1
|
Boufaied N, Chetta P, Hallal T, Cacciatore S, Lalli D, Luthold C, Homsy K, Imada EL, Syamala S, Photopoulos C, Di Matteo A, de Polo A, Storaci AM, Huang Y, Giunchi F, Sheridan PA, Michelotti G, Nguyen QD, Zhao X, Liu Y, Davicioni E, Spratt DE, Sabbioneda S, Maga G, Mucci LA, Ghigna C, Marchionni L, Butler LM, Ellis L, Bordeleau F, Loda M, Vaira V, Labbé DP, Zadra G. Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer. Cancer Res 2024; 84:1834-1855. [PMID: 38831751 PMCID: PMC11148549 DOI: 10.1158/0008-5472.can-23-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 12/29/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.
Collapse
Affiliation(s)
- Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Paolo Chetta
- University of Milan, Residency Program in Pathology, Milan, Italy
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Stefano Cacciatore
- Bionformatics Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Daniela Lalli
- Department of Science and Technological Innovation, University of Piemonte Orientale “A. Avogadro,” Alessandria, Italy
| | - Carole Luthold
- CHU de Québec-Université Laval Research Center (Oncology Division) and Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Québec, Canada
| | - Kevin Homsy
- CHU de Québec-Université Laval Research Center (Oncology Division) and Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Québec, Canada
| | - Eddie L. Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, New York
| | - Sudeepa Syamala
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Cornelia Photopoulos
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anna Di Matteo
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Anna de Polo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | | | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Francesca Giunchi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Quang-De Nguyen
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xin Zhao
- Veracyte, South San Francisco, California
| | - Yang Liu
- Veracyte, South San Francisco, California
| | | | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Simone Sabbioneda
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Claudia Ghigna
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, New York
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Leigh Ellis
- Department of Surgery, Center for Prostate Disease Research, Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - François Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division) and Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Québec, Canada
- Department of Molecular Biology, Clinical Biochemistry, and Pathology, Laval University, Québec, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, New York
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, Québec, Canada
| | - Giorgia Zadra
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Flanary SM, Peak KE, Barocas VH. A Graphical Approach to Visualize and Interpret Biochemically Coupled Biomechanical Models. J Biomech Eng 2024; 146:054504. [PMID: 38421368 PMCID: PMC11005857 DOI: 10.1115/1.4064970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
The last decade has seen the emergence of progressively more complex mechanobiological models, often coupling biochemical and biomechanical components. The complexity of these models makes interpretation difficult, and although computational tools can solve model equations, there is considerable potential value in a simple method to explore the interplay between different model components. Pump and system performance curves, long utilized in centrifugal pump selection and design, inspire the development of a graphical technique to depict visually the performance of biochemically-coupled mechanical models. Our approach is based on a biochemical performance curve (analogous to the classical pump curve) and a biomechanical performance curve (analogous to the system curve). Upon construction of the two curves, their intersection, or lack thereof, describes the coupled model's equilibrium state(s). One can also observe graphically how an applied perturbation shifts one or both curves, and thus how the other component will respond, without rerunning the full model. While the upfront cost of generating the performance curve graphic varies with the efficiency of the model components, the easily interpretable visual depiction of what would otherwise be nonintuitive model behavior is valuable. Herein, we outline how performance curves can be constructed and interpreted for biochemically-coupled biomechanical models and apply the technique to two independent models in the cardiovascular space. The performance curve approach can illustrate and help identify weaknesses in model construction, inform user-applied perturbations and fitting procedures to generate intended behaviors, and improve the efficiency of the model generation and application process.
Collapse
Affiliation(s)
- Shannon M. Flanary
- Department of Chemical Engineering & Materials Science, University of Minnesota, Nils Hasselmo Hall, Room 7-115, 312 Church St SE, Minneapolis, MN 55455
| | - Kara E. Peak
- Department of Biomedical Engineering, University of Minnesota, Nils Hasselmo Hall, Room 7-115, 312 Church St SE, Minneapolis, MN 55455
- University of Minnesota
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota, Nils Hasselmo Hall, Room 7-115, 312 Church St SE, Minneapolis, MN 55455
| |
Collapse
|
3
|
Flanary SM, Jo S, Ravichandran R, Alejandro EU, Barocas VH. A computational bridge between traction force microscopy and tissue contraction. JOURNAL OF APPLIED PHYSICS 2023; 134:074901. [PMID: 37593660 PMCID: PMC10431945 DOI: 10.1063/5.0157507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Arterial wall active mechanics are driven by resident smooth muscle cells, which respond to biological, chemical, and mechanical stimuli and activate their cytoskeletal machinery to generate contractile stresses. The cellular mechanoresponse is sensitive to environmental perturbations, often leading to maladaptation and disease progression. When investigated at the single cell scale, however, these perturbations do not consistently result in phenotypes observed at the tissue scale. Here, a multiscale model is introduced that translates microscale contractility signaling into a macroscale, tissue-level response. The microscale framework incorporates a biochemical signaling network along with characterization of fiber networks that govern the anisotropic mechanics of vascular tissue. By incorporating both biochemical and mechanical components, the model is more flexible and more broadly applicable to physiological and pathological conditions. The model can be applied to both cell and tissue scale systems, allowing for the analysis of in vitro, traction force microscopy and ex vivo, isometric contraction experiments in parallel. When applied to aortic explant rings and isolated smooth muscle cells, the model predicts that active contractility is not a function of stretch at intermediate strain. The model also successfully predicts cell-scale and tissue-scale contractility and matches experimentally observed behaviors, including the hypercontractile phenotype caused by chronic hyperglycemia. The connection of the microscale framework to the macroscale through the multiscale model presents a framework that can translate the wealth of information already collected at the cell scale to tissue scale phenotypes, potentially easing the development of smooth muscle cell-targeting therapeutics.
