1
|
Wang S, Cui H, Lin Y, Zhang S, Li Y, Yan M, Wang Q, Zhou C, Zhang H. Glandular trichome heads confer cadmium tolerance in Nicotiana tabacum L. via the co-regulation of JA and ABA signaling. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138034. [PMID: 40157193 DOI: 10.1016/j.jhazmat.2025.138034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/25/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Cadmium (Cd) is a highly toxic heavy metal (HV) that poses significant threats to plant growth and development. Plant trichomes serve as critical sequestration organs for HVs; however, the different roles of glandular trichomes (GTs) and non-glandular trichomes (NGTs) in the process of detoxification remain elusive. In this study, two interacting proteins (NtHD9 and NtJAZ10) with opposite effects on glandular head formation in GTs were individually targeted for knockout in Nicotiana tabacum cv. K326: NtJAZ10 mutants (LK326) had dominant long-stalk glandular trichomes (LGTs), whereas NtHD9 mutants (NK326) had dominant NGTs. Phytohormone content measurements and subsequent hormone supplementation assays in LK326 and NK326 suggested that the NtJAZ10-NtHD9 module regulated LGT head formation via jasmonate signaling. Both LGTs and NGTs were Cd sequestration sites, but showed different Cd detoxification mechanisms; NGTs compartmentalized Cd in the vacuole, whereas LGTs promoted the cytosol-to-cell wall translocation of Cd, facilitating Cd excretion. LK326 further exhibited strong Cd stress tolerance, which was confirmed by elevated abscisic acid (ABA) levels, strengthened antioxidant systems, and heightened photosynthetic abilities. To understand the molecular mechanisms underlying Cd detoxification in trichomes, LK326 and NK326 trichomes were used for comparative RNA sequencing analysis, which revealed 18 genes that may be involved in Cd absorption and transport. Our findings suggest that JAZ10 is an ideal candidate gene for enhancing Cd stress tolerance by promoting the development of LGT glandular heads and increasing ABA levels in plants. These findings provide novel insights into improving Cd tolerance in plants and exploring the mechanism of trichome-mediated Cddetoxification.
Collapse
Affiliation(s)
- Shuai Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Lin
- Fujian Province Nanping Branch Company, China National Tobacco Corporation, Nanping 353000, China
| | - Shiqiang Zhang
- Jilin Province Tobacco Industry Co. Ltd., China National Tobacco Corporation, Changchun 130000, China
| | - Yue Li
- Jilin Province Tobacco Industry Co. Ltd., China National Tobacco Corporation, Changchun 130000, China
| | - Meiqi Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Qi Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyi Zhou
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Li L, Cheng G, Li W, Zhang D, Yu J, Zhou H, Ding X, Wang Z, Zhu W, Li J, He J, Duan M, Liu C. Utilization of natural alleles and haplotypes of Ctb1 for rice cold adaptability. Gene 2025; 941:149225. [PMID: 39793938 DOI: 10.1016/j.gene.2025.149225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at -1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the -1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice.
Collapse
Affiliation(s)
- Lingling Li
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Gongye Cheng
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenyu Li
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Di Zhang
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianghui Yu
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huang Zhou
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaoping Ding
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhijun Wang
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wanjing Zhu
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiajia Li
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiwai He
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Meijuan Duan
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Citao Liu
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
3
|
Wei T, Li H, Wang Y, Chi M, Guo J, Jia H, Zhang C. Alleviation of cadmium toxicity and minimizing its accumulation in rice plants by methyl jasmonate: Performance and mechanisms. J Biotechnol 2025; 398:133-145. [PMID: 39724943 DOI: 10.1016/j.jbiotec.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive. In this study, we found that the Cd induced-growth inhibition was ameliorated by MeJA. Upon MeJA application, Cd content in root and shoot was decreased by 10.15 % and 36.39 %, which paralleled with less Cd2 + influx of rice roots and depressed expression of the cation transporters (OsNramp1 and OsNramp5). The subcellular distribution revealed that MeJA enriched Cd distribution in cell wall, which was accompanied by increased cell wall thickness and altered cell wall polysaccharide (pectin, cellulose, hemicellulose) content, meanwhile, the Cd content in pectin, cellulose, hemicellulose was increased, the FTIR analysis implied that functional groups (especially -OH and COO-) on cell wall were involved in Cd fixation. The root to shoot translocation of Cd was hindered by exogenous MeJA, this was validated by the decreased expression of OsHMA2 in root and declined Cd level in xylem sap. Overall, our results revealed that MeJA could act as a foliar resistance control substance to reduce Cd accumulation in rice plants. The detailed molecular mechanisms of MeJA in Cd detoxification in plants still need further investigation.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuyao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ming Chi
