1
|
Brzyska A, Płaziński W. Modeling conformational changes in alginic acid oligomers induced by external forces. Carbohydr Res 2024; 545:109294. [PMID: 39471537 DOI: 10.1016/j.carres.2024.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
In this study, the mechanism and nature of mechanical force-induced conformational transitions of alginate oligomers with different ratios of β-d-mannuronic acid (M unit) and α-l-guluronic acid (G unit) units were investigated. The influence of the type of glycosidic linkage in either homo- or heterooligomers on the nature of conformational transitions was also considered. For this purpose, two different theoretical methods were used: quantum mechanics (QM) at the DFT level with the EGO (Enforced Geometry Optimization) approach previously tested also for other saccharide systems, and molecular dynamics (MD) simulations within hybrid interaction potentials, which take into account both the ab initio (QM) level of theory and classical molecular mechanics (MM) force fields. This allowed to characterize in detail the structural and energetic properties of the conformational transition occurring upon the influence of external, mechanical forces (e.g. ring conformations at the path of ring-inversion process as well as the energies corresponding to initial, final and intermediate states). The results indicate qualitatively various responses against the applied force, depending on the G:M ratio, which have their source in differing topologies of glycosidic linkage in either G or M units. This is of potential relevance for determining the content of naturally heterogeneous alginate chains by the AFM experimental studies. The effects of explicit solvent and non-zero temperature are not of primarily importance in the context of determined stretching properties.
Collapse
Affiliation(s)
- Agnieszka Brzyska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
2
|
Marvin Tan XH, Wang Y, Zhu X, Mendes FN, Chung PS, Chow YT, Man T, Lan H, Lin YJ, Zhang X, Zhang X, Nguyen T, Ardehali R, Teitell MA, Deb A, Chiou PY. Massive field-of-view sub-cellular traction force videography enabled by Single-Pixel Optical Tracers (SPOT). Biosens Bioelectron 2024; 258:116318. [PMID: 38701538 DOI: 10.1016/j.bios.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
We report a massive field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13 mm2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction force into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave.
Collapse
Affiliation(s)
- Xing Haw Marvin Tan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Electronics and Photonics, Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, 138632, Singapore
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Xiongfeng Zhu
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Felipe Nanni Mendes
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Pei-Shan Chung
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Yu Ting Chow
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Hsin Lan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Yen-Ju Lin
- Department of Electrical and Computer Engineering, University of California at Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xiang Zhang
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xiaohe Zhang
- Department of Mathematics, University of California Los Angeles, 520 Portola Plaza, Los Angeles, CA, 90095, United States
| | - Thang Nguyen
- Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Michael A Teitell
- Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States.
| |
Collapse
|
3
|
Jain M, Trapani G, Trappmann B, Ravoo BJ. Stiffness Modulation and Pulsatile Release in Dual Responsive Hydrogels. Angew Chem Int Ed Engl 2024; 63:e202403760. [PMID: 38517945 DOI: 10.1002/anie.202403760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Inspired by nature, self-regulation can be introduced in synthetic hydrogels by incorporating chemo-mechanical signals or coupled chemical reactions to maintain or adapt the material's physico-chemical properties when exposed to external triggers. In this work, we present redox and light dual stimuli responsive hydrogels capable of rapidly adapting the polymer crosslinking network while maintaining hydrogel stability. Upon irradiation with UV light, polymer hydrogels containing redox responsive disulfide crosslinks and light responsive ortho-nitrobenzyl moieties show a release of payload accompanied by adaptation of the hydrogel network towards higher stiffness due to in situ crosslinking by S-nitrosylation. Whereas the hydrogel design allows the network to either become softer in presence of reducing agent glutathione or stiffer upon UV irradiation, simultaneous application of both stimuli induces network self-regulation resulting in a pulsatile form of payload release from the hydrogel. Finally, adaptive stiffness was used to make tunable hydrogels as substrates for different cell lines.
Collapse
Affiliation(s)
- Mehak Jain
- Organic Chemistry Institute and Center for Soft Nanoscience, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Giuseppe Trapani
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Britta Trappmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
4
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
5
|
Marvin Tan XH, Wang Y, Zhu X, Mendes FN, Chung PS, Chow YT, Man T, Lan H, Lin YJ, Zhang X, Zhang X, Nguyen T, Ardehali R, Teitell MA, Deb A, Chiou PY. Massively Concurrent Sub-Cellular Traction Force Videography enabled by Single-Pixel Optical Tracers (SPOTs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550454. [PMID: 37546726 PMCID: PMC10402113 DOI: 10.1101/2023.07.25.550454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
We report a large field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13mm 2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction stress into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave. One-Sentence Summary An optical platform for fast, concurrent measurements of cell mechanics at 83 frames per second, over a large area of 13mm 2 .
