels of Fe2+, reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured by ELISA. The immunofluorescence and Western blotting were used to detect the expression of Total Nrf2, p-Nrf2, Nuclear Nrf2, and Cytoplasmic Nrf2, and the essential ferroptosis proteins, including glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11) and ferritin heavy chain 1 (FTH1). The mitochondria were observed by transmission electron microscopy (TEM). RESULTS Electroacupuncture improved neurological deficits in rats model of MCAO/R, decreased the brain infarct volume, alleviated neuronal damage, inhibited the Fe2+, ROS, and MDA accumulation, increased SOD levels, increased the expression of GPX4, SLC7A11 and FTH1, and rescued injured mitochondria. Especially, we found that the electroacupuncture up-regulated the expression of Nrf2, and promoted phosphorylation of Nrf2 and nuclear translocation, However, Nrf2 inhibitor Brusatol reversed the neuroprotective effect of electroacupuncture. CONCLUSION Electroacupuncture can alleviate cerebral I/R injury-induced ferroptosis by promoting Nrf2 nuclear translocation. It is expected that these data will provide novel insights into the mechanisms of electroacupuncture protecting against cerebral I/R injury and potential targets underlying ferroptosis in the stroke.
Collapse
Affiliation(s)
- Xi-Chen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Ya-Ju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qiu-Yue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng-Yue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Cheng-Cai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yi-Chen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
19
|
Fu Y, Wang Q, Wang D, Li Y. Dexmedetomidine Inhibits Ferroptosis to Alleviate Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Regulating the HDAC2/FPN Pathway. Cardiovasc Drugs Ther 2025:10.1007/s10557-024-07664-z. [PMID: 39747742 DOI: 10.1007/s10557-024-07664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Myocardial ischemia/reperfusion injury (MIRI) is closely associated with ferroptosis. Dexmedetomidine (Dex) has good therapeutic effects on MIRI. This study investigates whether dexmedetomidine (Dex) regulates ferroptosis during MIRI by affecting ferroportin1 (FPN) levels and elucidates the underlying mechanisms. METHODS A murine MIRI model was established using male C57BL/6 J mice subjected to 30 min of left anterior descending coronary artery ligation followed by 48 h of reperfusion. In vitro, cardiomyocyte hypoxia/reoxygenation (H/R) models were created with 16 h of hypoxia and 8 h of reoxygenation. Triphenyltetrazolium chloride (TTC) staining was employed to determine infarct size. The pathological changes in myocardial tissues were assessed using hematoxylin-eosin (HE) staining. Lipid reactive oxygen species (ROS) level was detected using BODIPY™ 581/591 C11, and ferrous iron (Fe2+) and malondialdehyde (MDA) levels were measured using the kits. Cardiomyocyte viability was examined using cell counting kit-8 (CCK8) assay. The histone H3 lysine 27 acetylation (H3K27Ac) level in the FPN promoter region was determined using DNA pulldown assay. Chromatin immunoprecipitation (ChIP) assay was used to investigate the relationship between histone deacetylase 2 (HDAC2) and FPN promoter. RESULTS Dex alleviated ferroptosis in cardiomyocytes by upregulating FPN levels, which mitigated H/R-induced oxidative damage. FPN knockdown abolished the protective effects of Dex, confirming its dependence on FPN expression. Additionally, HDAC2 knockdown alleviated I/R-induced myocardial injury and ferroptosis in mice. Moreover, H/R-induced HDAC2 upregulation transcriptionally inhibited FPN expression by reducing the H3K27Ac level in the FPN promoter region, but Dex therapy restored this impact via inhibition of HDAC2. As expected, HDAC2 overexpression partially reversed the inhibitory effect of Dex on H/R-mediated cardiomyocyte ferroptosis. CONCLUSION Dex alleviated H/R-mediated cardiomyocyte ferroptosis through regulating the HDAC2/FPN axis. Our findings lend theoretical support to the use of Dex in MIRI therapy.
Collapse
Affiliation(s)
- Yueqi Fu
- Jiamusi University, Jiamusi, 154002, Heilongjiang Province, China
| | - QingDong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, China
| | - DongWei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, China.
| | - Yicong Li
- Department of Anesthesiology, Hainan Hosiptal of Chinese PLA General Hospital, No.80 Jianglin Street, Haitang District, Sanya City, Hainan Province, China.
| |
Collapse
|
20
|
Li YC, Cheng ML. Carvedilol Confers Ferroptosis Resistance in HL-1 Cells by Upregulating GPX4, FTH1, and FTL1 and Inducing Metabolic Remodeling Under Hypoxia/Reoxygenation. Antioxidants (Basel) 2024; 14:7. [PMID: 39857341 PMCID: PMC11762394 DOI: 10.3390/antiox14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Hypoxia/reoxygenation (HR) often occurs under cardiac pathological conditions, and HR-induced oxidative stress usually leads to cardiomyocyte damage. Carvedilol, a non-selective β-blocker, is used clinically to treat cardiac ischemia diseases. Moreover, Carvedilol has also been reported to have an antioxidant ability by reducing lipid peroxidation. However, the mechanism of Carvedilol to inhibit lipid peroxidation is still elusive. To explore the protective mechanism of Carvedilol to resist lipid peroxidation on cardiomyocytes, HL-1 cells were cultured under normoxia, hypoxia, and HR and treated with Carvedilol to investigate the alteration on metabolism, protein expression, and mRNA level to explain its oxidative mechanism. The study found that Carvedilol upregulated glutathione peroxidase 4 (GPX4) protein expression to resist HR-induced lipid peroxidation by metabolic remodeling under HR. Also, Carvedilol promoted ferroptosis-related genes, ferritin heavy chain 1 (FTH1) and ferritin light chain 1 (FTL1) mRNA levels, to reduce lipid peroxidation under both hypoxia and HR. In conclusion, our study explores a mechanism by which Carvedilol inhibits ferroptosis by upregulating GPX4, FTH1, and FTL1 levels to downregulate lipid peroxidation under HR. The study provides a potential strategy for using Carvedilol in clinical applications, inspiring further research and development in the area of heart diseases.
Collapse
Affiliation(s)
- Yi-Chin Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Mei-Ling Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
21
|
Tian B, Ji J, Jin C. BATF alleviates ox-LDL-induced HCAEC injury by regulating SIRT1 expression in coronary heart disease. PLoS One 2024; 19:e0306514. [PMID: 39680523 DOI: 10.1371/journal.pone.0306514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Coronary heart disease (CHD) represents a significant global health concern, arising from an intricate interplay between genetic predisposition and environmental influences, with a pivotal involvement of oxidized low-density lipoprotein (ox-LDL) in the pathophysiology of it. We aimed to elucidate the synergistic dynamics of B cell activating transcription factor (BATF) and Sirtuin 1 (SIRT1) in cell injury caused by ox-LDL, reveal potential therapeutic strategies for CHD. METHODS The GSE42148 dataset was used to analyze Differentially expressed genes (DEGs) to construct a gene co-expression network. Then bioinformatics analysis was performed on key modules to select the BATF gene. In vitro experiments were conducted to investigate the protective impact of BATF against human coronary artery endothelial cells (HCAEC) injury induced by ox-LDL. Further investigations probed the synergistic impact of BATF and SIRT1 modulation on cellular apoptosis and damage in the presence of ox-LDL. RESULTS BATF was significantly down-regulated in the CHD sample of the GSE42148 dataset. In vitro assays have proven that BATF alleviates ox-LDL-induced HCAEC injury. Notably, BATF emerged as a pivotal regulator of SIRT1 expression post ox-LDL exposure. Subsequent experiments underscored the interplay between BATF and SIRT1 in mitigating ox-LDL-induced apoptosis and Lactate Dehydrogenase (LDH) activity elevation, highlighting their collaborative role in cellular protection. CONCLUSION The research findings suggested a prospective protective function of BATF in HCAEC injury induced by ox-LDL, likely through the mediation of SIRT1 regulation. These results could offer fresh perspectives on the etiology of CHD and possible treatment avenues.