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300192, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
4
|
Abd El Mageed SA, Sayed AAS, Shaaban A, Hemida KA, Abdelkhalik A, Semida WM, Mohamed IAA, Gyushi MAH, Elmohsen YHA, Abd El Mageed TA. Integrative application of licorice root extract and melatonin improves faba bean growth and production in Cd-contaminated saline soil. BMC PLANT BIOLOGY 2025; 25:26. [PMID: 39773343 PMCID: PMC11708068 DOI: 10.1186/s12870-024-05954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.0 and 3%) as an organic biostimulant applied sequentially as a foliar spray on faba bean (Vicia faba L.) grown in cadmium (Cd)-contaminated saline soil conditions [Cd = 4.71 (mg kg- 1 soil) and ECe = 7.84 (dS m- 1)]. Plants not receive any treatment and sprayed with H2O were considered controls. The experimental treatments were laid out in strip plot in a randomized complete block design replicated thrice, where the LRE and Mt were considered as vertical and horizontal strips, respectively. Growth characteristics, photosynthetic pigments, nutrient uptake, physiology and metabolic responses, anatomical features, and yield were assessed. RESULTS Cadmium (Cd) and salinity-induced stress significantly altered leaf integrity, photosynthetic efficiency, total soluble sugars (TSS), free proline (FPro), total phenolic, DPPH, and total soluble proteins (TSP), non-enzymatic and enzymatic antioxidants, growth characteristics and yield-related traits. However, the application of LRE + Mt considerably improved these negative effects, with higher improvements were observed due to application of LRE + Mt100. Application of LRE + Mt significantly reduced hydrogen peroxide (H2O2) accumulation, lipid peroxidation and Cd content in leaves and seeds, all of which had increased due to Cd stress. Application of LRE + Mt significantly mitigated the Cd-induced oxidative damage by increasing the activity of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, in parallel with enhanced ascorbate and reducing glutathione content. Exogenous application of LRE + Mt significantly increased osmolyte content, including FPro, TSS, and total phenols and mitigated Cd-induced reduction to considerable levels. CONCLUSIONS Our findings showed that LRE + Mt increased V. faba plants' morphological, physiological, and biochemical properties, reducing Cd stress toxicity, and promoting sustainable agricultural practices. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaulood A Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | | | - Wael M Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ibrahim A A Mohamed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Mohammed A H Gyushi
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Yasmine H Abd Elmohsen
- Vegetable Research Department, Agricultural and Biological Institute, National Research Center, Dokki, Giza, 12622, Egypt
| | - Taia A Abd El Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
5
|
Vincze ÉB, Becze A, Salamon RV, Lányi S, Mara G. Role of the Pseudomonas koreensis BB2.A.1 and Serratia liquefaciens BB2.1.1 Bacterial Strains in Maize Trace Metal Stress Management. Microorganisms 2024; 12:1823. [PMID: 39338497 PMCID: PMC11433751 DOI: 10.3390/microorganisms12091823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Plant-growth-promoting rhizobacteria (PGPR), in addition to their well-known direct effects on plant growth and development, have been reported to be effective in plant abiotic (trace metal, drought, etc.) and biotic (phytopathogens, insects, etc.) stress management. PGPRs are involved in shaping the fate of trace metals in the rhizosphere and plants and thus may also reduce trace metal stress in plants. The aims of our study were to isolate and select indigenous trace-metal-resistant PGP strains and investigate their effects on maize germination and early development. The roles of the two selected strains, Pseudomonas koreensis and Serratia liquefaciens isolated from trace-metal-contaminated soil were investigated to mitigate trace metal stress in 21-day-old Zea mays seedlings. In the present study, 13 bacterial strains were isolated and screened for PGP traits under normal and trace metal stress conditions. The effect of two selected strains was further studied on plant experiments. The germination process, plant growth parameters (length, weight, dry matter content), photosynthetic activity, GPOX activity, trace metal accumulation, and translocation in microbes inoculated Cd (0.5 mM), Zn (1 mM), and Cd + Zn (0.1 + 0.5 mM) treated maize plants was studied. Our results revealed that trace metal toxicity, in terms germination and growth parameters and antioxidant enzyme activity, was enhanced upon inoculation with Pseudomonas koreensis BB2.A.1. Chlorophyll content and accumulation studies showed enhanced results following inoculation with Serratia liquefaciens BB2.1.1. Therefore, both bacterial strains possessed beneficial traits that enabled them to reduce metal toxicity in maize.