Collapse
|
6
|
Zhou H, Cheng R, Quarrell M, Shchukin D. Autonomic self-regulating systems based on polyelectrolyte microcapsules and microgel particles. J Colloid Interface Sci 2023; 638:403-411. [PMID: 36758253 DOI: 10.1016/j.jcis.2023.01.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Biological systems possess unique non-equilibrium functions, maintaining tight manipulation of their surroundings through inter-communication of multiple components and self-regulatory capability organized over different length scales. However, most artificial materials are incapable of communicating and self-regulating behavior due to their limited number of component and direct responsive modes. Herein, a new integrated self-regulation system is developed utilizing stimuli-responsive polyelectrolyte capsules as building blocks. The combination of stimuli-responsive capsules and enzyme immobilized microgels is designed to mimic life systems and its programmable interactive communications and self-regulation behavior is demonstrated through communication-feedback mechanism. Polyelectrolyte capsules can sense changes of their surrounding, then start the internal communication by releasing energy-rich cargo mimicking the behavior of the cells. The microgel particles subsequently complete closed-loop communication through providing negative feedback on capsules by enzymatic reaction and actuating pH-regulation of the whole system. Different communication modes and pH-regulation behaviors could be achieved by adjusting spatial and kinetic conditions. Proposed intelligent system is highly customizable due to the wide selection of encapsulated cargos, stimuli-responsive blocks and reaction networks, and would have broad influences in areas ranging from medical implants that assist in stabilizing body functions to microreactor system that regulate catalytic reactions.
Collapse
Affiliation(s)
- Hongda Zhou
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom.
| | - Rui Cheng
- HH Wills Physics Laboratory, Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Matthew Quarrell
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Dmitry Shchukin
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom.
| |
Collapse
|
7
|
Liu M, Yuan L, Zhu C, Pan C, Gao Q, Wang H, Cheng Z, Epstein IR. Peptide-modulated pH rhythms. Chemphyschem 2022; 23:e202200103. [PMID: 35648769 DOI: 10.1002/cphc.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Indexed: 11/11/2022]
Abstract
Many drugs adjust and/or control the spatiotemporal dynamics of periodic processes such as heartbeat, neuronal signaling and metabolism, often by interacting with proteins or oligopeptides. Here we use a quasi-biocompatible, non-equilibrium pH oscillatory system as a biomimetic biological clock to study the effect of pH-responsive peptides on rhythm dynamics. The added peptides generate a feedback that can lengthen or shorten the oscillatory period during which the peptides alternate between random coil and coiled-coil conformations. This modulation of a chemical clock supports the notion that short peptide reagents may have utility as drugs to regulate human body clocks.
Collapse
Affiliation(s)
- Mengfei Liu
- China University of Mining and Technology, Chemical Engineering, CHINA
| | - Ling Yuan
- China University of Mining and Technology, Chemical Engineering, CHINA
| | - Chenghao Zhu
- China University of Mining and Technology, Chemical Engineering, CHINA
| | - Changwei Pan
- China University of Mining and Technology, Chemical Engineering, CHINA
| | - Qingyu Gao
- China University of Mining and Technology, Chemical Engineering, CHINA
| | - Hongzhang Wang
- China University of Mining and Technology, Chemical Engineering, CHINA
| | - Zhenfang Cheng
- China University of Mining and Technology, Chemical Engineering, CHINA
| | - Irving R Epstein
- Brandeis University, Chemistry Department, 415 South Street, MS 015, 02454, Waltham, UNITED STATES
| |
Collapse
|
8
|
Lee YAL, Mousavikhamene Z, Amrithanath AK, Neidhart SM, Krishnaswamy S, Schatz GC, Odom TW. Programmable Self-Regulation with Wrinkled Hydrogels and Plasmonic Nanoparticle Lattices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103865. [PMID: 34755454 DOI: 10.1002/smll.202103865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/25/2021] [Indexed: 06/13/2023]
Abstract
This paper describes a self-regulating system that combines wrinkle-patterned hydrogels with plasmonic nanoparticle (NP) lattices. In the feedback loop, the wrinkle patterns flatten in response to moisture, which then allows light to reach the NP lattice on the bottom layer. Upon light absorption, the NP lattice produces a photothermal effect that dries the hydrogel, and the system then returns to the initial wrinkled configuration. The timescale of this regulatory cycle can be programmed by tuning the degree of photothermal heating by NP size and substrate material. Time-dependent finite element analysis reveals the thermal and mechanical mechanisms of wrinkle formation. This self-regulating system couples morphological, optical, and thermo-mechanical properties of different materials components and offers promising design principles for future smart systems.
Collapse
Affiliation(s)
- Young-Ah Lucy Lee
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zeynab Mousavikhamene
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | | | - Suzanne M Neidhart
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Sridhar Krishnaswamy
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - George C Schatz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Teri W Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
9
|
Mondal B, Thirumalai D, Reddy G. Energy Landscape of Ubiquitin Is Weakly Multidimensional. J Phys Chem B 2021; 125:8682-8689. [PMID: 34319720 DOI: 10.1021/acs.jpcb.1c02762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Single molecule pulling experiments report time-dependent changes in the extension (X) of a biomolecule as a function of the applied force (f). By fitting the data to one-dimensional analytical models of the energy landscape, we can extract the hopping rates between the folded and unfolded states in two-state folders as well as the height and the location of the transition state (TS). Although this approach is remarkably insightful, there are cases for which the energy landscape is multidimensional (catch bonds being the most prominent). To assess if the unfolding energy landscape in small single domain proteins could be one-dimensional, we simulated force-induced unfolding of ubiquitin (Ub) using the coarse-grained self-organized polymer-side chain (SOP-SC) model. Brownian dynamics simulations using the SOP-SC model reveal that the Ub energy landscape is weakly multidimensional (WMD), governed predominantly by a single barrier. The unfolding pathway is confined to a narrow reaction pathway that could be described as diffusion in a quasi-1D X-dependent free energy profile. However, a granular analysis using the Pfold analysis, which does not assume any form for the reaction coordinate, shows that X alone does not account for the height and, more importantly, the location of the TS. The f-dependent TS location moves toward the folded state as f increases, in accord with the Hammond postulate. Our study shows that, in addition to analyzing the f-dependent hopping rates, the transition state ensemble must also be determined without resorting to X as a reaction coordinate to describe the unfolding energy landscapes of single domain proteins, especially if they are only WMD.