Collapse
Affiliation(s)
- Bei Tian
- Nursing Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jingyu Ji
- Nursing Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Can Jin
- Department of Cardiovascular Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
22
|
Zhao CZ, Ding HM, Hu ZQ, Zhou L, Du YQ, Zhou P, Wang L. Exploring the mechanism of Ling-Gui-Zhu-Gan decoction in metabolic cardiomyopathy via inhibiting ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156234. [PMID: 39547098 DOI: 10.1016/j.phymed.2024.156234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/14/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE This study was to investigate the mechanism of Ling-Gui-Zhu-Gan decoction (LGZGD) in regulating lipid metabolism and thus inhibiting ferroptosis. METHODS UPLC for the determination of the main chemical composition of LGZGD. A HF-induced rat model of metabolic cardiomyopathy was established. Echocardiography was used to detect cardiac function. Serum lipid levels, myocardial injury markers, and lipid peroxidation levels were detected. Pathological changes were detected. Lipid deposition was assessed by oil red O, and the mitochondrial ultrastructure was observed by electron microscopy. Mechanistically, PLIN5, CD36, ATGL, GPX4, ACSL4, FPN1, DRP1, MFF, FIS1, and OPA1 expressions were examined. After PA-induced H9c2 cells established, apoptosis, myocardial injury markers, and lipid peroxidation levels were detected and lipid deposition levels were assessed. The expressions of PLIN5, CD36, ATGL, GPX4, ACSL4 and FPN1 were detected. H9c2 cardiomyocytes with transient knockdown of PLIN5 and overexpression of PLIN5 were constructed and treated with drug administration and modeling, and the apoptosis level was detected by flow cytometry, the levels of lipid peroxidation and ROS were detected by fluorescence, and the protein and gene expressions of ACSL4 and GPX4 were detected. Results The main active components of LGZGD were liquiritin, isoliquiritin, cinnamic acid, cinnamaldehyde, glycyrrhizic acid, and atractylenolide III. LGZGD significantly improved cardiac dysfunction, lowered lipid level and lipid deposition, reduced CK, NT-proBNP and MDA levels, restored SOD levels, and improved inflammatory cell infiltration as well as collagen fiber deposition. LGZGD decreased the expression of PLIN5, CD36, ACSL4, and increased the expression of ATGL, GPX4, and FPN1. LGZGD also decreased the gene expression of DRP1, MFF, FIS1, and increased OPA1 expression. LGZGD significantly ameliorated PA-induced apoptosis, decreased lipid deposition, lowered lipid peroxidation levels and CK level, decreased PLIN5, CD36, and ACSL4 expressions, and increased ATGL, GPX4, and FPN1 expressions. LGZGD reversed cardiomyocyte injury aggravated by transient knockdown of PLIN5, decreased apoptosis levels, lipid peroxidation levels, ROS levels, and ACSL4 expressions, and increased GPX4 expression. LGZGD enhanced cardiomyocyte protection after overexpression of PLIN5, reduced apoptosis levels, lipid peroxidation level and ROS level, decreased ACSL4 expression, and increased GPX4 expression. CONCLUSION PLIN5 interferes with lipid peroxidation, regulates mitochondrial function, and inhibits HF-induced ferroptosis in cardiomyocytes. LGZGD ameliorates impairment of cardiac structural function in model rats through PLIN5-mediated ferroptosis pathway, and has the effect of preventing metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Chuan-Zhi Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Hui-Min Ding
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zi-Qing Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Lan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yong-Qin Du
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| |
Collapse
|
23
|
Tian M, Huang X, Li M, Lou P, Ma H, Jiang X, Zhou Y, Liu Y. Ferroptosis in diabetic cardiomyopathy: from its mechanisms to therapeutic strategies. Front Endocrinol (Lausanne) 2024; 15:1421838. [PMID: 39588340 PMCID: PMC11586197 DOI: 10.3389/fendo.2024.1421838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as structural and functional cardiac abnormalities in diabetes, and cardiomyocyte death is the terminal event of DCM. Ferroptosis is iron-dependent oxidative cell death. Evidence has indicated that iron overload and ferroptosis play important roles in the pathogenesis of DCM. Mitochondria, an important organelle in iron homeostasis and ROS production, play a crucial role in cardiomyocyte ferroptosis in diabetes. Studies have shown some anti-diabetic medicines, plant extracts, and ferroptosis inhibitors might improve DCM by alleviating ferroptosis. In this review, we systematically reviewed the evidence of ferroptosis in DCM. Anti-ferroptosis might be a promising therapeutic strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingping Lou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
24
|
Qiu M, Ma K, Zhang J, Zhao Z, Wang S, Wang Q, Xu H. Isoliquiritigenin as a modulator of the Nrf2 signaling pathway: potential therapeutic implications. Front Pharmacol 2024; 15:1395735. [PMID: 39444605 PMCID: PMC11496173 DOI: 10.3389/fphar.2024.1395735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor responsible for cytoprotection, plays a crucial role in regulating the expression of numerous antioxidant genes, thereby reducing reactive oxygen species (ROS) levels and safeguarding cells against oxidative stress. Extensive research has demonstrated the involvement of Nrf2 in various diseases, prompting the exploration of Nrf2 activation as a potential therapeutic approach for a variety of diseases. Consequently, there has been a surge of interest in investigating the Nrf2 signaling pathway and developing compounds that can modulate its activity. Isoliquiritigenin (ISL) (PubChem CID:638278) exhibits a diverse range of pharmacological activities, including antioxidant, anticancer, and anti-tumor properties. Notably, its robust antioxidant activity has garnered significant attention. Furthermore, ISL has been found to possess therapeutic effects on various diseases, such as diabetes, cardiovascular diseases, kidney diseases, and cancer, through the activation of the Nrf2 pathway. This review aims to evaluate the potential of ISL in modulating the Nrf2 signaling pathway and summarize the role of ISL in diverse diseases prevention and treatment through modulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Mangmang Qiu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Kang Ma
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Junfeng Zhang
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Zhaohua Zhao
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Shan Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qing Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| |
Collapse
|
25
|
Liao C, Guo J, Li S, Rui J, Gao K, Lao J, Zhou Y. Ferroptosis Regulated by 5-HT3a Receptor via Calcium/Calmodulin Signaling Contributes to Neuropathic Pain in Brachial Plexus Avulsion Rat Models. ACS Chem Neurosci 2024. [PMID: 39370752 DOI: 10.1021/acschemneuro.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Neuropathic pain is a prevalent complication following brachial plexus avulsion (BPA). Ferroptosis has been implicated in various nervous system disorders. However, the association between ferroptosis and neuropathic pain induced by BPA remains unclear. This study aimed to investigate the role of ferroptosis in BPA-induced neuropathic pain. A rat model of neuropathic pain was established via BPA induction. Pain thresholds of rats were measured after BPA surgery and intraperitoneal injection of Fer-1. On day 14 postsurgery, spinal dorsal horn (SDH) samples were collected for Western blotting, biochemical analysis, and immunohistochemistry to analyze the expression and distribution of ferroptosis-related markers. The relationships among 5-HT3a receptor, calcium/calmodulin (CaM) pathway, and ferroptosis were assessed via Western blotting, biochemical analysis, and lipid peroxidation assays, including iron and calcium content, reactive oxygen species, glutathione peroxidase 4 (GPX4), ACSL, and CaM expression. BPA-induced neuropathic pain was associated with iron accumulation, increased lipid peroxidation, dysregulated expression of Acyl-CoA synthetase long-chain family member 4, and GPX4, and changes in transferrin receptor, divalent metal transporter 1, and ferroportin-1 (FPN1). Intraperitoneal administration of Fer-1 reversed all of these alterations and mitigated mechanical and cold hypersensitivity. Inhibition of the 5-HT3a receptor reduced the extent of ferroptosis. Furthermore, the 5-HT3a receptor can regulate the calcium/CaM pathway via L-type calcium channels (LTCCs), and blocking LTCCs with nifedipine also alleviated ferroptosis in the SDH of BPA rats. Taken together, in rats with BPA, the development of neuropathic pain involves ferroptosis, which is regulated by the 5-HT3a receptor through the LTCCs and the calcium/CaM signaling pathway in the SDH.