Collapse
Affiliation(s)
- Shannon M. Flanary
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Rohit Ravichandran
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
4
|
Flanary SM, Barocas VH. A structural bio-chemo-mechanical model for vascular smooth muscle cell traction force microscopy. Biomech Model Mechanobiol 2023; 22:1221-1238. [PMID: 37004657 PMCID: PMC10603623 DOI: 10.1007/s10237-023-01713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023]
Abstract
Altered vascular smooth muscle cell (VSMC) contractility is both a response to and a driver for impaired arterial function, and the leading experimental technique for quantifying VSMC contraction is traction force microscopy (TFM). TFM involves the complex interaction among several chemical, biological, and mechanical mechanisms, making it difficult to translate TFM results into tissue-scale behavior. Here, a computational model capturing each of the major aspects of the cell traction process is presented. The model incorporates four interacting components: a biochemical signaling network, individual actomyosin fiber bundle contraction, a cytoskeletal network of interconnected fibers, and elastic substrate displacement due to cytoskeletal force. The synthesis of these four components leads to a broad, flexible framework for describing TFM and linking biochemical and biomechanical phenomena on the single-cell level. The model recapitulated available data on VSMCs following biochemical, geometric, and mechanical perturbations. The structural bio-chemo-mechanical model offers a tool to interpret TFM data in new, more mechanistic ways, providing a framework for the evaluation of new biological hypotheses, interpolation of new data, and potential translation from single-cell experiments to multi-scale tissue models.
Collapse
Affiliation(s)
- Shannon M Flanary
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Nils Hasselmo Hall, Room 7-115, 312 Church St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Salloum G, Bresnick AR, Backer JM. Macropinocytosis: mechanisms and regulation. Biochem J 2023; 480:335-362. [PMID: 36920093 DOI: 10.1042/bcj20210584] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Jonathan M Backer
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| |
Collapse
|
6
|
Qin X, Zhang Y, He Y, Chen K, Zhang Y, Li P, Jiang Y, Li S, Li T, Yang H, Wu C, Zheng C, Zhu J, You F, Liu Y. Shear stress triggered circular dorsal ruffles formation to facilitate cancer cell migration. Arch Biochem Biophys 2021; 709:108967. [PMID: 34157295 DOI: 10.1016/j.abb.2021.108967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Circular dorsal ruffles (CDRs) are a kind of special ring-shaped membrane structure rich in F-actin, it is highly involved in the invasion-metastasis of tumor. Shear stress is one of the biophysical elements that affects the fate of tumor cells. However, how shear stress contributes to the CDRs formation is still unclear. In this study, we found that shear stress stimulated the formation of CDRs and promoted the migration of human breast MDA-MB-231 carcinoma cells. Integrin-linked kinase (ILK) mediated the recruiting of ADP-ribosylation factors (ARAP1/Arf1) to CDRs. Meanwhile, the transfection of ARAP1 or Arf1 mutant decreased the number of cells with CDRs, the CDRs areas and perimeters, thus blocked the cancer cell migration. This indicated that the ARAP1/Arf1 were necessary for the CDRs formation and cancer cell migration. Further study revealed that shear stress could stimulate the formation of intracellular macropinocytosis (MPS) thus promoted the ARAP1/Arf1 transportation to early endosome to regulate cancer cell migration after the depolymerization of CDRs. Our study elucidates that the CDRs formation is essential in shear stress-induced breast cancer cell migration, which provides a new research target for exploring the cytoskeletal mechanisms of breast cancer malignance.
Collapse
Affiliation(s)
- Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuehui Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuchen He
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Kang Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
7
|
Shinde A, Illath K, Gupta P, Shinde P, Lim KT, Nagai M, Santra TS. A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells 2021; 10:577. [PMID: 33808043 PMCID: PMC8000588 DOI: 10.3390/cells10030577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various developmental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More importantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at single-cell with attachment and detachment events. The adhesive force measurement for single-cell microorganisms and single-molecules is emphasized as well. This focused review should be useful in laying out experiments which would bring the method to a broader range of research in the future.