Collapse
Affiliation(s)
- Éva-Boglárka Vincze
- Faculty of Science, Doctoral School of Chemistry, University of Pécs, Vasvári Pál Street 4., 7622 Pécs, Hungary
- Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Libertăţii sq., 1, 530104 Miercurea Ciuc, Romania
| | - Annamária Becze
- Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Libertăţii sq., 1, 530104 Miercurea Ciuc, Romania
- Faculty of Applied Chemistry and Material Sciences, Department of Analytical Chemistry and Environmental Engineering, Politehnica University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Rozália Veronika Salamon
- Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Libertăţii sq., 1, 530104 Miercurea Ciuc, Romania
| | - Szabolcs Lányi
- Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Libertăţii sq., 1, 530104 Miercurea Ciuc, Romania
- Faculty of Applied Chemistry and Material Sciences, Department of Analytical Chemistry and Environmental Engineering, Politehnica University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gyöngyvér Mara
- Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Libertăţii sq., 1, 530104 Miercurea Ciuc, Romania
| |
Collapse
|
6
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
7
|
Koç İ, Canturk U, Isinkaralar K, Ozel HB, Sevik H. Assessment of metals (Ni, Ba) deposition in plant types and their organs at Mersin City, Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:282. [PMID: 38369612 DOI: 10.1007/s10661-024-12448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
The increase in heavy metal concentrations in the air, especially after the Industrial Revolution, is notable for the scientific world because of the adverse effects that threaten environmental and human health. Among the trace elements, nickel (Ni) is carcinogenic, and all barium (Ba) compounds are toxic. Trace elements are critical for human and environmental health. Their threat further increases, especially in the urban areas and surroundings with a high population. In urban areas, the trace element contamination in the airborne can be reduced using plants. However, which plant and plant organs absorb trace elements could not be determined. In the present study, Ni and Ba concentrations in the branch, wood, and leaf samples of 14 species collected from the city center of Mersin province were determined. As a result, broad-leaved species' Ni and Ba concentrations in their leaf sample were generally higher than other species. Almost all species had the lowest Ni and Ba concentrations in their wood samples. Among these 14 species, it was found that Ni concentration was very high, especially in non-washed leaves of Platanus orientalis, Photinia serrulata, and Citrus reticulate, and Ba concentration was very high in Citrus reticulata, Chamaecyparis lawsoniana, Laurus nobilis, and Acer hyrcanum. Using broad-leaved species in urban areas where pollution is at high levels will significantly contribute to reducing Ni and Ba pollution. It is recommended that these points be considered in future urban landscaping projects.
Collapse
Affiliation(s)
- İsmail Koç
- Department of Forest Engineering, Düzce University, 81620, Düzce, Türkiye.
| | - Ugur Canturk
- Institute of Science, Düzce University, 81620, Düzce, Türkiye
| | - Kaan Isinkaralar
- Faculty of Engineering and Architecture, Department of Environmental Engineering, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Halil Baris Ozel
- Department of Forest Engineering, Bartın University, 74100, Bartın, Türkiye
| | - Hakan Sevik
- Department of Environmental Engineering, Kastamonu University, Kastamonu, Türkiye
| |
Collapse
|
8
|
Shomali A, Das S, Sarraf M, Johnson R, Janeeshma E, Kumar V, Aliniaeifard S, Puthur JT, Hasanuzzaman M. Modulation of plant photosynthetic processes during metal and metalloid stress, and strategies for manipulating photosynthesis-related traits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108211. [PMID: 38029618 DOI: 10.1016/j.plaphy.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Metals constitute vital elements for plant metabolism and survival, acting as essential co-factors in cellular processes which are indispensable for plant growth and survival. Excess or deficient provision of metal/metalloids puts plant's life and survival at risk, thus considered a potent stress for plants. Chloroplasts as an organelle with a high metal demand form a pivotal site within the metal homeostasis network. Therefore, the metal-mediated electron transport chain (ETC) in chloroplasts is a primary target site of metal/metalloid-induced stresses. Both excess and deficient availability of metal/metalloids threatens plant's photosynthesis in several ways. Energy demands from the photosynthetic carbon reactions should be in balance with energy output of ETC. Malfunctioning of ETC components as a result of metal/metalloid stress initiates photoinhiition. A feedback inhibition from carbon fixation process also impedes the ETC. Metal stress impairs antioxidant enzyme activity, pigment biosynthesis, and stomatal function. However, genetic manipulations, nutrient management, keeping photostasis, and application of phytohormones are among strategies for coping with metal stress. Consequently, a comprehensive understanding of the underlying mechanisms of metal/metalloid stress, as well as the exploration of potential strategies to mitigate its impact on plants are imperative. This review offers a mechanistic insight into the disruption of photosynthesis regulation by metal/metalloids and highlights adaptive approaches to ameliorate their effects on plants. Focus was made on photostasis, nutrient interactions, phytohormones, and genetic interventions for mitigating metal/metalloid stresses.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran; Controlled Environment Agriculture Center, College of Agricultural and Natural Sciences, University of Tehran, Iran
| | - Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala 673635, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Vinod Kumar
- Department of Botany, Government College for Women Gandhi Nagar, Jammu 180004, Jammu and Kashmir, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran.