Collapse
Affiliation(s)
- Chengpeng Liao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Jinding Guo
- NHC Key Laboratory of Limbs Reconstruction, Shanghai 200032, People's Republic of China
| | - Shenqian Li
- NHC Key Laboratory of Limbs Reconstruction, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200032, People's Republic of China
- Institute of Hand Surgery, Shanghai 200040, People's Republic of China
| | - Jing Rui
- NHC Key Laboratory of Limbs Reconstruction, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200032, People's Republic of China
- Institute of Hand Surgery, Shanghai 200040, People's Republic of China
- Institute of Hand Surgery, Fudan University, Shanghai 200040, People's Republic of China
| | - Kaiming Gao
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200032, People's Republic of China
- Institute of Hand Surgery, Fudan University, Shanghai 200040, People's Republic of China
| | - Jie Lao
- Institute of Hand Surgery, Shanghai 200040, People's Republic of China
- Institute of Hand Surgery, Fudan University, Shanghai 200040, People's Republic of China
| | - Yingjie Zhou
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
- NHC Key Laboratory of Limbs Reconstruction, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200032, People's Republic of China
| |
Collapse
|
26
|
Yin J, Xu X, Guo Y, Sun C, Yang Y, Liu H, Yu P, Wu T, Song X. Repair and regeneration: ferroptosis in the process of remodeling and fibrosis in impaired organs. Cell Death Discov 2024; 10:424. [PMID: 39358326 PMCID: PMC11447141 DOI: 10.1038/s41420-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As common clinical-pathological processes, wound healing and tissue remodelling following injury or stimulation are essential topics in medical research. Promoting the effective healing of prolonged wounds, improving tissue repair and regeneration, and preventing fibrosis are important and challenging issues in clinical practice. Ferroptosis, which is characterized by iron overload and lipid peroxidation, is a nontraditional form of regulated cell death. Emerging evidence indicates that dysregulated metabolic pathways and impaired iron homeostasis play important roles in various healing and regeneration processes via ferroptosis. Thus, we review the intrinsic mechanisms of tissue repair and remodeling via ferroptosis in different organs and systems under various conditions, including the inflammatory response in skin wounds, remodeling of joints and cartilage, and fibrosis in multiple organs. Additionally, we summarize the common underlying mechanisms, key molecules, and targeted drugs for ferroptosis in repair and regeneration. Finally, we discuss the potential of therapeutic agents, small molecules, and novel materials emerging for targeting ferroptosis to promote wound healing and tissue repair and attenuate fibrosis.
Collapse
Affiliation(s)
- Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Caiyu Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Huifang Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pengyi Yu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Tong Wu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China.
| |
Collapse
|
27
|
Wu K, Chen J, Lin J, Zhu E, Xu X, Yan X, Ju L, Huang M, Zhang Y. The role of ferroptosis in DM-induced liver injury. Biometals 2024; 37:1191-1200. [PMID: 38874821 DOI: 10.1007/s10534-024-00600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/25/2024] [Indexed: 06/15/2024]
Abstract
The liver damage caused by Diabetes Mellitus (DM) has attracted increasing attention in recent years. Liver injury in DM can be caused by ferroptosis, a form of cell death caused by iron overload. However, the role of iron transporters in this context is still not clear. Herein, we attempted to shed light on the pathophysiological mechanism of ferroptosis. DM was induced in 8-week-old male rats by streptozotocin (STZ) before assessment of the degree of liver injury. Together with histopathological changes, variations in glutathione peroxidase 4 (GPX4), glutathione (GSH), superoxide dismutase (SOD), transferrin receptor 1 (TFR1), ferritin heavy chain (FTH), ferritin light chain (FTL), ferroportin and Prussian blue staining, were monitored in rat livers before and after treatment with Fer-1. In the liver of STZ-treated rats, GSH and SOD levels decreased, whereas those of malondialdehyde (MDA) increased. Expression of TFR1, FTH and FTL increased whereas that of glutathione peroxidase 4 (GPX4) and ferroportin did not change significantly. Prussian blue staining showed that iron levels increased. Histopathology showed liver fibrosis and decreased glycogen content. Fer-1 treatment reduced iron and MDA levels but GSH and SOD levels were unchanged. Expression of FTH and FTL was reduced whereas that of ferroportin showed a mild decrease. Fer-1 treatment alleviated liver fibrosis, increased glycogen content and mildly improved liver function. Our study demonstrates that ferroptosis is involved in DM-induced liver injury. Regulating the levels of iron transporters may become a new therapeutic strategy in ferroptosis-induced liver injury.
Collapse
Affiliation(s)
- Keping Wu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Jiasi Chen
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawen Lin
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Enyi Zhu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiaochang Xu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiuhong Yan
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Lang Ju
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Mingcheng Huang
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| | - Yimin Zhang
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
28
|
Han H, Zhang G, Zhang X, Zhao Q. Nrf2-mediated ferroptosis inhibition: a novel approach for managing inflammatory diseases. Inflammopharmacology 2024; 32:2961-2986. [PMID: 39126567 DOI: 10.1007/s10787-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Inflammatory diseases, including psoriasis, atherosclerosis, rheumatoid arthritis, and ulcerative colitis, are characterized by persistent inflammation. Moreover, the existing treatments for inflammatory diseases only provide temporary relief by controlling symptoms, and treatments of unstable and expensive. Therefore, new therapeutic solutions are urgently needed to address the underlying causes or symptoms of inflammatory diseases. Inflammation frequently coincides with a high level of (reactive oxygen species) ROS activation, serving as a fundamental element in numerous physiological and pathological phenotypes that can result in serious harm to the organism. Given its pivotal role in inflammation, oxidative stress, and ferroptosis, ROS represents a focal node for investigating the (nuclear factor E2-related factor 2) Nrf2 pathway and ferroptosis, both of which are intricately linked to ROS. Ferroptosis is mainly triggered by oxidative stress and involves iron-dependent lipid peroxidation. The transcription factor Nrf2 targets several genes within the ferroptosis pathway. Recent studies have shown that Nrf2 plays a significant role in three key ferroptosis-related routes, including the synthesis and metabolism of glutathione/glutathione peroxidase 4, iron metabolism, and lipid processes. As a result, ferroptosis-related treatments for inflammatory diseases have attracted much attention. Moreover, drugs targeting Nrf2 can be used to manage inflammatory conditions. This review aimed to assess ferroptosis regulation mechanism and the role of Nrf2 in ferroptosis inhibition. Therefore, this review article may provide the basis for more research regarding the treatment of inflammatory diseases through Nrf2-inhibited ferroptosis.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| |
Collapse
|
29
|
Zhou D, Yang Y, Han R, He J, Liu D, Xia W, Cai Y, Perek B, Xia Z. Ferroptosis and its Potential Determinant Role in Myocardial Susceptibility to Ischemia/Reperfusion Injury in Diabetes. Rev Cardiovasc Med 2024; 25:360. [PMID: 39484139 PMCID: PMC11522832 DOI: 10.31083/j.rcm2510360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 11/03/2024] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a major cause of cardiac death particularly in patients with diabetes. When the coronary artery is partially or completely blocked, restoration of blood perfusion can normally be achieved within a certain time due to the development of advanced techniques such as percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) surgery. However, cardiac tissue injury may aggravate progressively even after the ischemic myocardium is restored to normal perfusion. MIRI is often associated with various forms of cell death, including apoptosis, autophagy, programmed necrosis, pyroptosis, and ferroptosis, among others. Ferroptosis is known as iron-dependent cell death that is distinct from other programmed modes of cell death. Ferroptosis is under constitutive control by glutathione peroxidase 4 (GPX4), and the reduction of GPX4 may result in ferroptosis even if iron homeostasis is physiologically maintained. The essences of ferroptosis are substantial iron accumulation and lipid peroxidation that trigger cell death. Under impaired antioxidant system, cellular reactive oxygen species (ROS) accumulation leads to lipid peroxidation which consequently results in ferroptosis. Ferroptosis shares a few common features with several types of cell death and interplays with various forms of cell death such as autophagy and apoptosis in the development of cardiovascular diseases. More and more recent studies have demonstrated that ferroptosis plays an important role in MIRI. However, few studies have addressed the relative importance of ferroptosis in MIRI relative to other forms of cell deaths. In this review, we summarized the basic aspects and advances regarding the molecular pathogenesis of ferroptosis, evaluated its role in MIRI, and propose that the levels of ferroptosis may function as a major determinant of myocardial susceptibility to ischemia/reperfusion injury (IRI) in general and of the enhanced vulnerability to MIRI specifically in diabetes.