Collapse
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
10
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
11
|
Liebman C, McColloch A, Rabiei M, Bowling A, Cho M. Mechanics of the cell: Interaction mechanisms and mechanobiological models. CURRENT TOPICS IN MEMBRANES 2020; 86:143-184. [PMID: 33837692 DOI: 10.1016/bs.ctm.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of cell mechanics has long been recognized for the cell development and function. Biomechanics plays an important role in cell metabolism, regulation of mechanotransduction pathways and also modulation of nuclear response. The mechanical properties of the cell are likely determined by, among many others, the cytoskeleton elasticity, membrane tension and cell-substrate adhesion. This coordinated but complex mechanical interplay is required however, for the cell to respond to and influence in a reciprocal manner the chemical and mechanical signals from the extracellular matrix (ECM). In an effort to better and more fully understand the cell mechanics, the role of nuclear mechanics has emerged as an important contributor to the overall cellular mechanics. It is not too difficult to appreciate the physical connection between the nucleus and the cytoskeleton network that may be connected to the ECM through the cell membrane. Transmission of forces from ECM through this connection is essential for a wide range of cellular behaviors and functions such as cytoskeletal reorganization, nuclear movement, cell migration and differentiation. Unlike the cellular mechanics that can be measured using a number of biophysical techniques that were developed in the past few decades, it still remains a daunting challenge to probe the nuclear mechanics directly. In this paper, we therefore aim to provide informative description of the cell membrane and cytoskeleton mechanics, followed by unique computational modeling efforts to elucidate the nucleus-cytoskeleton coupling. Advances in our knowledge of complete cellular biomechanics and mechanotransduction may lead to clinical relevance and applications in mechano-diseases such as atherosclerosis, stem cell-based therapies, and the development of tissue engineered products.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Manoochehr Rabiei
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan Bowling
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States.
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
12
|
Cui J, Liu Y, Xiao L, Chen S, Fu BM. Numerical study on the adhesion of a circulating tumor cell in a curved microvessel. Biomech Model Mechanobiol 2020; 20:243-254. [PMID: 32809129 DOI: 10.1007/s10237-020-01380-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
The adhesion of a circulating tumor cell (CTC) in a three-dimensional curved microvessel was numerically investigated. Simulations were first performed to characterize the differences in the dynamics and adhesion of a CTC in the straight and curved vessels. After that, a parametric study was performed to investigate the effects of the applied driven force density f (or the flow Reynolds number Re) and the CTC membrane bending modulus Kb on the CTC adhesion. Our simulation results show that the CTC prefers to adhere to the curved vessel as more bonds are formed around the transition region of the curved part due to the increased cell-wall contact by the centrifugal force. The parametric study also indicates that when the flow driven force f (or Re) increases or when the CTC becomes softer (Kb decreases), the bond formation probability increases and the bonds will be formed at more sites of a curved vessel. The increased f (or Re) brings a larger centrifugal force, while the decreased Kb generates more contact areas at the cell-wall interface, both of which are beneficial to the bond formation. In the curved vessel, it is found that the site where bonds are formed the most (hotspot) varies with the applied f and the Kb. For our vessel geometry, when f is small, the hotspot tends to be within the first bend of the vessel, while as f increases or Kb decreases, the hotspot may shift to the second bend of the vessel.
Collapse
Affiliation(s)
- Jingyu Cui
- Research Centre for Fluid-Structure Interactions, Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yang Liu
- Research Centre for Fluid-Structure Interactions, Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Lanlan Xiao
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Shuo Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, USA
| |
Collapse
|
13
|
Wang X, Law J, Luo M, Gong Z, Yu J, Tang W, Zhang Z, Mei X, Huang Z, You L, Sun Y. Magnetic Measurement and Stimulation of Cellular and Intracellular Structures. ACS NANO 2020; 14:3805-3821. [PMID: 32223274 DOI: 10.1021/acsnano.0c00959] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From single-pole magnetic tweezers to robotic magnetic-field generation systems, the development of magnetic micromanipulation systems, using electromagnets or permanent magnets, has enabled a multitude of applications for cellular and intracellular measurement and stimulation. Controlled by different configurations of magnetic-field generation systems, magnetic particles have been actuated by an external magnetic field to exert forces/torques and perform mechanical measurements on the cell membrane, cytoplasm, cytoskeleton, nucleus, intracellular motors, etc. The particles have also been controlled to generate aggregations to trigger cell signaling pathways and produce heat to cause cancer cell apoptosis for hyperthermia treatment. Magnetic micromanipulation has become an important tool in the repertoire of toolsets for cell measurement and stimulation and will continue to be used widely for further explorations of cellular/intracellular structures and their functions. Existing review papers in the literature focus on fabrication and position control of magnetic particles/structures (often termed micronanorobots) and the synthesis and functionalization of magnetic particles. Differently, this paper reviews the principles and systems of magnetic micromanipulation specifically for cellular and intracellular measurement and stimulation. Discoveries enabled by magnetic measurement and stimulation of cellular and intracellular structures are also summarized. This paper ends with discussions on future opportunities and challenges of magnetic micromanipulation in the exploration of cellular biophysics, mechanotransduction, and disease therapeutics.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Mengxi Luo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Jiangfan Yu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zhuoran Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xueting Mei