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala 673635, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:870-888. [PMID: 37598713 DOI: 10.1071/fp23021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Punjab University, Lahore 54590, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agricultural and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abbu Zaid
- Department of Botany, Government Gandhi Memorial Science College, Jammu, India
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
10
|
Feng D, Wang R, Sun X, Liu L, Liu P, Tang J, Zhang C, Liu H. Heavy metal stress in plants: Ways to alleviate with exogenous substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165397. [PMID: 37429478 DOI: 10.1016/j.scitotenv.2023.165397] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Accumulation and enrichment of excessive heavy metals due to industrialization and modernization not only devastate our ecosystem, but also pose a threat to the global vegetation, especially crops. To improve plant resilience against heavy metal stress (HMS), numerous exogenous substances (ESs) have been tried as the alleviating agents. After a careful and thorough review of over 150 recently published literature, 93 reported ESs and their corresponding effects on alleviating HMS, we propose that 7 underlying mechanisms of ESs be categorized in plants for: 1) improving the capacity of the antioxidant system, 2) inducing the synthesis of osmoregulatory substances, 3) enhancing the photochemical system, 4) detouring the accumulation and migration of heavy metals, 5) regulating the secretion of endogenous hormones, 6) modulating gene expressions, and 7) participating in microbe-involved regulations. Recent research advances strongly indicate that ESs have proven to be effective in mitigating a potential negative impact of HMS on crops and other plants, but not enough to ultimately solve the devastating problem associated with excessive heavy metals. Therefore, much more research should be focused and carried out to eliminate HMS for the sustainable agriculture and clean environmental through minimizing towards prohibiting heavy metals from entering our ecosystem, phytodetoxicating polluted landscapes, retrieving heavy metals from detoxicating plants or crop, breeding for more tolerant cultivars for both high yield and tolerance against HMS, and seeking synergetic effect of multiply ESs on HMS alleviation in our feature researches.
Collapse
Affiliation(s)
- Di Feng
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Rongxue Wang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Xiaoan Sun
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Li'nan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ping Liu
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chenxi Zhang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China.
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Affairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453003, Henan, China.
| |
Collapse
|
11
|
Cetin M, Cebi Kilicoglu M, Kocan N. Usability of biomonitors in monitoring the change of tin concentration in the air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112357-112367. [PMID: 37831266 DOI: 10.1007/s11356-023-30277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Air pollution, a pressing global issue, encompasses various harmful elements, with heavy metals being particularly significant pollutants affecting all forms of life. Effective monitoring and regulation of heavy metal concentrations, especially in the atmosphere, is pivotal. Employing trees as biomonitors emerges as a potent tool, particularly in retrospectively assessing long-term heavy metal contamination trends. This study aims to furnish insights into both tin (Sn) pollutants and the most suitable species for monitoring and mitigating such pollution. Within this study's ambit, samples were collected from Pinus pinaster, Cupressus arizonica, Picea orientalis, Cedrus atlantica, and Pseudotsuga menziesii species in Duzce Province. This area, ranked as the fourth-most air-polluted in Europe according to the World Air Pollution Report, was examined to discern changes in Sn concentration across species, organs, orientations, and age groups over the last four decades. The findings revealed varying potentials for Sn accumulation among the species. Specifically, Pinus pinaster and Picea orientalis were identified as suitable species for monitoring Sn pollution, while Cupressus arizonica, Cedrus atlantica, and Pseudotsuga menziesii exhibited potential for reducing Sn pollution.
Collapse
Affiliation(s)
- Mehmet Cetin
- Faculty of Architecture, Department of City and Regional Planning, Ondokuz Mayis University, Samsun, Turkey
| | | | - Nurhan Kocan
- Faculty of Engineering, Architecture and Design, Department of Landscape Architecture, Bartın University, Bartin, Turkey.