Collapse
Affiliation(s)
- Dongcheng Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Yuhui Yang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Jianfeng He
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Danyong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
| | - Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, Guangdong, China
- Doctoral Training Platform for Research and Translation, 431913 Zhongxiang, Hubei, China
| |
Collapse
|
30
|
Jin B, Zhang Z, Zhang Y, Yang M, Wang C, Xu J, Zhu Y, Mi Y, Jiang J, Sun Z. Ferroptosis and myocardial ischemia-reperfusion: mechanistic insights and new therapeutic perspectives. Front Pharmacol 2024; 15:1482986. [PMID: 39411064 PMCID: PMC11473306 DOI: 10.3389/fphar.2024.1482986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant factor in the development of cardiac dysfunction following a myocardial infarction. Ferroptosis, a type of regulated cell death driven by iron and marked by lipid peroxidation, has garnered growing interest for its crucial involvement in the pathogenesis of MIRI.This review comprehensively examines the mechanisms of ferroptosis, focusing on its regulation through iron metabolism, lipid peroxidation, VDAC signaling, and antioxidant system dysregulation. We also compare ferroptosis with other forms of cell death to highlight its distinct characteristics. Furthermore, the involvement of ferroptosis in MIRI is examined with a focus on recent discoveries concerning ROS generation, mitochondrial impairment, autophagic processes, ER stress, and non-coding RNA regulation. Lastly, emerging therapeutic strategies that inhibit ferroptosis to mitigate MIRI are reviewed, providing new insights into potential clinical applications.
Collapse
Affiliation(s)
- Binwei Jin
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhiming Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Minjun Yang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Wang
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jiayi Xu
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Yu Zhu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
31
|
Zhou Y, Liao Q, Li D, Chen L, Zhang H, Yi B. Vitamin D receptor alleviates lipid peroxidation in diabetic nephropathy by regulating ACLY/Nrf2/Keap1 pathway. FASEB J 2024; 38:e70060. [PMID: 39302807 DOI: 10.1096/fj.202401543r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The membrane lipid damage caused by reactive oxygen species(ROS) and various peroxides, namely lipid peroxidation, plays an important role in the progression of diabetic nephropathy (DN).We previously reported that vitamin D receptor(VDR) plays an active role in DN mice by modulating autophagy disorders. However, it is unclear whether the ATP-citrate lyase (ACLY)/NF-E2-related factor-2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway is associated with the reduction of lipid peroxidation by VDR in the DN model. We found that in the DN mouse model, VDR knockout significantly aggravated mitochondrial morphological damage caused by DN, increased the expression of ACLY, promoted the accumulation of ROS, lipid peroxidation products Malondialdehyde(MDA) and 4-hydroxy-2-nonenal (4-HNE),consumed the Nrf2/Keap1 system, thus increasing lipid peroxidation. However, the overexpression of VDR and intervention with the VDR agonist paricalcitol (Pari) can reduce the above damage. On the other hand, cellular experiments have shown that Pari can significantly reduce the elevated expression of ACLY and ROS induced by advanced glycation end products (AGE). However, ACLY overexpression partially eliminated the positive effects of the VDR agonist. Next, we verified the transcriptional regulation of ACLY by VDR through chromatin immunoprecipitation (ChIP)-qPCR and dual luciferase experiments. Moreover, in AGE models, knockdown of ACLY decreased lipid peroxidation and ROS production, while intervention with Nrf2 inhibitor ML385 partially weakened the protective effect of ACLY downregulation. In summary, VDR negatively regulates the expression of ACLY through transcription, thereby affecting the state of Nrf2/Keap1 system and regulating lipid peroxidation, thereby inhibiting kidney injury induced by DN.
Collapse
Affiliation(s)
- Yueyi Zhou
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Qin Liao
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Li Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Gawargi FI, Mishra PK. MMP9 drives ferroptosis by regulating GPX4 and iron signaling. iScience 2024; 27:110622. [PMID: 39252956 PMCID: PMC11382059 DOI: 10.1016/j.isci.2024.110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Ferroptosis, defined by the suppression of glutathione peroxidase-4 (GPX4) and iron overload, is a distinctive form of regulated cell death. Our in-depth research identifies matrix metalloproteinase-9 (MMP9) as a critical modulator of ferroptosis through its influence on GPX4 and iron homeostasis. Employing an innovative MMP9 construct without collagenase activity, we reveal that active MMP9 interacts with GPX4 and glutathione reductase, reducing GPX4 expression and activity. Furthermore, MMP9 suppresses key transcription factors (SP1, CREB1, NRF2, FOXO3, and ATF4), alongside GPX1 and ferroptosis suppressor protein-1 (FSP1), thereby disrupting the cellular redox balance. MMP9 regulates iron metabolism by modulating iron import, storage, and export via a network of protein interactions. LC-MS/MS has identified 83 proteins that interact with MMP9 at subcellular levels, implicating them in ferroptosis regulation. Integrated pathway analysis (IPA) highlights MMP9's extensive influence on ferroptosis pathways, underscoring its potential as a therapeutic target in conditions with altered redox homeostasis and iron metabolism.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
33
|
Yang X, Chu F, Jiao Z, Yu H, Yang W, Li Y, Lu C, Ma H, Wang S, Liu Z, Qin S, Sun H. Ellagic acid ameliorates arsenic-induced neuronal ferroptosis and cognitive impairment via Nrf2/GPX4 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116833. [PMID: 39128446 DOI: 10.1016/j.ecoenv.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Arsenic, a neurotoxic metalloid, poses significant health risks. However, ellagic acid, renowned for its antioxidant properties, has shown potential in neuroprotection. This study aimed to investigate the neuroprotective effects of ellagic acid against arsenic-induced neuronal ferroptosis and cognitive impairment and elucidate the underlying mechanisms. Using an arsenic-exposed Wistar rat model and an arsenic-induced HT22 cells model, we assessed cognitive ability, measured serum and brain arsenic levels, and evaluated pathological damage through histological analysis and transmission electron microscopy. Additionally, we examined oxidative stress and iron ion levels using GSH, MDA, ROS and tissue iron biochemical kits, and analyzed the expression of ferroptosis-related markers using western blot and qRT-PCR. Our results revealed that arsenic exposure increased both serum and brain arsenic levels, resulting in hippocampal pathological damage and subsequent decline in learning and memory abilities. Arsenic-induced neuronal ferroptosis was mediated by the inhibition of the xCT/GSH/GPX4/Nrf2 signaling axis and disruption of iron metabolism. Notably, ellagic acid intervention effectively reduced serum and brain arsenic levels, ameliorated neuronal damage, and improved oxidative stress, ferroptosis, and cognitive impairment. These beneficial effects were associated with the activation of the Nrf2/Keap1 signaling pathway, upregulation of GPX4 expression, and enhanced iron ion excretion. In conclusion, ellagic acid demonstrates promising neuroprotective effects against arsenic-induced neurotoxicity by mitigating neuronal ferroptosis and cognitive impairment.