Collapse
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-Si, Gangwon-Do 24341, Korea;
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| |
Collapse
|
8
|
Bordeleau F, Wang W, Simmons A, Antonyak MA, Cerione RA, Reinhart-King CA. Tissue transglutaminase 2 regulates tumor cell tensional homeostasis by increasing contractility. J Cell Sci 2020; 133:jcs.231134. [PMID: 31822629 DOI: 10.1242/jcs.231134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/01/2019] [Indexed: 12/21/2022] Open
Abstract
Abnormal tensional cellular homeostasis is now considered a hallmark of cancer. Despite this, the origin of this abnormality remains unclear. In this work, we investigated the role of tissue transglutaminase 2 (TG2, also known as TGM2), a protein associated with poor prognosis and increased metastatic potential, and its relationship to the EGF receptor in the regulation of the mechanical state of tumor cells. Remarkably, we observed a TG2-mediated modulation of focal adhesion composition as well as stiffness-induced FAK activation, which was linked with a distinctive increase in cell contractility, in experiments using both pharmacological and shRNA-based approaches. Additionally, the increased contractility could be reproduced in non-malignant cells upon TG2 expression. Moreover, the increased cell contractility mediated by TG2 was largely due to the loss of EGFR-mediated inhibition of cell contractility. These findings establish intracellular TG2 as a regulator of cellular tensional homeostasis and suggest the existence of signaling switches that control the contribution of growth factor receptors in determining the mechanical state of a cell.
Collapse
Affiliation(s)
- Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medecine, Université Laval, Québec G1R 3S3, Canada .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Alysha Simmons
- Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Marc A Antonyak
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richard A Cerione
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
9
|
Abstract
Physical stimuli are essential for the function of eukaryotic cells, and changes in physical signals are important elements in normal tissue development as well as in disease initiation and progression. The complexity of physical stimuli and the cellular signals they initiate are as complex as those triggered by chemical signals. One of the most important, and the focus of this review, is the effect of substrate mechanical properties on cell structure and function. The past decade has produced a nearly exponentially increasing number of mechanobiological studies to define how substrate stiffness alters cell biology using both purified systems and intact tissues. Here we attempt to identify common features of mechanosensing in different systems while also highlighting the numerous informative exceptions to what in early studies appeared to be simple rules by which cells respond to mechanical stresses.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of California-Berkeley, Berkeley, California; and Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Daniel A Fletcher
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of California-Berkeley, Berkeley, California; and Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Cynthia A Reinhart-King
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of California-Berkeley, Berkeley, California; and Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
10
|
Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nat Commun 2019; 10:4185. [PMID: 31519914 PMCID: PMC6744572 DOI: 10.1038/s41467-019-12155-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis.
Collapse
|
11
|
Wang J, Zhang C, Li C, Zhao D, Li S, Ma L, Cui Y, Wei X, Zhao Y, Gao Y. MicroRNA-92a promotes vascular smooth muscle cell proliferation and migration through the ROCK/MLCK signalling pathway. J Cell Mol Med 2019; 23:3696-3710. [PMID: 30907506 PMCID: PMC6484312 DOI: 10.1111/jcmm.14274] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 12/31/2022] Open
Abstract
To identify the interaction between known regulators of atherosclerosis, microRNA-92a (miR-92a), Rho-associated coiled-coil-forming kinase (ROCK) and myosin light chain kinase (MLCK), we examined their expressions during proliferation and migration of platelet-derived growth factor-BB (PDGF-BB)-regulated vascular smooth muscle cells (VSMCs), both in vivo and in vitro. During the formation of atherosclerosis plaque in mice, a parallel increase in expression levels of MLCK and miR-92a was observed while miR-92a expression was reduced in ML-7 (an inhibitor of MLCK) treated mice and in MLCK-deficient VSMCs. In vitro results indicated that both MLCK and miR-92a shared the same signalling pathway. Transfection of miR-92a mimic partially restored the effect of MLCK's deficiency and antagonized the effect of Y27632 (an inhibitor of ROCK) on the down-regulation of VSMCs activities. ML-7 increased the expression of Kruppel-like factor 4 (KLF4, a target of miR-92a), and siRNA-KLF4 increased VSMCs' activity level. Consistently, inhibition of either MLCK or ROCK enhanced the KLF4 expression. Moreover, we observed that ROCK/MLCK up-regulated miR-92a expression in VSMCs through signal transducer and activator of transcription 3 (STAT3) activation. In conclusion, the activation of ROCK/STAT3 and/or MLCK/STAT3 may up-regulate miR-92a expression, which subsequently inhibits KLF4 expression and promotes PDGF-BB-mediated proliferation and migration of VSMCs. This new downstream node in the ROCK/MLCK signalling pathway may offer a potential intervention target for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Chenxu Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Cai Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Dandan Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Shuyao Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Le Ma
- College of StomatologyDalian Medical UniversityDalianChina
| | - Ying Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Xiaoqing Wei