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
14
|
Abstract
BACKGROUND Endothelial cells (ECs) sense the forces from blood flow through the glycocalyx, a carbohydrate rich luminal surface layer decorating most cells, and through forces transmitted through focal adhesions (FAs) on the abluminal side of the cell. OBJECTIVES This perspective paper explores a complementary hypothesis, that glycocalyx molecules on the abluminal side of the EC between the basement membrane and the EC membrane, occupying the space outside of FAs, work in concert with FAs to sense blood flow-induced shear stress applied to the luminal surface. RESULTS First, we summarize recent studies suggesting that the glycocalyx repels the plasma membrane away from the basement membrane, while integrin molecules attach to extracellular matrix (ECM) ligands. This coordinated attraction and repulsion results in the focal nature of integrin-mediated adhesion making the abluminal glycocalyx a participant in mechanotransduction. Further, the glycocalyx mechanically links the plasma membrane to the basement membrane providing a mechanism of force transduction when the cell deforms in the peri-FA space. To determine if the membrane might deform against a restoring force of an elastic abluminal glycocalyx in the peri-FA space we present some analysis from a multicomponent elastic finite element model of a sheared and focally adhered endothelial cell whose abluminal topography was assessed using quantitative total internal reflection fluorescence microscopy with an assumption that glycocalyx fills the space between the membrane and extracellular matrix. CONCLUSIONS While requiring experimental verification, this analysis supports the hypothesis that shear on the luminal surface can be transmitted to the abluminal surface and deform the cell in the vicinity of the focal adhesions, with the magnitude of deformation depending on the abluminal glycocalyx modulus.
Collapse
Affiliation(s)
- Peter J Butler
- Department of Biomedical Engineering and Intercollege Graduate Program of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| | - Amit Bhatnagar
- Department of Biomedical Engineering and Intercollege Graduate Program of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Li Z, Lee H, Eskin SG, Ono S, Zhu C, McIntire LV. Mechanochemical coupling of formin-induced actin interaction at the level of single molecular complex. Biomech Model Mechanobiol 2020; 19:1509-1521. [PMID: 31965350 DOI: 10.1007/s10237-019-01284-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/24/2019] [Indexed: 01/08/2023]
Abstract
Formins promote actin assembly and are involved in force-dependent cytoskeletal remodeling. However, how force alters the formin functions still needs to be investigated. Here, using atomic force microscopy and biomembrane force probe, we investigated how mechanical force affects formin-mediated actin interactions at the level of single molecular complexes. The biophysical parameters of G-actin/G-actin (GG) or G-actin/F-actin (GF) interactions were measured under force loading in the absence or presence of two C-terminal fragments of the mouse formin mDia1: mDia1Ct that contains formin homology 2 domain (FH2) and diaphanous autoregulatory domain (DAD) and mDia1Ct-ΔDAD that contains only FH2. Under force-free conditions, neither association nor dissociation kinetics of GG and GF interactions were significantly affected by mDia1Ct or mDia1Ct-ΔDAD. Under tensile forces (0-7 pN), the average lifetimes of these bonds were prolonged and molecular complexes were stiffened in the presence of mDia1Ct, indicating mDia1Ct association kinetically stabilizes and mechanically strengthens bonds of the dimer and at the end of the F-actin under force. Interestingly, mDia1Ct-ΔDAD prolonged the lifetime of GF but not GG bond under force, suggesting the DAD domain is critical for mDia1Ct to strengthen GG interaction. These data unravel the mechanochemical coupling in formin-induced actin assembly and provide evidence to understand the initiation of formin-mediated actin elongation and nucleation.
Collapse
Affiliation(s)
- Zhenhai Li
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA.,Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China
| | - Hyunjung Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Suzanne G Eskin
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA.
| | - Cheng Zhu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA. .,George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Larry V McIntire
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
16
|
Griffin BP, Largaespada CJ, Rinaldi NA, Lemmon CA. A novel method for quantifying traction forces on hexagonal micropatterned protein features on deformable poly-dimethyl siloxane sheets. MethodsX 2019; 6:1343-1352. [PMID: 31417850 PMCID: PMC6690417 DOI: 10.1016/j.mex.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/09/2019] [Indexed: 11/24/2022] Open
Abstract
Many methods exist for quantifying cellular traction forces, including traction force microscopy and microfabricated post arrays. However, these methodologies have limitations, including a requirement to remove cells to determine undeflected particle locations and the inability to quantify forces of cells with low cytoskeletal stiffness, respectively. Here we present a novel method of traction force quantification that eliminates both of these limitations. Through the use of a hexagonal pattern of microcontact-printed protein spots, a novel computational algorithm, and thin surfaces of polydimethyl siloxane (PDMS) blends, we demonstrate a system that: •quantifies cellular forces on a homogeneous surface that is stable and easily manufactured.•utilizes hexagonal patterns of protein spots and computational geometry to quantify cellular forces without need for cell removal.•quantifies cellular forces in cells with low cytoskeletal rigidity.