Collapse
Affiliation(s)
- Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Zhe Jiao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hao Yu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Yang Li
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu Distinct, Nanchang, Jiangxi 330006, China
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Zhipeng Liu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Shaoxiao Qin
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| |
Collapse
|
34
|
Cruz-Gregorio A, Amezcua-Guerra LM, Fisher-Bautista B, Romero-Beltrán A, Fonseca-Camarillo G. The Protective Role of Interleukin-37 in Cardiovascular Diseases through Ferroptosis Modulation. Int J Mol Sci 2024; 25:9758. [PMID: 39337246 PMCID: PMC11432013 DOI: 10.3390/ijms25189758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The role of ferroptosis and iron metabolism dysregulation in the pathophysiology of cardiovascular diseases is increasingly recognized. Conditions such as hypertension, cardiomyopathy, atherosclerosis, myocardial ischemia/reperfusion injury, heart failure, and cardiovascular complications associated with COVID-19 have been linked to these processes. Inflammation is central to these conditions, prompting exploration into the inflammatory and immunoregulatory molecular pathways that mediate ferroptosis and its contribution to cardiovascular disease progression. Notably, emerging evidence highlights interleukin-37 as a protective cytokine with the ability to activate the nuclear factor erythroid 2-related factor 2 pathway, inhibit macrophage ferroptosis, and attenuate atherosclerosis progression in murine models. However, a comprehensive review focusing on interleukin-37 and its protective role against ferroptosis in CVD is currently lacking. This review aims to fill this gap by summarizing existing knowledge on interleukin-37, including its regulatory functions and impact on ferroptosis in conditions such as atherosclerosis and myocardial infarction. We also explore experimental strategies and propose that targeting interleukin-37 to modulate ferroptosis presents a promising therapeutic approach for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Luis M Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
- Departamento de Atención a la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 14387, Mexico
| | - Brandon Fisher-Bautista
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
- Programa de Maestría en Ciencias Químico Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - Abraham Romero-Beltrán
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
- Departamento de Atención a la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 14387, Mexico
| | - Gabriela Fonseca-Camarillo
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| |
Collapse
|
35
|
Wei J, Wang A, Li B, Li X, Yu R, Li H, Wang X, Wang Y, Zhu M. Pathological mechanisms and crosstalk among various cell death pathways in cardiac involvement of systemic lupus erythematosus. Front Immunol 2024; 15:1452678. [PMID: 39301029 PMCID: PMC11410571 DOI: 10.3389/fimmu.2024.1452678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a prevalent autoimmune disease primarily characterized by the involvement of multiple systems and organs. Cardiovascular disease is the primary cause of mortality in patients with SLE, though the mechanisms underlying the increased cardiovascular risk in SLE patients remain unclear. Recent studies indicate that abnormal activation of programmed cell death (PCD) signaling and the crosstalk among various forms of cell death are critical in the immunopathogenesis of SLE. Furthermore, apoptosis, necroptosis, pyroptosis, NETosis, and ferroptosis are recognized as key cellular processes in the pathogenesis of SLE and are closely linked to cardiac involvement. This review uniquely explores the intricate crosstalk between apoptosis, necroptosis, and other cell death pathways, discussing their roles and interactions in the pathogenesis of cardiac involvement in SLE. Investigating the interplay between PCD signaling and cardiac involvement in SLE in understanding the disease's underlying mechanisms and offers opportunities for new therapeutic interventions. The integration of precision medicine and innovative strategies targeting these complex pathways holds promise for enhancing the treatment prospects of SLE with cardiac involvement.
Collapse
Affiliation(s)
- Jingjing Wei
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Aolong Wang
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bin Li
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Henan Evidence-based Medicine Center of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xingyuan Li
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Rui Yu
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haitao Li
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinlu Wang
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongxia Wang
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingjun Zhu
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
36
|
Savic N, Markelic M, Stancic A, Velickovic K, Grigorov I, Vucetic M, Martinovic V, Gudelj A, Otasevic V. Sulforaphane prevents diabetes-induced hepatic ferroptosis by activating Nrf2 signaling axis. Biofactors 2024; 50:810-827. [PMID: 38299761 DOI: 10.1002/biof.2042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Recently, we characterized the ferroptotic phenotype in the liver of diabetic mice and revealed nuclear factor (erythroid-derived-2)-related factor 2 (Nrf2) inactivation as an integral part of hepatic injury. Here, we aim to investigate whether sulforaphane, an Nrf2 activator and antioxidant, prevents diabetes-induced hepatic ferroptosis and the mechanisms involved. Male C57BL/6 mice were divided into four groups: control (vehicle-treated), diabetic (streptozotocin-induced; 40 mg/kg, from Days 1 to 5), diabetic sulforaphane-treated (2.5 mg/kg from Days 1 to 42) and non-diabetic sulforaphane-treated group (2.5 mg/kg from Days 1 to 42). Results showed that diabetes-induced inactivation of Nrf2 and decreased expression of its downstream antiferroptotic molecules critical for antioxidative defense (catalase, superoxide dismutases, thioredoxin reductase), iron metabolism (ferritin heavy chain (FTH1), ferroportin 1), glutathione (GSH) synthesis (cystine-glutamate antiporter system, cystathionase, glutamate-cysteine ligase catalitic subunit, glutamate-cysteine ligase modifier subunit, glutathione synthetase), and GSH recycling - glutathione reductase (GR) were reversed/increased by sulforaphane treatment. In addition, we found that the ferroptotic phenotype in diabetic liver is associated with increased ferritinophagy and decreased FTH1 immunopositivity. The antiferroptotic effect of sulforaphane was further evidenced through the increased level of GSH, decreased accumulation of labile iron and lipid peroxides (4-hydroxy-2-nonenal, lipofuscin), decreased ferritinophagy and liver damage (decreased fibrosis, alanine aminotransferase, and aspartate aminotransferase). Finally, diabetes-induced increase in serum glucose and triglyceride level was significantly reduced by sulforaphane. Regardless of the fact that this study is limited by the use of one model of experimentally induced diabetes, the results obtained demonstrate for the first time that sulforaphane prevents diabetes-induced hepatic ferroptosis in vivo through the activation of Nrf2 signaling pathways. This nominates sulforaphane as a promising phytopharmaceutical for the prevention/alleviation of ferroptosis in diabetes-related pathologies.