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Ying Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| |
Collapse
|
12
|
Ueda Y, Sato M. Cell membrane dynamics induction using optogenetic tools. Biochem Biophys Res Commun 2018; 506:387-393. [DOI: 10.1016/j.bbrc.2017.11.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 10/25/2022]
|
13
|
Wang W, Miller JP, Pannullo SC, Reinhart-King CA, Bordeleau F. Quantitative assessment of cell contractility using polarized light microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201800008. [PMID: 29931742 PMCID: PMC6226342 DOI: 10.1002/jbio.201800008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/20/2018] [Indexed: 06/01/2023]
Abstract
Cell contractility regulates multiple cell behaviors which contribute to both normal and pathological processes. However, measuring cell contractility remains a technical challenge in complex biological samples. The current state of the art technologies employed to measure cell contractility have inherent limitations that greatly limit the experimental conditions under which they can be used. Here, we use quantitative polarization microscopy to extract information about cell contractility. We show that the optical retardance signal measured from the cell body is proportional to cell contractility in 2-dimensional and 3-dimensional platforms, and as such can be used as a straightforward, tractable methodology to assess cell contractility in a variety of systems. This label-free optical method provides a novel and flexible way to assess cellular forces of single cells and monolayers in several cell types, fixed or live, in addition to cells present in situ in mouse tumor tissue samples. This easily implementable and experimentally versatile method will significantly contribute to the cell mechanics field.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Joseph P. Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Susan C. Pannullo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Francois Bordeleau
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
14
|
McKenzie AJ, Hicks SR, Svec KV, Naughton H, Edmunds ZL, Howe AK. The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation. Sci Rep 2018; 8:7228. [PMID: 29740072 PMCID: PMC5940803 DOI: 10.1038/s41598-018-25589-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 01/13/2023] Open
Abstract
There is growing appreciation of the importance of the mechanical properties of the tumor microenvironment on disease progression. However, the role of extracellular matrix (ECM) stiffness and cellular mechanotransduction in epithelial ovarian cancer (EOC) is largely unknown. Here, we investigated the effect of substrate rigidity on various aspects of SKOV3 human EOC cell morphology and migration. Young’s modulus values of normal mouse peritoneum, a principal target tissue for EOC metastasis, were determined by atomic force microscopy (AFM) and hydrogels were fabricated to mimic these values. We find that cell spreading, focal adhesion formation, myosin light chain phosphorylation, and cellular traction forces all increase on stiffer matrices. Substrate rigidity also positively regulates random cell migration and, importantly, directional increases in matrix tension promote SKOV3 cell durotaxis. Matrix rigidity also promotes nuclear translocation of YAP1, an oncogenic transcription factor associated with aggressive metastatic EOC. Furthermore, disaggregation of multicellular EOC spheroids, a behavior associated with dissemination and metastasis, is enhanced by matrix stiffness through a mechanotransduction pathway involving ROCK, actomyosin contractility, and FAK. Finally, this pattern of mechanosensitivity is maintained in highly metastatic SKOV3ip.1 cells. These results establish that the mechanical properties of the tumor microenvironment may play a role in EOC metastasis.
Collapse
Affiliation(s)
- Andrew J McKenzie
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Stephanie R Hicks
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Kathryn V Svec
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Hannah Naughton
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Zöe L Edmunds
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Alan K Howe
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States.
| |
Collapse
|
15
|
Coelho NM, McCulloch CA. Mechanical signaling through the discoidin domain receptor 1 plays a central role in tissue fibrosis. Cell Adh Migr 2018; 12:348-362. [PMID: 29513135 PMCID: PMC6363045 DOI: 10.1080/19336918.2018.1448353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
The preservation of tissue and organ architecture and function depends on tightly regulated interactions of cells with the extracellular matrix (ECM). These interactions are maintained in a dynamic equilibrium that balances intracellular, myosin-generated tension with extracellular resistance conferred by the mechanical properties of the extracellular matrix. Disturbances of this equilibrium can lead to the development of fibrotic lesions that are associated with a wide repertoire of high prevalence diseases including obstructive cardiovascular diseases, muscular dystrophy and cancer. Mechanotransduction is the process by which mechanical cues are converted into biochemical signals. At the core of mechanotransduction are sensory systems, which are frequently located at sites of cell-ECM and cell-cell contacts. As integrins (cell-ECM junctions) and cadherins (cell-cell contacts) have been extensively studied, we focus here on the properties of the discoidin domain receptor 1 (DDR1), a tyrosine kinase that mediates cell adhesion to collagen. DDR1 expression is positively associated with fibrotic lesions of heart, kidney, liver, lung and perivascular tissues. As the most common end-point of all fibrotic disorders is dysregulated collagen remodeling, we consider here the mechanical signaling functions of DDR1 in processing of fibrillar collagen that lead to tissue fibrosis.