Collapse
Affiliation(s)
- Brian P. Griffin
- Department of Biomedical Engineering, Virginia Commonwealth University, United States
| | | | - Nicole A. Rinaldi
- Department of Biomedical Engineering, University of Rochester, United States
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, United States
| |
Collapse
|
17
|
Kamm RD, Bashir R, Arora N, Dar RD, Gillette MU, Griffith LG, Kemp ML, Kinlaw K, Levin M, Martin AC, McDevitt TC, Nerem RM, Powers MJ, Saif TA, Sharpe J, Takayama S, Takeuchi S, Weiss R, Ye K, Yevick HG, Zaman MH. Perspective: The promise of multi-cellular engineered living systems. APL Bioeng 2018; 2:040901. [PMID: 31069321 PMCID: PMC6481725 DOI: 10.1063/1.5038337] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Recent technological breakthroughs in our ability to derive and differentiate induced pluripotent stem cells, organoid biology, organ-on-chip assays, and 3-D bioprinting have all contributed to a heightened interest in the design, assembly, and manufacture of living systems with a broad range of potential uses. This white paper summarizes the state of the emerging field of "multi-cellular engineered living systems," which are composed of interacting cell populations. Recent accomplishments are described, focusing on current and potential applications, as well as barriers to future advances, and the outlook for longer term benefits and potential ethical issues that need to be considered.
Collapse
Affiliation(s)
- Roger D. Kamm
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Rashid Bashir
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - Natasha Arora
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Roy D. Dar
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | | | - Linda G. Griffith
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Melissa L. Kemp
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Adam C. Martin
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | | - Robert M. Nerem
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Mark J. Powers
- Thermo Fisher Scientific, Frederick, Maryland 21704, USA
| | - Taher A. Saif
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona 08003, Spain
| | | | | | - Ron Weiss
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Kaiming Ye
- Binghamton University, Binghamton, New York 13902, USA
| | - Hannah G. Yevick
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | |
Collapse
|
18
|
Podder A, Pandit M, Narayanan L. Drug Target Prioritization for Alzheimer's Disease Using Protein Interaction Network Analysis. ACTA ACUST UNITED AC 2018; 22:665-677. [DOI: 10.1089/omi.2018.0131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Avijit Podder
- Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Delhi, India
| | - Mansi Pandit
- Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Delhi, India
| | - Latha Narayanan
- Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Delhi, India
| |
Collapse
|
19
|
Adeola HA, Van Wyk JC, Arowolo A, Ngwanya RM, Mkentane K, Khumalo NP. Emerging Diagnostic and Therapeutic Potentials of Human Hair Proteomics. Proteomics Clin Appl 2017; 12. [PMID: 28960873 DOI: 10.1002/prca.201700048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/09/2017] [Indexed: 01/22/2023]
Abstract
The use of noninvasive human substrates to interrogate pathophysiological conditions has become essential in the post- Human Genome Project era. Due to its high turnover rate, and its long term capability to incorporate exogenous and endogenous substances from the circulation, hair testing is emerging as a key player in monitoring long term drug compliance, chronic alcohol abuse, forensic toxicology, and biomarker discovery, among other things. Novel high-throughput 'omics based approaches like proteomics have been underutilized globally in comprehending human hair morphology and its evolving use as a diagnostic testing substrate in the era of precision medicine. There is paucity of scientific evidence that evaluates the difference in drug incorporation into hair based on lipid content, and very few studies have addressed hair growth rates, hair forms, and the biological consequences of hair grooming or bleaching. It is apparent that protein-based identification using the human hair proteome would play a major role in understanding these parameters akin to DNA single nucleotide polymorphism profiling, up to single amino acid polymorphism resolution. Hence, this work seeks to identify and discuss the progress made thus far in the field of molecular hair testing using proteomic approaches, and identify ways in which proteomics would improve the field of hair research, considering that the human hair is mostly composed of proteins. Gaps in hair proteomics research are identified and the potential of hair proteomics in establishing a historic medical repository of normal and disease-specific proteome is also discussed.
Collapse
Affiliation(s)
- Henry A Adeola
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer C Van Wyk
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Afolake Arowolo
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Reginald M Ngwanya
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Khwezikazi Mkentane
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
20
|
Scott LE, Mair DB, Narang JD, Feleke K, Lemmon CA. Fibronectin fibrillogenesis facilitates mechano-dependent cell spreading, force generation, and nuclear size in human embryonic fibroblasts. Integr Biol (Camb) 2015; 7:1454-65. [PMID: 26412391 PMCID: PMC4630078 DOI: 10.1039/c5ib00217f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells respond to mechanical cues from the substrate to which they are attached. These mechanical cues drive cell migration, proliferation, differentiation, and survival. Previous studies have highlighted three specific mechanisms through which substrate stiffness directly alters cell function: increasing stiffness drives (1) larger contractile forces; (2) increased cell spreading and size; and (3) altered nuclear deformation. While studies have shown that substrate mechanics are an important cue, the role of the extracellular matrix (ECM) has largely been ignored. The ECM is a crucial component of the mechanosensing system for two reasons: (1) many ECM fibrils are assembled by application of cell-generated forces, and (2) ECM proteins have unique mechanical properties that will undoubtedly alter the local stiffness sensed by a cell. We specifically focused on the role of the ECM protein fibronectin (FN), which plays a critical role in de novo tissue production. In this study, we first measured the effects of substrate stiffness on human embryonic fibroblasts by plating cells onto microfabricated pillar arrays (MPAs) of varying stiffness. Cells responded to increasing substrate stiffness by generating larger forces, spreading to larger sizes, and altering nuclear geometry. These cells also assembled FN fibrils across all stiffnesses, with optimal assembly occurring at approximately 6 kPa. We then inhibited FN assembly, which resulted in dramatic reductions in contractile force generation, cell spreading, and nuclear geometry across all stiffnesses. These findings suggest that FN fibrils play a critical role in facilitating cellular responses to substrate stiffness.