Collapse
Affiliation(s)
- Nevena Savic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Markelic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ilijana Grigorov
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Vucetic
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Vesna Martinovic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjelija Gudelj
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
38
|
Gawargi FI, Mishra PK. Regulation of cardiac ferroptosis in diabetic human heart failure: uncovering molecular pathways and key targets. Cell Death Discov 2024; 10:268. [PMID: 38824159 PMCID: PMC11144210 DOI: 10.1038/s41420-024-02044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Diabetes significantly increases the risk of heart failure by inducing myocardial cell death, potentially through ferroptosis-an iron-dependent, non-apoptotic cell death pathway characterized by lipid peroxidation. The role of cardiac ferroptosis in human heart failure, however, remains poorly understood. In this study, we compared cardiac ferroptosis in humans with diabetic heart failure to that in healthy controls. Our findings reveal that diabetes not only intensifies myocardial cell death but also upregulates markers of ferroptosis in human hearts. This is linked to decreased transcription and activity of glutathione peroxidase-4 (GPX4), influenced by reduced levels of activating transcription factor-4 (ATF4) and nuclear factor erythroid-2-related factor-2 (NRF2), and downregulation of glutathione reductase (GSR). Additionally, diabetic hearts showed an increased labile iron pool due to enhanced heme metabolism by heme oxygenase-1 (HMOX1), elevated iron import via divalent metal transporter-1 (DMT1), reduced iron storage through ferritin light chain (FLC), and decreased iron export via ferroportin-1 (FPN1). The reduction in FPN1 levels likely results from decreased stabilization by amyloid precursor protein (APP) and diminished NRF2-mediated transcription. Furthermore, diabetes upregulates lysophosphatidylcholine acyltransferase-3 (LPCAT3), facilitating the integration of polyunsaturated fatty acids (PUFA) into phospholipid membranes, and downregulates acyl-CoA thioesterase-1 (ACOT1), which further promotes ferroptosis. LC-MS/MS analysis identified several novel proteins implicated in diabetes-induced cardiac ferroptosis, including upregulated ceruloplasmin, which enhances iron metabolism, and cytochrome b-245 heavy chain (CYBB), a key component of NADPH oxidase that aids in the production of reactive oxygen species (ROS), along with downregulated voltage-dependent anion-selective channel protein-2 (VDAC2), essential for maintaining mitochondrial membrane potential. In conclusion, our study not only confirms the presence and potentially predominant role of cardiac ferroptosis in humans with diabetic heart failure but also elucidates its molecular mechanisms, offering potential therapeutic targets to mitigate heart failure complications in diabetic patients.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
39
|
Zhang S, Li J, Wang J, Chen X, Shu G, Feng D, Zheng X. Ferroptosis Exists in Ischemia Reperfusion Injury after Cardiac Surgery with Cardiopulmonary Bypass. Cell Biochem Biophys 2024; 82:777-786. [PMID: 38363517 DOI: 10.1007/s12013-024-01228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Ischemia-reperfusion (IR) injury commonly arises during cardiac surgery involving Cardiopulmonary Bypass (CPB), and it has relationship with ferroptosis in mice. However, the exact role of ferroptosis in the human cardiac damage caused by cardiac surgery remains unclear. Basic patient data and perioperative period information were collected, and clinic indicators related to cardiac function were detected to assess the extent of cardiac injury. Cardiac tissue samples were collected to determine histopathological changes, ultrastructure of mitochondrial and hallmarks of ferroptosis. 25 patients were involved in this study. In the present study, we observed a significant increase in the clinical indicator hs-cTnT, with levels rising more than 1393 ± 242 folds (P < 0.0001) following the cardiac surgery. Masson staining revealed a notable increase in fibrosis levels by 2.282 ± 0.259% (P = 0.0009). Furthermore, there was a significant elevation in lipid peroxidation, as evidenced by a 61.42 ± 17.33% increase in MDA (P = 0.0006). Additionally, we observed notable swelling, decreased mitochondrial crista, and even fragmented mitochondria. Notably, changes in the marker gene of ferroptosis were observed, with PTGS2 showing a 6.437 ± 0.81 folds increase (P < 0.0001). Furthermore, key regulators such as SLC7A11 and GPX4 proteins exhibited a reduction of 97.33 ± 25.78% (P = 0.0068) and 60.59 ± 14.93% (P = 0.0071), respectively, indicating the occurrence of ferroptosis following the surgery. Ferroptosis exists in myocardial IR injury caused by cardiac surgery with CPB, indicating that targeting ferroptosis could serve as a potential strategy for myocardial protection against CPB-induced IR injury. The trial has been registered in Chinese Clinical Trial Registry (ChiCTR, No. ChiCTR2200061995) on July 16th, 2022.
Collapse
Affiliation(s)
- Shenshen Zhang
- College of Public Health, Zhengzhou University, Department of Anaesthesia,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Junyan Li
- College of Public Health, Zhengzhou University, Department of Anaesthesia,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Jian Wang
- College of Public Health, Zhengzhou University, Department of Anaesthesia,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Xi Chen
- College of Public Health, Zhengzhou University, Department of Anaesthesia,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Guangjie Shu
- College of Public Health, Zhengzhou University, Department of Anaesthesia,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Deguang Feng
- College of Public Health, Zhengzhou University, Department of Anaesthesia,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangming Zheng
- College of Public Health, Zhengzhou University, Department of Anaesthesia,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
40
|
Zhou D, Yang Y, Chen J, Zhou J, He J, Liu D, Zhang A, Yuan B, Jiang Y, Xia W, Han R, Xia Z. N-acetylcysteine Protects Against Myocardial Ischemia-Reperfusion Injury Through Anti-ferroptosis in Type 1 Diabetic Mice. Cardiovasc Toxicol 2024; 24:481-498. [PMID: 38647950 PMCID: PMC11076402 DOI: 10.1007/s12012-024-09852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
The hearts of subjects with diabetes are vulnerable to ischemia-reperfusion injury (IRI). In contrast, experimentally rodent hearts have been shown to be more resistant to IRI at the very early stages of diabetes induction than the heart of the non-diabetic control mice, and the mechanism is largely unclear. Ferroptosis has recently been shown to play an important role in myocardial IRI including that in diabetes, while the specific mechanisms are still unclear. Non-diabetic control (NC) and streptozotocin-induced diabetic (DM) mice were treated with the antioxidant N-acetylcysteine (NAC) in drinking water for 4 week starting at 1 week after diabetes induction. Mice were subjected to myocardial IRI induced by occluding the coronary artery for 30 min followed by 2 h of reperfusion, subsequently at 1, 2, and 5 week of diabetes induction. The post-ischemic myocardial infarct size in the DM mice was smaller than that in NC mice at 1 week of diabetes but greater than that in the NC mice at 2 and 5 week of diabetes, which were associated with a significant increase of ferroptosis at 2 and 5 week but a significant reduction of ferroptosis at 1 week of diabetes. NAC significantly attenuated post-ischemic ferroptosis as well as oxidative stress and reduced infarct size at 2 and 5 week of diabetes. Application of erastin, a ferroptosis inducer, reversed the cardioprotective effects of NAC. It is concluded that increased oxidative stress and ferroptosis are the major factors attributable to the increased vulnerability to myocardial IRI in diabetes and that attenuation of ferroptosis represents a major mechanism whereby NAC confers cardioprotection against myocardial IRI in diabetes.
Collapse
Affiliation(s)
- Dongcheng Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuhui Yang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiajia Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jianfeng He
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Danyong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Anyuan Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bixian Yuan
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pok Fu Lam Road, Hong Kong.
| |
Collapse
|
41
|
Yang L, Chen Y, He S, Yu D. The crucial role of NRF2 in erythropoiesis and anemia: Mechanisms and therapeutic opportunities. Arch Biochem Biophys 2024; 754:109948. [PMID: 38452967 DOI: 10.1016/j.abb.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor crucial in cellular defense against oxidative and electrophilic stresses. Recent research has highlighted the significance of NRF2 in normal erythropoiesis and anemia. NRF2 regulates genes involved in vital aspects of erythroid development, including hemoglobin catabolism, inflammation, and iron homeostasis in erythrocytes. Disrupted NRF2 activity has been implicated in various pathologies involving abnormal erythropoiesis. In this review, we summarize the progress made in understanding the mechanisms of NRF2 activation in erythropoiesis and explore the roles of NRF2 in various types of anemia. This review also discusses the potential of targeting NRF2 as a new therapeutic approach to treat anemia.