Collapse
Affiliation(s)
- Nuno M. Coelho
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
LaValley DJ, Zanotelli MR, Bordeleau F, Wang W, Schwager SC, Reinhart-King CA. Matrix Stiffness Enhances VEGFR-2 Internalization, Signaling, and Proliferation in Endothelial Cells. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [PMID: 29531793 DOI: 10.1088/2057-1739/aa9263] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vascular endothelial growth factor (VEGF) can mediate endothelial cell migration, proliferation, and angiogenesis. During cancer progression, VEGF production is often increased to stimulate the growth of new blood vessels to supply growing tumors with the additional oxygen and nutrients they require. Extracellular matrix stiffening also occurs during tumor progression, however, the crosstalk between tumor mechanics and VEGF signaling remains poorly understood. Here, we show that matrix stiffness heightens downstream endothelial cell response to VEGF by altering VEGF receptor-2 (VEGFR-2) internalization, and this effect is influenced by cell confluency. In sub-confluent endothelial monolayers, VEGFR-2 levels, but not VEGFR-2 phosphorylation, are influenced by matrix rigidity. Interestingly, more compliant matrices correlated with increased expression and clustering of VEGFR-2; however, stiffer matrices induced increased VEGFR-2 internalization. These effects are most likely due to actin-mediated contractility, as inhibiting ROCK on stiff substrates increased VEGFR-2 clustering and decreased internalization. Additionally, increasing matrix stiffness elevates ERK 1/2 phosphorylation, resulting in increased cell proliferation. Moreover, cells on stiff matrices generate more actin stress fibers than on compliant substrates, and the addition of VEGF stimulates an increase in fiber formation regardless of stiffness. In contrast, once endothelial cells reached confluency, stiffness-enhanced VEGF signaling was no longer observed. Together, these data show a complex effect of VEGF and matrix mechanics on VEGF-induced signaling, receptor dynamics, and cell proliferation that is mediated by cell confluency.
Collapse
Affiliation(s)
- Danielle J LaValley
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Francois Bordeleau
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Cynthia A Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
17
|
Rahman-Zaman A, Shan S, Reinhart-King CA. Cell Migration in Microfabricated 3D Collagen Microtracks is Mediated through the Prometastatic Protein Girdin. Cell Mol Bioeng 2017; 11:1-10. [PMID: 29403565 DOI: 10.1007/s12195-017-0511-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introduction In vivo, cancer cells can utilize tube-like microtracks formed within the extracellular matrix (ECM) of the stroma as 'highways' to escape the primary tumor, however very little is known about the molecular mechanisms that govern cell migration through these microtracks. Cell polarization and actin organization are both essential for efficient cell migration and cells are known to migrate very unidirectionally in confined spaces. In this study, we focused on understanding the role of Girdin during unidirectional migration. Girdin is a prometastatic protein known to be involved in cell polarity by directly interacting with the cell polarity protein Par-3 (Partitioning defective-3) and also known as an actin binding protein. Methods We utilized a microfabricated platform to recreate these microtracks in vitro using collagen and used siRNA to knockdown Girdin in MDA-MB-231 cells. Results Our data indicate that knockdown of Girdin results in decreased cell speed during 3D collagen microtrack migration. Loss of Girdin also results in altered cell morphology and cell orientation. Moreover, Girdin-depletion impairs actin organization and stress fiber formation, which can be restored by upregulating the GTPase RhoA. Activation of RhoA induces actin stress fiber formation, restores elongated migratory cell shape and partial cell migration in 3D collagen microtracks in the absence of Girdin. Conclusions Our data suggest that Girdin helps directional migration in collagen microtracks by promoting actin cytoskeletal organization and maintaining morphological cell polarity.