Collapse
Affiliation(s)
- Lewis E Scott
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| | - Devin B Mair
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| | - Jiten D Narang
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| | - Kirubel Feleke
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| |
Collapse
|
21
|
Podder A, Jatana N, Latha N. Human Dopamine Receptors Interaction Network (DRIN): A systems biology perspective on topology, stability and functionality of the network. J Theor Biol 2014; 357:169-83. [PMID: 24846730 DOI: 10.1016/j.jtbi.2014.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/05/2014] [Accepted: 05/09/2014] [Indexed: 01/11/2023]
|
22
|
Tang X, Tofangchi A, Anand SV, Saif TA. A novel cell traction force microscopy to study multi-cellular system. PLoS Comput Biol 2014; 10:e1003631. [PMID: 24901766 PMCID: PMC4046928 DOI: 10.1371/journal.pcbi.1003631] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
Traction forces exerted by adherent cells on their microenvironment can mediate many critical cellular functions. Accurate quantification of these forces is essential for mechanistic understanding of mechanotransduction. However, most existing methods of quantifying cellular forces are limited to single cells in isolation, whereas most physiological processes are inherently multi-cellular in nature where cell-cell and cell-microenvironment interactions determine the emergent properties of cell clusters. In the present study, a robust finite-element-method-based cell traction force microscopy technique is developed to estimate the traction forces produced by multiple isolated cells as well as cell clusters on soft substrates. The method accounts for the finite thickness of the substrate. Hence, cell cluster size can be larger than substrate thickness. The method allows computing the traction field from the substrate displacements within the cells' and clusters' boundaries. The displacement data outside these boundaries are not necessary. The utility of the method is demonstrated by computing the traction generated by multiple monkey kidney fibroblasts (MKF) and human colon cancerous (HCT-8) cells in close proximity, as well as by large clusters. It is found that cells act as individual contractile groups within clusters for generating traction. There may be multiple of such groups in the cluster, or the entire cluster may behave a single group. Individual cells do not form dipoles, but serve as a conduit of force (transmission lines) over long distances in the cluster. The cell-cell force can be either tensile or compressive depending on the cell-microenvironment interactions.
Collapse
Affiliation(s)
- Xin Tang
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| | - Alireza Tofangchi
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| | - Sandeep V. Anand
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| | - Taher A. Saif
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
- Micro and Nanotechnology Laboratory (MNTL), University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| |
Collapse
|
23
|
Mow VC, Butler DL, Nerem RM. A brief history of USNCB: motivation and formation. J Biomech Eng 2014; 136:060301. [PMID: 24687029 DOI: 10.1115/1.4027332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/28/2014] [Indexed: 11/08/2022]
|
24
|
Abdul Rahim NA, Pelet S, Mofrad MRK, So PTC, Kamm RD. Quantifying intracellular protein binding thermodynamics during mechanotransduction based on FRET spectroscopy. Methods 2014; 66:208-21. [PMID: 24184188 PMCID: PMC4094350 DOI: 10.1016/j.ymeth.2013.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/24/2013] [Accepted: 10/12/2013] [Indexed: 11/29/2022] Open
Abstract
Mechanical force modulates myriad cellular functions including migration, alignment, proliferation, and gene transcription. Mechanotransduction, the transmission of mechanical forces and its translation into biochemical signals, may be mediated by force induced protein conformation changes, subsequently modulating protein signaling. For the paxillin and focal adhesion kinase interaction, we demonstrate that force-induced changes in protein complex conformation, dissociation constant, and binding Gibbs free energy can be quantified by lifetime-resolved fluorescence energy transfer microscopy combined with intensity imaging calibrated by fluorescence correlation spectroscopy. Comparison with in vitro data shows that this interaction is allosteric in vivo. Further, spatially resolved imaging and inhibitor assays show that this protein interaction and its mechano-sensitivity are equal in the cytosol and in the focal adhesions complexes indicating that the mechano-sensitivity of this interaction must be mediated by soluble factors but not based on protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Nur Aida Abdul Rahim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United states
| | - Serge Pelet
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United States; Department of Fundamental Microbiology, University of Lausanne, Biophore Building, Room 2406, CH-1015 Lausanne, Switzerland
| | - Mohammad R K Mofrad
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall MC #1762, Berkeley, CA 94720-1762, United States
| | - Peter T C So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United states; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United States; Laser Biomedical Research Center, A NIH NIBIB Research Resource, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United States.
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United states; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United States
| |
Collapse
|
25
|
Beloussov LV. Morphogenesis can be driven by properly parametrised mechanical feedback. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:132. [PMID: 24264054 DOI: 10.1140/epje/i2013-13132-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/23/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
A fundamental problem of morphogenesis is whether it presents itself as a succession of links that are each driven by its own specific cause-effect relationship, or whether all of the links can be embraced by a common law that is possible to formulate in physical terms. We suggest that a common biophysical background for most, if not all, morphogenetic processes is based upon feedback between mechanical stresses (MS) that are imposed to a given part of a developing embryo by its other parts and MS that are actively generated within that part. The latter are directed toward hyper-restoration (restoration with an overshoot) of the initial MS values. We show that under mechanical constraints imposed by other parts, these tendencies drive forth development. To provide specificity for morphogenetic reactions, this feedback should be modulated by long-term parameters and/or initial conditions that are set up by genetic factors. The experimental and model data related to this concept are reviewed.