| |
Collapse
|
12
|
Chen X, Zhao Y, Zhong Y, Chen J, Qi X. Deciphering the functional roles of transporter proteins in subcellular metal transportation of plants. PLANTA 2023; 258:17. [PMID: 37314548 DOI: 10.1007/s00425-023-04170-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION The role of transporters in subcellular metal transport is of great significance for plants in coping with heavy metal stress and maintaining their proper growth and development. Heavy metal toxicity is a serious long-term threat to plant growth and agricultural production, becoming a global environmental concern. Excessive heavy metal accumulation not only damages the biochemical and physiological functions of plants but also causes chronic health hazard to human beings through the food chain. To deal with heavy metal stress, plants have evolved a series of elaborate mechanisms, especially a variety of spatially distributed transporters, to strictly regulate heavy metal uptake and distribution. Deciphering the subcellular role of transporter proteins in controlling metal absorption, transport and separation is of great significance for understanding how plants cope with heavy metal stress and improving their adaptability to environmental changes. Hence, we herein introduce the detrimental effects of excessive common essential and non-essential heavy metals on plant growth, and describe the structural and functional characteristics of transporter family members, with a particular emphasis on their roles in maintaining heavy metal homeostasis in various organelles. Besides, we discuss the potential of controlling transporter gene expression by transgenic approaches in response to heavy metal stress. This review will be valuable to researchers and breeders for enhancing plant tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Xingqi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuqing Zhong
- Environmental Monitoring Station of Suzhou City, Suzhou, 215004, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
13
|
Ghoma WEO, Sevik H, Isinkaralar K. Comparison of the rate of certain trace metals accumulation in indoor plants for smoking and non-smoking areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27790-9. [PMID: 37225952 DOI: 10.1007/s11356-023-27790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Tobacco smoke causes to release severe toxic metals into the environment. It is recognized as the most significant issue in indoor air quality. Pollution and toxic substances in smoke quickly spread and penetrate the indoor environment. Environmental tobacco smoke is responsible for lowering indoor air quality. There is much evidence that poor air quality occurs with inadequate ventilation conditions in indoor environments. The plants have been observed to absorb the smoke in the environment into their own body like a sponge. The plant species in this study can be used easily in almost every office, home, or other indoor areas. Using indoor plants is very beneficial in biomonitoring and absorbing these trace metals. Some indoor plants have shown successful performance as biomonitors for health-damaging pollutants. The study aims to determine the concentration of three trace metals (Cu, Co, and Ni) using five indoor ornamentals frequently used in smoking areas, namely D. amoena, D. marginata, F. elastica, S. wallisii, and Y. massengena. The Ni uptake and its accumulation in S. wallisii, and Y. massengena increased in correlation with smoke areas. However, the rate of accumulation of Co and Cu was found to be independent due to consideration of the environmental emissions. Consequently, our results suggest that F. elastica is more resistant to smoking, whereas S. wallisii would be a better choice as a biomonitoring plant of tobacco smoke.
Collapse
Affiliation(s)
- Wasem Esmael Omer Ghoma
- Institute of Science, Department of Material Science and Engineering, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Hakan Sevik
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| |
Collapse
|
14
|
Fu H, Yuan J, Liu R, Wang X. Effects of cadmium on the synthesis of active ingredients in Salvia miltiorrhiza. Open Life Sci 2023; 18:20220603. [PMID: 37250839 PMCID: PMC10224630 DOI: 10.1515/biol-2022-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 05/31/2023] Open
Abstract
Cadmium (Cd) could pose threats to human health by affecting Salvia miltiorrhiza (SM) safety. Cd enrichment trait and its effects on the active ingredient synthesis in SM remain unknown. Here we investigated the Cd concentration using ICP-MS-based method, physiologies (contents of malondialdehyde and proline, and activities of superoxide dismutase, peroxidase [POD], and catalase [CAT]), and LC-MS/MS-based metabolites of SM under 25, 50, and 100 mg kg-1 Cd stress. The results revealed that Cd concentrations, as it rose in soil, increased in roots and leaves of SM with transfer factors and bioconcentration factors below 1 in Cd-treated groups; POD and CAT activities and proline content increased and then declined. Amino acids and organic acids (especially d-glutamine [d-Gln], l-aspartic acid [l-Asp], l-phenylalanine [l-Phe], l-tyrosine [l-Tyr], geranylgeranyl-PP [GGPP], and rosmarinic acid [RA]) contributed more in discriminating SM roots of different groups. GGPP was negatively related to l-Tyr and l-Phe, and RA was positively related to d-Gln and l-Asp in SM. These results revealed that SM belonged to a non-Cd-hyperaccumulator with most Cd accumulated in roots, Cd could enhance phenolic acid synthesis via regulating amino acid metabolism and might inhibit tanshinone synthesis by declining the GGPP content, and proline, POD, and CAT played vital roles in resisting Cd stress. These provided new ideas and theoretical basis for further study on medical plants' response to heavy metals.