Collapse
Affiliation(s)
- Lei Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China
| | - Duonan Yu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610000, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225009, China; Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China.
| |
Collapse
|
42
|
Zhu M, Zhao T, Zha B, Zhang G, Qian W, Wang X, Zhao Q, Chen S, Hu Z, Dong L. Piceatannol protects against myocardial ischemia/reperfusion injury by inhibiting ferroptosis via Nrf-2 signaling-mediated iron metabolism. Biochem Biophys Res Commun 2024; 700:149598. [PMID: 38308910 DOI: 10.1016/j.bbrc.2024.149598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Myocardial tissue ischemia damages myocardial cells. Although reperfusion is an effective technique to rescue myocardial cell damage, it may also exacerbate myocardial cell damage. Ferroptosis, an iron-dependent cell death, occurs following myocardial ischemia-reperfusion (I/R). Piceatannol (PCT) is a natural stilbene compound with excellent antioxidant properties that protect against I/R injury and exerts protective effects against ferroptosis-induced cardiomyocytes following I/R injury; however, the exact mechanism remains to be elucidated. PURPOSE This study aims to investigate the protective effect and mechanism of PCT on myocardial ischemia-reperfusion injury. METHODS An ischemia-reperfusion model was established via ligation of the left anterior descending branch of mice's hearts and hypoxia-reoxygenation (H/R) of cardiomyocytes. RESULTS During ischemia-reperfusion, Nuclear factor E2-related factor 2 (Nrf-2) expression was downregulated, the left ventricular function was impaired, intracellular iron and lipid peroxidation product levels were elevated, and cardiomyocytes underwent ferroptosis. Furthermore, ferroptosis was enhanced following treatment with an Nrf-2 inhibitor. After PCT treatment, Nrf-2 expression significantly increased, intracellular ferrous ions and lipid peroxidation products significantly reduced, Ferroportin1 (FPN1) expression increased, and transferrin receptor-1 (TfR-1) expression was inhibited. CONCLUSIONS PCT regulates iron metabolism through Nrf-2 to protect against myocardial cell ferroptosis induced by myocardial I/R injury.
Collapse
Affiliation(s)
- Mengmei Zhu
- Department of Pharmacology, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Tianhao Zhao
- Department of Pharmacology, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Binshan Zha
- Department of Vascular and Thyroid Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230031, China
| | - Guiyang Zhang
- Department of Pharmacology, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Weiwei Qian
- Department of Pharmacology, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xinya Wang
- Department of Pharmacology, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qiuju Zhao
- Department of Pharmacology, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shuo Chen
- Department of Pharmacology, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zeping Hu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230031, China
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
43
|
Xiong L, Hu F, Li Z, Zhou X, Zheng Y. The research trends of ferroptosis in diabetes: a bibliometric analysis. Front Public Health 2024; 12:1365828. [PMID: 38510357 PMCID: PMC10951384 DOI: 10.3389/fpubh.2024.1365828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Objective Exploring the mechanism of ferroptosis as a potential avenue for investigating the pathogenesis and therapeutic outlook of diabetes mellitus and its complications has emerged as a focal point within recent years. Herein, we employ a bibliometric approach to delineate the current landscape of ferroptosis research in the context of diabetes mellitus. Our objective is to furnish insights and scholarly references conducive to the advancement of comprehensive investigations and innovations in related domains. Methods We included studies on ferroptosis in diabetes, obtained from the Web of Science Core Collection. All publications were transported in plaintext full-record format and were analyzed by CiteSpace 6.2.R4 for bibliometric analysis. Results Four hundred and forty-eight records that met the criteria were included. The publications released during the initial 3 years were relatively small, while there was a sudden surge of publications published in 2022 and 2023. Representing 41 countries and 173 institutions, China and Wuhan University led the research on ferroptosis in diabetes. The author with the highest number of published papers is Zhongming Wu, while Dixon SJ is the most frequently cited author. The journal with the highest number of co-citations is Cell. The most common keywords include oxidative stress, cell death, lipid peroxidation, and metabolism. Extracted keywords predominantly focus on NLRP3 inflammatory, diabetic kidney disease, mitochondria, iron overload, and cardiomyopathy. Conclusion The escalating recognition of ferroptosis as a potential therapeutic target for deciphering the intricate mechanisms underlying diabetes and its complications is underscored by a noteworthy surge in relevant research publications. This surge has catapulted ferroptosis into the spotlight as a burgeoning and vibrant research focus within the field.
Collapse
Affiliation(s)
| | | | | | | | - Yujiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
44
|
Li X, Cheng Y, Yang Z, Ji Q, Huan M, Ye W, Liu M, Zhang B, Liu D, Zhou S. Glioma-targeted oxaliplatin/ferritin clathrate reversing the immunosuppressive microenvironment through hijacking Fe 2+ and boosting Fenton reaction. J Nanobiotechnology 2024; 22:93. [PMID: 38443927 PMCID: PMC10913265 DOI: 10.1186/s12951-024-02376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Glioma is easy to develop resistance to temozolomide (TMZ). TMZ-resistant glioma secretes interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), recruiting regulatory T cell (Treg) and inhibiting the activity of T cells and natural killer cell (NK cell), subsequently forming an immunosuppressive microenvironment. Oxaliplatin (OXA) greatly inhibits the proliferation of TMZ-resistant glioma cells, but the ability of OXA to cross blood-brain barrier (BBB) is weak. Thus, the therapeutic effect of OXA on glioma is not satisfactory. Transferrin receptor 1 (TfR1) is highly expressed in brain capillary endothelial cells and TMZ-resistant glioma cells. In this study, OXA was loaded into ferritin (Fn) to prepare glioma-targeted oxaliplatin/ferritin clathrate OXA@Fn. OXA@Fn efficiently crossed BBB and was actively taken up by TMZ-resistant glioma cells via TfR1. Then, OXA increased the intracellular H2O2 level and induced the apoptosis of TMZ-resistant glioma cells. Meanwhile, Fn increased Fe2+ level in TMZ-resistant glioma cells. In addition, the expression of ferroportin 1 was significantly reduced, resulting in Fe2+ to be locked up inside the TMZ-resistant glioma cells. This subsequently enhanced the Fenton reaction and boosted the ferroptosis of TMZ-resistant glioma cells. Consequently, T cell mediated anti-tumor immune response was strongly induced, and the immunosuppressive microenvironment was significantly reversed in TMZ-resistant glioma tissue. Ultimately, the growth and invasion of TMZ-resistant glioma was inhibited by OXA@Fn. OXA@Fn shows great potential in the treatment of TMZ-resistant glioma and prospect in clinical transformation.
Collapse
Affiliation(s)
- Xue Li
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Menglei Huan
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Weiliang Ye
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
45
|
Zhang CH, Yan YJ, Luo Q. The molecular mechanisms and potential drug targets of ferroptosis in myocardial ischemia-reperfusion injury. Life Sci 2024; 340:122439. [PMID: 38278348 DOI: 10.1016/j.lfs.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), caused by the initial interruption and subsequent restoration of coronary artery blood, results in further damage to cardiac function, affecting the prognosis of patients with acute myocardial infarction. Ferroptosis is an iron-dependent, superoxide-driven, non-apoptotic form of regulated cell death that is involved in the pathogenesis of MIRI. Ferroptosis is characterized by the accumulation of lipid peroxides (LOOH) and redox disequilibrium. Free iron ions can induce lipid oxidative stress as a substrate of the Fenton reaction and lipoxygenase (LOX) and participate in the inactivation of a variety of lipid antioxidants including CoQ10 and GPX4, destroying the redox balance and causing cell death. The metabolism of amino acid, iron, and lipids, including associated pathways, is considered as a specific hallmark of ferroptosis. This review systematically summarizes the latest research progress on the mechanisms of ferroptosis and discusses and analyzes the therapeutic approaches targeting ferroptosis to alleviate MIRI.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Jie Yan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Luo
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
46
|
Su Z, Zheng Y, Han M, Zhao D, Huang Z, Zhou Y, Hu W. Breviscapine alleviates myocardial ischemia-reperfusion injury in diabetes rats. Acta Cir Bras 2024; 39:e390224. [PMID: 38422326 PMCID: PMC10911477 DOI: 10.1590/acb390224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 03/02/2024] Open
Abstract
PURPOSE To investigate the protective effect of breviscapine on myocardial ischemia-reperfusion injury (MIRI) in diabetes rats. METHODS Forty rats were divided into control, diabetes, MIRI of diabetes, and treatment groups. The MIRI of diabetes model was established in the latter two groups. Then, the treatment group was treated with 100 mg/kg breviscapine by intraperitoneal injection for 14 consecutive days. RESULTS After treatment, compared with MIRI of diabetes group, in treatment group the serum fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance, and glycosylated hemoglobin levels decreased, the serum total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels decreased, the serum high-density lipoprotein cholesterol level increased, the heart rate decreased, the mean arterial pressure, left ventricular ejection fraction, and fractional shortening increased, the serum cardiac troponin I, and creatine kinase-MB levels decreased, the myocardial tumor necrosis factor α and interleukin-6 levels decreased, the myocardial superoxide dismutase level increased, and the myocardial malondialdehyde level decreased (all P < 0.05). CONCLUSIONS For treating MIRI of diabetes in rats, the breviscapine can reduce the blood glucose and lipid levels, improve the cardiac function, reduce the myocardial injury, and decrease the inflammatory response and oxidative stress, thus exerting the alleviating effect.