Collapse
Affiliation(s)
- Aniqua Rahman-Zaman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Shuo Shan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Cynthia A Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA.,Department of Biomedical Engineering, Vanderbilt University, PMB 351631, Nashville, TN 37235 USA
| |
Collapse
|
18
|
Valdivia A, Goicoechea SM, Awadia S, Zinn A, Garcia-Mata R. Regulation of circular dorsal ruffles, macropinocytosis, and cell migration by RhoG and its exchange factor, Trio. Mol Biol Cell 2017; 28:1768-1781. [PMID: 28468978 PMCID: PMC5491185 DOI: 10.1091/mbc.e16-06-0412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/11/2022] Open
Abstract
The small GTPase RhoG and its exchange factor, Trio, regulate the formation and size of circular dorsal ruffles and associated functions, including macropinocytosis and cell migration. Circular dorsal ruffles (CDRs) are actin-rich structures that form on the dorsal surface of many mammalian cells in response to growth factor stimulation. CDRs represent a unique type of structure that forms transiently and only once upon stimulation. The formation of CDRs involves a drastic rearrangement of the cytoskeleton, which is regulated by the Rho family of GTPases. So far, only Rac1 has been consistently associated with CDR formation, whereas the role of other GTPases in this process is either lacking or inconclusive. Here we show that RhoG and its exchange factor, Trio, play a role in the regulation of CDR dynamics, particularly by modulating their size. RhoG is activated by Trio downstream of PDGF in a PI3K- and Src-dependent manner. Silencing RhoG expression decreases the number of cells that form CDRs, as well as the area of the CDRs. The regulation of CDR area by RhoG is independent of Rac1 function. In addition, our results show the RhoG plays a role in the cellular functions associated with CDR formation, including macropinocytosis, receptor internalization, and cell migration. Taken together, our results reveal a novel role for RhoG in the regulation of CDRs and the cellular processes associated with their formation.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606.,Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322
| | | | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Ashtyn Zinn
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
19
|
Horizontal alignment of 5' -> 3' intergene distance segment tropy with respect to the gene as the conserved basis for DNA transcription. Future Sci OA 2017; 3:FSO160. [PMID: 28344824 PMCID: PMC5351715 DOI: 10.4155/fsoa-2016-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/31/2016] [Indexed: 01/31/2023] Open
Abstract
AIM To study the conserved basis for gene expression in comparative cell types at opposite ends of the cell pressuromodulation spectrum, the lymphatic endothelial cell and the blood microvascular capillary endothelial cell. METHODS The mechanism for gene expression is studied in terms of the 5' -> 3' direction paired point tropy quotients (prpTQs) and the final 5' -> 3' direction episodic sub-episode block sums split-integrated weighted average-averaged gene overexpression tropy quotient (esebssiwaagoTQ). RESULTS The final 5' -> 3' esebssiwaagoTQ classifies an lymphatic endothelial cell overexpressed gene as a supra-pressuromodulated gene (esebssiwaagoTQ ≥ 0.25 < 0.75) every time and classifies a blood microvascular capillary endothelial cell overexpressed gene every time as an infra-pressuromodulated gene (esebssiwaagoTQ < 0.25) (100% sensitivity; 100% specificity). CONCLUSION Horizontal alignment of 5' -> 3' intergene distance segment tropy wrt the gene is the basis for DNA transcription in the pressuromodulated state.
Collapse
|
20
|
Abstract
Tumor microvasculature tends to be malformed, more permeable, and more tortuous than vessels in healthy tissue, effects that have been largely attributed to up-regulated VEGF expression. However, tumor tissue tends to stiffen during solid tumor progression, and tissue stiffness is known to alter cell behaviors including proliferation, migration, and cell-cell adhesion, which are all requisite for angiogenesis. Using in vitro, in vivo, and ex ovo models, we investigated the effects of matrix stiffness on vessel growth and integrity during angiogenesis. Our data indicate that angiogenic outgrowth, invasion, and neovessel branching increase with matrix cross-linking. These effects are caused by increased matrix stiffness independent of matrix density, because increased matrix density results in decreased angiogenesis. Notably, matrix stiffness up-regulates matrix metalloproteinase (MMP) activity, and inhibiting MMPs significantly reduces angiogenic outgrowth in stiffer cross-linked gels. To investigate the functional significance of altered endothelial cell behavior in response to matrix stiffness, we measured endothelial cell barrier function on substrates mimicking the stiffness of healthy and tumor tissue. Our data indicate that barrier function is impaired and the localization of vascular endothelial cadherin is altered as function of matrix stiffness. These results demonstrate that matrix stiffness, separately from matrix density, can alter vascular growth and integrity, mimicking the changes that exist in tumor vasculature. These data suggest that therapeutically targeting tumor stiffness or the endothelial cell response to tumor stiffening may help restore vessel structure, minimize metastasis, and aid in drug delivery.
Collapse
|
21
|
Bordeleau F, Reinhart-King CA. Tuning cell migration: contractility as an integrator of intracellular signals from multiple cues. F1000Res 2016; 5. [PMID: 27508074 PMCID: PMC4962296 DOI: 10.12688/f1000research.7884.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors.
Collapse
Affiliation(s)
- Francois Bordeleau
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
22
|
A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces. PLoS One 2016; 11:e0156341. [PMID: 27227828 PMCID: PMC4881956 DOI: 10.1371/journal.pone.0156341] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allows several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. We anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.
Collapse
|
23
|
Bordeleau F, Chan B, Antonyak MA, Lampi MC, Cerione RA, Reinhart-King CA. Microvesicles released from tumor cells disrupt epithelial cell morphology and contractility. J Biomech 2016; 49:1272-1279. [PMID: 26477404 PMCID: PMC4826648 DOI: 10.1016/j.jbiomech.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
During tumor progression, cancer cells interact and communicate with non-malignant cells within their local microenvironment. Microvesicles (MV) derived from human cancer cells play an important role in mediating this communication. Another critical aspect of cancer progression involves widespread ECM remodeling, which occur both at the primary and metastatic sites. ECM remodeling and reorganization within the tumor microenvironment is generally attributed to fibroblasts. Here, using MCF10a cells, a well-characterized breast epithelial cell line that exhibits a non-malignant epithelial phenotype, and MVs shed by aggressive MDA-MB-231 carcinoma cells, we show that non-malignant epithelial cells can participate in ECM reorganization of 3D collagen matrices following their treatment with cancer cell-derived MVs. In addition, MVs trigger several changes in epithelial cells under 3D culture conditions. Furthermore, we show that this ECM reorganization is associated with an increase in cellular traction force following MV treatment, higher acto-myosin contractility, and higher FAK activity. Overall, our findings suggest that MVs derived from tumor cells can contribute to ECM reorganization occurring within the tumor microenvironment by enhancing the contractility of non-malignant epithelial cells.