Collapse
Affiliation(s)
- Haihui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Jun Yuan
- School of Nursing, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Rongpeng Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaoyun Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
15
|
Zhou H, Zhou KH, Zhao G, Wang PP, Yang DG, Ma XF, Gao JS. Physiological and Biochemical Properties of Cotton Seedlings in Response to Cu 2+ Stress. Curr Issues Mol Biol 2023; 45:4050-4062. [PMID: 37232727 DOI: 10.3390/cimb45050258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Copper(II) (Cu2+) is essential for plant growth and development. However, high concentrations are extremely toxic to plants. We investigated the tolerance mechanism of cotton under Cu2+ stress in a hybrid cotton variety (Zhongmian 63) and two parent lines with different Cu2+ concentrations (0, 0.2, 50, and 100 μM). The stem height, root length, and leaf area of cotton seedlings had decreased growth rates in response to increasing Cu2+ concentrations. Increasing Cu2+ concentration promoted Cu2+ accumulation in all three cotton genotypes' roots, stems, and leaves. However, compared with the parent lines, the roots of Zhongmian 63 were richer in Cu2+ and had the least amount of Cu2+ transported to the shoots. Moreover, excess Cu2+ also induced changes in cellular redox homeostasis, causing accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Conversely, antioxidant enzyme activity increased, while photosynthetic pigment content decreased. Our findings indicated that the hybrid cotton variety fared well under Cu2+ stress. This creates a theoretical foundation for the further analysis of the molecular mechanism of cotton resistance to copper and suggests the potential of the large-scale planting of Zhongmian 63 in copper-contaminated soils.
Collapse
Affiliation(s)
- Hao Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ke-Hai Zhou
- Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Gang Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Pei-Pei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dai-Gang Yang
- Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Xiong-Feng Ma
- Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Jun-Shan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
16
|
Waris M, Baig JA, Talpur FN, Kazi TG, Afridi HI, Shakeel S. Estimation of phytoextraction potential of selected halophytes for accumulation of heavy metals from wetland saline soil. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023. [DOI: 10.1007/s12210-023-01147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
17
|
Yadav KK, Gupta N, Prasad S, Malav LC, Bhutto JK, Ahmad A, Gacem A, Jeon BH, Fallatah AM, Asghar BH, Cabral-Pinto MMS, Awwad NS, Alharbi OKR, Alam M, Chaiprapat S. An eco-sustainable approach towards heavy metals remediation by mangroves from the coastal environment: A critical review. MARINE POLLUTION BULLETIN 2023; 188:114569. [PMID: 36708616 DOI: 10.1016/j.marpolbul.2022.114569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Mangroves provide various ecosystem services, carbon sequestration, biodiversity depository, and livelihoods. They are most abundant in marine and coastal ecosystems and are threatened by toxic contaminants like heavy metals released from various anthropogenic activities. However, they have significant potential to survive in salt-driven environments and accumulate various pollutants. The adverse effects of heavy metals have been extensively studied and recognized as toxic to mangrove species. This study sheds light on the dynamics of heavy metal levels, their absorption, accumulation and transport in the soil environment in a mangrove ecosystem. The article also focuses on the potential of mangrove species to remove heavy metals from marine and coastal environments. This review concludes that mangroves are potential candidates to clean up contaminated water, soil, and sediments through their phytoremediation ability. The accumulation of toxic heavy metals by mangroves is mainly through roots with limited upward translocation. Therefore, promoting the maintenance of biodiversity and stability in the coastal environment is recommended as an environmentally friendly and potentially cost-effective approach.
Collapse
Affiliation(s)
- Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, India
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Lal Chand Malav
- ICAR-National Bureau of Soil Survey & Land Use Planning, Regional Centre, Udaipur 313001, India
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ahmed M Fallatah
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, Taif 21944, Saudi Arabia
| | - Basim H Asghar
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Manawwer Alam
- Department of Chemistry, College of Science, Kind Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
18
|
Effect of Heavy Metal Stress on Phenolic Compounds Accumulation in Winter Wheat Plants. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010241. [PMID: 36615433 PMCID: PMC9822316 DOI: 10.3390/molecules28010241] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Heavy metal stress can lead to many adverse effects that inhibit cellular processes at various levels of metabolism, causing a decrease in plant productivity. In response to environmental stressors, phenolic compounds fulfill significant molecular and biochemical functions in plants. Increasing the biosynthesis of phenolic compounds in plants subjected to heavy metal stress helps protect plants from oxidative stress. A pot experiment was carried out to determine the effect of the accumulation of copper (Cu) and lead (Pb) salts at concentrations of 200, 500, and 1000 ppm on seed germination, the activity of enzymes in the phenylalanine ammonia-lyase pathway (PAL) and tyrosine ammonia-lyase (TAL), along with the total phenol and flavonoid contents in seedlings of hybrid Triticum aestivum L. (winter wheat) cultivars. The accumulation of heavy metals, especially Cu, had a negative impact on the seed germination process. The cultivar "Hyacinth" reacted most strongly to heavy metal stress, which was confirmed by obtaining the lowest values of the germination parameters. Heavy metal stress caused an increase in the activity of PAL and TAL enzymes and an increase in the accumulation of phenolic compounds. Under the influence of Cu, the highest activity was shown in cv. "Hyvento" (especially at 200 ppm) and, due to the accumulation of Pb, in cv. "Hyacinth" (1000 ppm) and cv. "Hyking" (200 ppm). The cultivar "Hyking" had the highest content of phenolic compounds, which did not increase with the application of higher concentrations of metals. In other cultivars, the highest content of total phenols and flavonoids was usually observed at the lowest concentration (200 ppm) of the tested heavy metals, Cu and Pb.