Collapse
Affiliation(s)
- Zhenhong Su
- Hubei Polytechnic University – Medical College – Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention – Huangshi, China
| | - Yuanmei Zheng
- Hubei Polytechnic University – Medical College – Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention – Huangshi, China
| | - Meng Han
- Hubei Polytechnic University – Medical College – Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention – Huangshi, China
| | - Deqing Zhao
- Affiliated Hospital of Hubei Polytechnic University – Huangshi Central Hospital – Huangshi, China
| | - Zhi Huang
- Zhejiang Chinese Medical University – Chinese Herbal Pieces Co. Ltd. – Quzhou, China
| | - Yijun Zhou
- Zhejiang Chinese Medical University – Chinese Herbal Pieces Co. Ltd. – Quzhou, China
| | - Wenbing Hu
- Affiliated Hospital of Hubei Polytechnic University – Huangshi Central Hospital – Huangshi, China
| |
Collapse
|
47
|
Cheng H, Shi Y, Li X, Jin N, Zhang M, Liu Z, Liang Y, Xie J. Human umbilical cord mesenchymal stem cells protect against ferroptosis in acute liver failure through the IGF1-hepcidin-FPN1 axis and inhibiting iron loading. Acta Biochim Biophys Sin (Shanghai) 2024; 56:280-290. [PMID: 38273781 PMCID: PMC10984864 DOI: 10.3724/abbs.2023275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/28/2023] [Indexed: 01/27/2024] Open
Abstract
Acute liver failure (ALF) is a significant global issue with elevated morbidity and mortality rates. There is an urgent and pressing need for secure and effective treatments. Ferroptosis, a novel iron-dependent regulation of cell death, plays a significant role in multiple pathological processes associated with liver diseases, including ALF. Several studies have demonstrated that mesenchymal stem cells (MSCs) have promising therapeutic potential in the treatment of ALF. This study aims to investigate the positive effects of MSCs against ferroptosis in an ALF model and explore the underlying molecular mechanisms of their therapeutic function. Our results show that intravenously injected MSCs protect against ferroptosis in ALF mouse models. MSCs decrease iron deposition in the liver of ALF mice by downregulating hepcidin level and upregulating FPN1 level. MSCs labelled with Dil are mainly observed in the hepatic sinusoid and exhibit colocalization with the macrophage marker CD11b fluorescence. ELISA demonstrates a high level of IGF1 in the CCL 4+MSC group. Suppressing the IGF1 effect by the PPP blocks the therapeutic effect of MSCs against ferroptosis in ALF mice. Furthermore, disruption of IGF1 function results in iron deposition in the liver tissue due to impaired inhibitory effects of MSCs on hepcidin level. Our findings suggest that MSCs alleviate ferroptosis induced by disorders of iron metabolism in ALF mice by elevating IGF1 level. Moreover, MSCs are identified as a promising cell source for ferroptosis treatment in ALF mice.
Collapse
Affiliation(s)
- Haiqin Cheng
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
- Department of MedicalFenyang Hospital of Shanxi ProvinceLvliang032200China
| | - Yaqian Shi
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Xuewei Li
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Ning Jin
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Mengyao Zhang
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Zhizhen Liu
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Yuxiang Liang
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
- Experimental Animal Center of Shanxi Medical UniversityShanxi Key Laboratory of Human Disease and Animal ModelsTaiyuan030001China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| |
Collapse
|
48
|
Tian X, Li X, Pan M, Yang LZ, Li Y, Fang W. Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cell Mol Neurobiol 2024; 44:25. [PMID: 38393376 PMCID: PMC10891262 DOI: 10.1007/s10571-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.
Collapse
Affiliation(s)
- Xinjuan Tian
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mengtian Pan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, State College, PA, 16801, USA
| | - Yunman Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
49
|
Tian H, Huang Q, Cheng J, Xiong Y, Xia Z. Rev-erbα attenuates diabetic myocardial injury through regulation of ferroptosis. Cell Signal 2024; 114:111006. [PMID: 38086436 DOI: 10.1016/j.cellsig.2023.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Diabetes is a widespread disease that threatens the life and health of human beings, and diabetic cardiomyopathy (DCM) is one of the major complications of diabetic patients. The pathological mechanisms of DCM are complex, including inflammation, endoplasmic reticulum stress, and oxidative stress that have been reported previously. Although recent studies suggested that ferroptosis is also involved in the progression of DCM, the exact mechanism remains unclear. Rev-erbα cardiac conditional knockout mice were generated and type 2 diabetes were induced by high fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ) in in vivo experiments. In parallel, our in vitro experiments entailed the introduction of elevated levels of glucose (HG) and palmitic acid (PA) to induce glycolipid toxicity in H9c2 cardiomyocytes. Further deterioration of cardiac function was detected by echocardiography after the clock gene rev-erbα was knocked out. This was accompanied by significant elevations in markers of inflammation, myocardial fibrosis, and oxidative stress. In addition, iron content, transmission electron microscopy (TEM), and RT-PCR assays confirmed significantly increased levels of ferroptosis in rev-erbα-deficient DCM. Intriguingly, Co-Immunoprecipitation (Co-IP) data uncovered an interaction between rev-erbα and nuclear factor E2-related factor 2 (NRF2) in diabetic myocardial tissues. It is worth highlighting that ferroptosis within cardiomyocytes witnessed significant mitigation upon the administration of sulforaphane (SFN), an NRF2 agonist, to HG + PA-incubated H9c2 cells. Our study demonstrates for the first time that knockdown of the clock gene rev-erbα exacerbates myocardial injury and ferroptosis in type 2 diabetic mice, which can be reversed by activating NRF2.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qin Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianxin Cheng
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
50
|
Jiang Y, Cai Y, Han R, Xu Y, Xia Z, Xia W. Salvianolic acids and its potential for cardio-protection against myocardial ischemic reperfusion injury in diabetes. Front Endocrinol (Lausanne) 2024; 14:1322474. [PMID: 38283744 PMCID: PMC10811029 DOI: 10.3389/fendo.2023.1322474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The incidence of diabetes and related mortality rate increase yearly in modern cities. Additionally, elevated glucose levels can result in an increase of reactive oxygen species (ROS), ferroptosis, and the disruption of protective pathways in the heart. These factors collectively heighten the vulnerability of diabetic individuals to myocardial ischemia. Reperfusion therapies have been effectively used in clinical practice. There are limitations to the current clinical methods used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen) has been used for centuries in ancient China to treat cardiovascular diseases (CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic compound with potent antioxidant properties and has the greatest hydrophilic property in Danshen. It has recently been discovered that salvianolic acids A (SAA) and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway and the NF-κB pathway, respectively. This review delves into the most recent discoveries regarding the therapeutic and cardioprotective benefits of salvianolic acid for individuals with diabetes. Salvianolic acid shows great potential in myocardial protection in diabetes mellitus. A thorough understanding of the protective mechanism of salvianolic acid could expand its potential uses in developing medicines for treating diabetes mellitus related myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ronghui Han
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| |
Collapse
|