Collapse
Affiliation(s)
- L V Beloussov
- Laboratory of Developmental Biophysics, Faculty of Biology, Moscow State University, 119992, Moscow, Russia,
| |
Collapse
|
26
|
Butler DL, Dyment NA, Shearn JT, Kinneberg KRC, Breidenbach AP, Lalley AL, Gilday SD, Gooch C, Rao MB, Liu CF, Wylie C. Evolving strategies in mechanobiology to more effectively treat damaged musculoskeletal tissues. J Biomech Eng 2013; 135:020301. [PMID: 23445046 DOI: 10.1115/1.4023479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, we had four primary objectives. (1) We reviewed a brief history of the Lissner award and the individual for whom it is named, H.R. Lissner. We examined the type (musculoskeletal, cardiovascular, and other) and scale (organism to molecular) of research performed by prior Lissner awardees using a hierarchical paradigm adopted at the 2007 Biomechanics Summit of the US National Committee on Biomechanics. (2) We compared the research conducted by the Lissner award winners working in the musculoskeletal (MS) field with the evolution of our MS research and showed similar trends in scale over the past 35 years. (3) We discussed our evolving mechanobiology strategies for treating musculoskeletal injuries by accounting for clinical, biomechanical, and biological considerations. These strategies included studies to determine the function of the anterior cruciate ligament and its graft replacements as well as novel methods to enhance soft tissue healing using tissue engineering, functional tissue engineering, and, more recently, fundamental tissue engineering approaches. (4) We concluded with thoughts about future directions, suggesting grand challenges still facing bioengineers as well as the immense opportunities for young investigators working in musculoskeletal research. Hopefully, these retrospective and prospective analyses will be useful as the ASME Bioengineering Division charts future research directions.
Collapse
Affiliation(s)
- David L Butler
- Tissue Engineering and Biomechanics Laboratories, Biomedical Engineering Program, College of Engineering and Applied Sciences, University of Cincinnati; Cincinnati, OH 45221, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion. The interface between a cell and its substrate is strengthened by the formation of focal adhesions. In this study molecular dynamics simulations are used to explore the connectivity of one focal adhesion forming protein, vinculin, and the cytoskeletal filament, F-actin. The simulations demonstrate: (1) that vinculin can link along F-actin at these focal adhesions when it adopts an open conformation, (2) that the vinculin tail (Vt) can bind F-actin at its barbed-end preventing actin polymerization, (3) that vinculin can adopt two open conformations, and (4) that the second open conformation is necessary for vinculin to cap the actin filament. The results suggest that vinculin can act as a variable switch, changing its shape and the nature of its interaction with F-actin depending on the level of stress seen at a focal adhesion. Under the highest stress vinculin would adopt the open II conformation and link anywhere on F-actin, even its barbed-end. Under less stress vinculin could adopt the open I conformation and bind along F-actin. And under minimal stress vinculin could adopt its closed conformation. This variability allows for vinculin to truly function as the cell's mechanical reinforcing agent.
Collapse
|
28
|
Lee HH, Lee HC, Chou CC, Hur SS, Osterday K, del Álamo JC, Lasheras JC, Chien S. Shp2 plays a crucial role in cell structural orientation and force polarity in response to matrix rigidity. Proc Natl Acad Sci U S A 2013; 110:2840-5. [PMID: 23359696 PMCID: PMC3581906 DOI: 10.1073/pnas.1222164110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells can sense and respond to physical properties of their surrounding extracellular matrix. We have demonstrated here that tyrosine phosphatase Shp2 plays an essential role in the response of mouse embryonic fibroblasts to matrix rigidity. On rigid surfaces, large focal adhesions (FAs) and anisotropically oriented stress fibers are formed, whereas cells plated on compliant substrates form numerous small FAs and radially oriented stress fibers. As a result, traction force is increased and organized to promote cell spreading and elongation on rigid substrates. Shp2-deficient cells do not exhibit the stiffness-dependent increase in FA size and polarized stress fibers nor the intracellular tension and cell shape change. These results indicate the involvement of Shp2 in regulating the FAs and the cytoskeleton for force maintenance and organization. The defect of FA maturation in Shp2-deficient cells was rescued by expressing Y722F Rho-associated protein kinase II (ROCKII), suggesting that ROCKII is the molecular target of Shp2 in FAs for the FA maturation. Thus, Shp2 serves as a key mediator in FAs for the regulation of structural organization and force orientation of mouse embyonic fibroblasts in determining their mechanical polarity in response to matrix rigidity.