Collapse
|
19
|
Li KT, Peng SY, Zhang B, Peng WF, Yu SJ, Cheng X. Exopolysaccharides from Lactobacillus plantarum reduces cadmium uptake and mitigates cadmium toxicity in rice seedlings. World J Microbiol Biotechnol 2022; 38:243. [DOI: 10.1007/s11274-022-03435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
20
|
Saleem Y, Ali A, Naz S, Jamil M, Naveed NH. Amelioration of lead toxicity by ascorbic acid in sugarcane (Saccharum officinarum L.) under in vitro condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85160-85171. [PMID: 35793025 DOI: 10.1007/s11356-022-21882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Agricultural sites are polluted with various metal ions worldwide. Ascorbic acid (AA) plays diverse roles in plant growth, development, and the regulation of cellular mechanisms against environmental stress. This study provides the relationship between morphological and biochemical parameters involved in the amelioration of Pb toxicity in three sugarcane (Saccharum officinarum L.) genotypes (YT-53, CP-77-400, NSG-59) by using six concentrations of Pb(NO3)2 under in vitro conditions. Morphological and biochemical parameters of ascorbic acid pretreated and non-pretreated calli were compared at each Pb(NO3)2 concentration. Ascorbic acid-pretreated calli have better callus growth and regeneration potential than non-treated calli under increased Pb concentration. Biochemical parameters such as antioxidant enzyme activity (peroxidase (POD), superoxide dismutase (SOD), catalase (CAT)) increased under increased Pb concentration. Ascorbic acid pretreatment further enhanced the POD and SOD activity, while CAT activity and total soluble protein contents of pretreated calli did not change significantly. Ascorbic acid ameliorated the Pb toxicity morphologically but showed uneven behavior towards biochemical parameters. Different genotypic behaviors versus different treatments were also observed. In the future, information from this study can be used to develop the metal-resistant sugarcane genotype against metal stress under in vitro conditions.
Collapse
Affiliation(s)
- Yasmeen Saleem
- Department of Botany, University of Sargodha, Sargodha, Pakistan.
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Shagufta Naz
- Department of Biotechnology, Lahore College for Women University Lahore, Punjab, Pakistan
| | | | | |
Collapse
|
21
|
Noor I, Sohail H, Sun J, Nawaz MA, Li G, Hasanuzzaman M, Liu J. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. CHEMOSPHERE 2022; 303:135196. [PMID: 35659937 DOI: 10.1016/j.chemosphere.2022.135196] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/31/2022] [Indexed: 05/27/2023]
Abstract
Heavy metal/metalloids (HMs) are among the primary soil pollutants that limit crop production worldwide. Plants grown in HM contaminated soils exhibit reduced growth and development, resulting in a decrease in crop production. The exposure to HMs induces plant oxidative stress due to the formation of free radicals, which alter plant morphophysiological and biochemical mechanisms at cellular and tissue levels. When exposed to HM toxicity, plants evolve sophisticated physiological and cellular defense strategies, such as sequestration and transportation of metals, to ensure their survival. Plants also have developed efficient strategies by activating signaling pathways, which induce the expression of HM transporters. Plants either avoid the uptake of HMs from the soil or activate the detoxifying mechanism to tolerate HM stress, which involves the production of antioxidants (enzymatic and non-enzymatic) for the scavenging of reactive oxygen species. The metal-binding proteins including phytochelatins and metallothioneins also participate in metal detoxification. Furthermore, phytohormones and their signaling pathways also help to regulate cellular activities to counteract HM stress. The excessive levels of HMs in the soil can contribute to plant morpho-physiological, biochemical, and molecular alterations, which have a detrimental effect on the quality and productivity of crops. To maintain the commercial value of fruits and vegetables, various measures should be considered to remove HMs from the metal-polluted soils. Bioremediation is a promising approach that involves the use of tolerant microorganisms and plants to manage HMs pollution. The understanding of HM toxicity, signaling pathways, and tolerance mechanisms will facilitate the development of new crop varieties that help in improving phytoremediation.