Collapse
Affiliation(s)
- Francois Bordeleau
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Bryan Chan
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Marc A Antonyak
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Marsha C Lampi
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Richard A Cerione
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, United States; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | | |
Collapse
|
24
|
Kai F, Laklai H, Weaver VM. Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease. Trends Cell Biol 2016; 26:486-497. [PMID: 27056543 DOI: 10.1016/j.tcb.2016.03.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/05/2023]
Abstract
Atherosclerosis, cancer, and various chronic fibrotic conditions are characterized by an increase in the migratory behavior of resident cells and the enhanced invasion of assorted exogenous cells across a stiffened extracellular matrix (ECM). This stiffened scaffold aberrantly engages cellular mechanosignaling networks in cells, which promotes the assembly of invadosomes and lamellae for cell invasion and migration. Accordingly, deciphering the conserved molecular mechanisms whereby matrix stiffness fosters invadosome and lamella formation could identify therapeutic targets to treat fibrotic conditions, and reducing ECM stiffness could ameliorate disease progression.
Collapse
Affiliation(s)
- FuiBoon Kai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hanane Laklai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Rahman A, Carey SP, Kraning-Rush CM, Goldblatt ZE, Bordeleau F, Lampi MC, Lin DY, García AJ, Reinhart-King CA. Vinculin Regulates Directionality and Cell Polarity in 2D, 3D Matrix and 3D Microtrack Migration. Mol Biol Cell 2016; 27:mbc.E15-06-0432. [PMID: 26960796 PMCID: PMC4850031 DOI: 10.1091/mbc.e15-06-0432] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/12/2016] [Accepted: 03/01/2016] [Indexed: 11/11/2022] Open
Abstract
During metastasis, cells can use proteolytic activity to form tube-like "microtracks" within the extracellular matrix (ECM). Using these microtracks, cells can migrate unimpeded through the stroma. To investigate the molecular mechanisms of microtrack migration, we developed an in vitro 3D micromolded collagen platform. When in microtracks, cells tend to migrate unidirectionally. Since focal adhesions are the primary mechanism by which cells interact with the ECM, we examined the roles of several focal adhesion molecules in driving unidirectional motion. Vinculin knockdown results in the repeated reversal of migration direction compared with control cells. Tracking the position of the Golgi centroid relative to the position of the nucleus centroid reveals that vinculin knockdown disrupts cell polarity in microtracks. Vinculin also directs migration on 2D substrates and in 3D uniform collagen matrices, indicated by reduced speed, shorter net displacement and decreased directionality in vinculin-deficient cells. In addition, vinculin is necessary for Focal Adhesion Kinase (FAK) activation in 3D as vinculin knockdown results in reduced FAK activation in both 3D uniform collagen matrices and microtracks, but not on 2D substrates, and accordingly, FAK inhibition halts cell migration in 3D microtracks. Together, these data indicate that vinculin plays a key role in polarization during migration.
Collapse
Affiliation(s)
- Aniqua Rahman
- *Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Shawn P Carey
- *Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Casey M Kraning-Rush
- *Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zachary E Goldblatt
- *Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Francois Bordeleau
- *Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Marsha C Lampi
- *Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Deanna Y Lin
- *Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology; School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
26
|
Sarin H. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. J Transl Med 2015; 13:372. [PMID: 26610602 PMCID: PMC4660824 DOI: 10.1186/s12967-015-0707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre-synthesized vesicular endogolgi peptides and small molecules as well as nuclear-to-rough endoplasmic reticulum membrane proteins to the CM, with the potential to simultaneously increase the NM-associated chromatin DNA transcription of higher molecular weight protein forms, secretory and CM-destined, mitochondrial and nuclear, including the highest molecular weight nuclear proteins, Ki67 (359 kDa) and Separase (230 kDa), with the latter leading to mitogenesis and cell division; while, in the case of growth factors or cytokines with external cationomodulation capability, CM Receptor External Cationomodulation of CM receptors (≥3+ → 1+) results in cationic extracellular interaction (≥3+) with extracellular matrix heparan sulfates (≥3+ → 1+) concomitant with lamellopodesis and cell migration. It can be surmised that the modulation of cellular, and nuclear, function is mostly a reactive process, governed, primarily, by small molecule hormone and peptide interactions at the cell membrane, with CM receptors and the CM itself. These insights taken together, provide valuable translationally applicable knowledge.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV, USA.
| |
Collapse
|
27
|
Kohn JC, Zhou DW, Bordeleau F, Zhou AL, Mason BN, Mitchell MJ, King MR, Reinhart-King CA. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophys J 2015; 108:471-8. [PMID: 25650915 DOI: 10.1016/j.bpj.2014.12.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022] Open
Abstract
Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm(2). Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.