Collapse
Affiliation(s)
- Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China; and
| | - Hsin-Chang Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China; and
| | - Chih-Chiang Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China; and
| | - Sung Sik Hur
- Department of Bioengineering
- Institute of Engineering in Medicine, and
| | - Katie Osterday
- Institute of Engineering in Medicine, and
- Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093
| | - Juan C. del Álamo
- Institute of Engineering in Medicine, and
- Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093
| | - Juan C. Lasheras
- Department of Bioengineering
- Institute of Engineering in Medicine, and
- Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093
| | - Shu Chien
- Department of Bioengineering
- Institute of Engineering in Medicine, and
| |
Collapse
|
29
|
Abstract
Recent advances in network theory have led to considerable progress in our understanding of complex real world systems and their behavior in response to external threats or fluctuations. Much of this research has been invigorated by demonstration of the 'robust, yet fragile' nature of cellular and large-scale systems transcending biology, sociology, and ecology, through application of the network theory to diverse interactions observed in nature such as plant-pollinator, seed-dispersal agent and host-parasite relationships. In this work, we report the development of NEXCADE, an automated and interactive program for inducing disturbances into complex systems defined by networks, focusing on the changes in global network topology and connectivity as a function of the perturbation. NEXCADE uses a graph theoretical approach to simulate perturbations in a user-defined manner, singly, in clusters, or sequentially. To demonstrate the promise it holds for broader adoption by the research community, we provide pre-simulated examples from diverse real-world networks including eukaryotic protein-protein interaction networks, fungal biochemical networks, a variety of ecological food webs in nature as well as social networks. NEXCADE not only enables network visualization at every step of the targeted attacks, but also allows risk assessment, i.e. identification of nodes critical for the robustness of the system of interest, in order to devise and implement context-based strategies for restructuring a network, or to achieve resilience against link or node failures. Source code and license for the software, designed to work on a Linux-based operating system (OS) can be downloaded at http://www.nipgr.res.in/nexcade_download.html. In addition, we have developed NEXCADE as an OS-independent online web server freely available to the scientific community without any login requirement at http://www.nipgr.res.in/nexcade.html.
Collapse
Affiliation(s)
- Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research, New Delhi, India.
| | | |
Collapse
|
30
|
He X, Aizenberg M, Kuksenok O, Zarzar LD, Shastri A, Balazs AC, Aizenberg J. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 2012; 487:214-8. [PMID: 22785318 DOI: 10.1038/nature11223] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/08/2012] [Indexed: 12/20/2022]
Abstract
Living organisms have unique homeostatic abilities, maintaining tight control of their local environment through interconversions of chemical and mechanical energy and self-regulating feedback loops organized hierarchically across many length scales. In contrast, most synthetic materials are incapable of continuous self-monitoring and self-regulating behaviour owing to their limited single-directional chemomechanical or mechanochemical modes. Applying the concept of homeostasis to the design of autonomous materials would have substantial impacts in areas ranging from medical implants that help stabilize bodily functions to 'smart' materials that regulate energy usage. Here we present a versatile strategy for creating self-regulating, self-powered, homeostatic materials capable of precisely tailored chemo-mechano-chemical feedback loops on the nano- or microscale. We design a bilayer system with hydrogel-supported, catalyst-bearing microstructures, which are separated from a reactant-containing 'nutrient' layer. Reconfiguration of the gel in response to a stimulus induces the reversible actuation of the microstructures into and out of the nutrient layer, and serves as a highly precise 'on/off' switch for chemical reactions. We apply this design to trigger organic, inorganic and biochemical reactions that undergo reversible, repeatable cycles synchronized with the motion of the microstructures and the driving external chemical stimulus. By exploiting a continuous feedback loop between various exothermic catalytic reactions in the nutrient layer and the mechanical action of the temperature-responsive gel, we then create exemplary autonomous, self-sustained homeostatic systems that maintain a user-defined parameter--temperature--in a narrow range. The experimental results are validated using computational modelling that qualitatively captures the essential features of the self-regulating behaviour and provides additional criteria for the optimization of the homeostatic function, subsequently confirmed experimentally. This design is highly customizable owing to the broad choice of chemistries, tunable mechanics and its physical simplicity, and may lead to a variety of applications in autonomous systems with chemo-mechano-chemical transduction at their core.
Collapse
Affiliation(s)
- Ximin He
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Brodland GW. A Framework for Connecting Gene Expression to Morphogenetic Movements in Embryos. IEEE Trans Biomed Eng 2011; 58:3033-6. [DOI: 10.1109/tbme.2011.2159604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
A molecular dynamics investigation of vinculin activation. Biophys J 2010; 99:1073-81. [PMID: 20712990 DOI: 10.1016/j.bpj.2010.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 05/07/2010] [Accepted: 05/12/2010] [Indexed: 11/23/2022] Open
Abstract
Vinculin activation plays a critical role in focal adhesion initiation and formation. In its native state, vinculin is in an autoinhibitory conformation in which domain 1 prevents interaction of the vinculin tail domain with actin by steric hindrance. Once activated, vinculin is able to interact with both actin and talin. Several hypotheses have been put forth addressing the mechanisms of vinculin activation. One set of studies suggests that vinculin interaction with talin is sufficient to cause activation, whereas another set of studies suggests that a simultaneous interaction with several binding partners is necessary to achieve vinculin activation. Using molecular-dynamics (MD) simulations, we investigate the mechanisms of vinculin activation and suggest both a trajectory of conformational changes leading to vinculin activation, and key structural features that are likely involved in stabilizing the autoinhibited conformation. Assuming that the simultaneous interaction of vinculin with both actin and talin causes a stretching force on vinculin, and that vinculin activation results from a removal of steric hindrance blocking the actin-binding sites, we simulate with MD the stretching and activation of vinculin. The MD simulations are further confirmed by normal-mode analysis and simulation after residue modification. Taken together, the results of these simulations suggest that bending of the vinculin-binding-site region in vinculin away from the vinculin tail is the likely trajectory of vinculin activation.
Collapse
|