Collapse
Affiliation(s)
- Julie C Kohn
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Dennis W Zhou
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - François Bordeleau
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Allen L Zhou
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Brooke N Mason
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Michael J Mitchell
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Michael R King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | |
Collapse
|
28
|
A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int J Mol Sci 2015; 16:18149-84. [PMID: 26251901 PMCID: PMC4581240 DOI: 10.3390/ijms160818149] [Citation(s) in RCA: 572] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 01/13/2023] Open
Abstract
Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.
Collapse
|
29
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
30
|
Tissue stiffness regulates serine/arginine-rich protein-mediated splicing of the extra domain B-fibronectin isoform in tumors. Proc Natl Acad Sci U S A 2015; 112:8314-9. [PMID: 26106154 DOI: 10.1073/pnas.1505421112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of proteins gives rise to different isoforms that play a crucial role in regulating several cellular processes. Notably, splicing profiles are altered in several cancer types, and these profiles are believed to be involved in driving the oncogenic process. Although the importance of alternative splicing alterations occurring during cancer is increasingly appreciated, the underlying regulatory mechanisms remain poorly understood. In this study, we use both biochemical and physical tools coupled with engineered models, patient samples, and a murine model to investigate the role of the mechanical properties of the tumor microenvironment in regulating the production of the extra domain-B (EDB) splice variant of fibronectin (FN), a hallmark of tumor angiogenesis. Specifically, we show that the amount of EDB-FN produced by endothelial cells increases with matrix stiffness both in vitro and within mouse mammary tumors. Matrix stiffness regulates splicing through the activation of serine/arginine rich (SR) proteins, the splicing factors involved in the production of FN isoforms. Activation of the SR proteins by matrix stiffness and the subsequent production of EDB-FN are dependent on intracellular contractility and PI3K-AKT signaling. Notably, matrix stiffness-mediated splicing is not limited to EDB-FN, but also affects splicing in the production of PKC βII and the VEGF 165b splice variant. Together, these results demonstrate that the mechanical properties of the microenvironment regulate alternative splicing and establish a previously unidentified mechanism by which cells can adapt to their microenvironment.
Collapse
|
31
|
Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences. Front Genet 2015; 6:112. [PMID: 25926844 PMCID: PMC4396535 DOI: 10.3389/fgene.2015.00112] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/03/2015] [Indexed: 01/18/2023] Open
Abstract
Arterial stiffening occurs with age and is closely associated with the progression of cardiovascular disease. Stiffening is most often studied at the level of the whole vessel because increased stiffness of the large arteries can impose increased strain on the heart leading to heart failure. Interestingly, however, recent evidence suggests that the impact of increased vessel stiffening extends beyond the tissue scale and can also have deleterious microscale effects on cellular function. Altered extracellular matrix (ECM) architecture has been recognized as a key component of the pre-atherogenic state. Here, the underlying causes of age-related vessel stiffening are discussed, focusing on age-related crosslinking of the ECM proteins as well as through increased matrix deposition. Methods to measure vessel stiffening at both the macro- and microscale are described, spanning from the pulse wave velocity measurements performed clinically to microscale measurements performed largely in research laboratories. Additionally, recent work investigating how arterial stiffness and the changes in the ECM associated with stiffening contributed to endothelial dysfunction will be reviewed. We will highlight how changes in ECM protein composition contribute to atherosclerosis in the vessel wall. Lastly, we will discuss very recent work that demonstrates endothelial cells (ECs) are mechano-sensitive to arterial stiffening, where changes in stiffness can directly impact EC health. Overall, recent studies suggest that stiffening is an important clinical target not only because of potential deleterious effects on the heart but also because it promotes cellular level dysfunction in the vessel wall, contributing to a pathological atherosclerotic state.
Collapse
Affiliation(s)
- Julie C Kohn
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Marsha C Lampi
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
32
|
Abstract
Cell adhesion to the extracellular matrix (ECM) involves integrin receptor-ligand binding and clustering to form focal adhesion (FA) complexes, which mechanically link the cell's cytoskeleton to the ECM and regulate fundamental cell signaling pathways. Although elucidation of the biochemical events in cell-matrix adhesive interactions is rapidly advancing, recent studies show that the forces underlying cell-matrix adhesive interactions are also critical to cell responses. Therefore, multiple measurement systems have been developed to quantify the spatial and temporal dynamics of cell adhesive forces, and these systems have identified how mechanical events influence cell phenotype and FA structure-function relationships under physiological and pathological settings. This review focuses on the development, methodology, and applications of measurement systems for probing (a) cell adhesion strength and (b) 2D and 3D cell traction forces.
Collapse
|