Collapse
Affiliation(s)
- Iqra Noor
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jingxian Sun
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Azher Nawaz
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
22
|
Mumtaz MA, Hao Y, Mehmood S, Shu H, Zhou Y, Jin W, Chen C, Li L, Altaf MA, Wang Z. Physiological and Transcriptomic Analysis provide Molecular Insight into 24-Epibrassinolide mediated Cr(VI)-Toxicity Tolerance in Pepper Plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119375. [PMID: 35500717 DOI: 10.1016/j.envpol.2022.119375] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The ever-increasing industrial activities over the decades have generated high toxic metals such as chromium (Cr) that hampers plant growth and development. To counter Cr-toxicity, plants have evolved complex defensive systems including hormonal crosstalk with various signaling pathways. 24-epibrassinolide (24-EBR) lowers oxidative stress and alleviates Cr(VI)-toxicity in plants. In this study, the concealed BR-mediated influences on Cr(VI)-stress tolerance were explored by transcriptome analysis in the Capsicum annuum. Results revealed a linkage between plant development under Cr(VI)-stress and the mitigating effect of 24-epibrassinolide and brassinazole. Growth inhibition, chlorophyll degradation, and a significant rise of malondialdehyde (MDA) were observed after 40 mg/L Cr(VI) treatment in Brz supplemented seedlings, whereas 24-EBR supplemented seedlings exhibited commendatory effect. Comparative transcriptome analysis showed that the expression levels of 6687 genes changed (3846 up-regulated and 2841 downregulated) under Cr(VI)-stress with Brz supplementation. Whereas the expression levels of only 1872 genes changed under Cr(VI)-stress with 24-EBR supplementation (1223 up-regulated and 649 downregulated). The functional categories of the differentially expressed genes (DEGs) by gene ontology (GO) revealed that drug transport, defense responses, and drug catabolic process were the considerable enrichments between 24-EBR and Brz supplemented seedlings under Cr(VI)-stress. Furthermore, auxin signaling, glutathione metabolism, ABC transporters, MAPK pathway, and 36 heavy metal-related genes were significantly differentially expressed components between Cr(VI)-stress, 24-EBR, and Brz supplemented seedlings. Overall, our data demonstrate that employing 24-EBR can commendably act as a growth stimulant in plants subjected to Cr(VI)-stress by modulating the physiological and defense regulatory system.
Collapse
Affiliation(s)
- Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Sajid Mehmood
- College of Ecology and Environment, Hainan University, Haikou, 570100, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Yan Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Weiheng Jin
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Chuhao Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Lin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
23
|
Muthuramalingam P, Jeyasri R, Selvaraj A, Shin H, Chen JT, Satish L, Wu QS, Ramesh M. Global Integrated Genomic and Transcriptomic Analyses of MYB Transcription Factor Superfamily in C3 Model Plant Oryza sativa (L.) Unravel Potential Candidates Involved in Abiotic Stress Signaling. Front Genet 2022; 13:946834. [PMID: 35873492 PMCID: PMC9305833 DOI: 10.3389/fgene.2022.946834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Plant transcription factors (TFs) are significant players in transcriptional regulations, signal transduction, and constitute an integral part of signaling networks. MYB TFs are major TF superfamilies that play pivotal roles in regulation of transcriptional reprogramming, physiological processes, and abiotic stress (AbS) responses. To explore the understanding of MYB TFs, genome and transcriptome-wide identification was performed in the C3 model plant, Oryza sativa (OsMYB). This study retrieved 114 OsMYB TFs that were computationally analyzed for their expression profiling, gene organization, cis-acting elements, and physicochemical properties. Based on the microarray datasets, six OsMYB genes which were sorted out and identified by a differential expression pattern were noted in various tissues. Systematic expression profiling of OsMYB TFs showed their meta-differential expression of different AbS treatments, spatio-temporal gene expression of various tissues and their growth in the field, and gene expression profiling in responses to phytohormones. In addition, the circular ideogram of OsMYB genes in related C4 grass plants conferred the gene synteny. Protein–protein interactions of these genes revealed the molecular crosstalk of OsMYB TFs. Transcriptional analysis (qPCR) of six OsMYB players in response to drought and salinity stress suggested the involvement in individual and combined AbS responses. To decipher how these OsMYB play functional roles in AbS dynamics, further research is a prerequisite.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
- Department of Horticultural Science, Gyeongsang National University, Jinju, South Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju, South Korea
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongsang National University, Jinju, South Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Hyunsuk Shin, ; Manikandan Ramesh,
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Lakkakula Satish
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
- *Correspondence: Hyunsuk Shin, ; Manikandan Ramesh,
| |
Collapse
|
24
|
Morphological, physiological and biochemical responses to combined cadmium and drought stress in radish (Raphanus sativus L.). RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Javad S, Shah AA, Ramzan M, Sardar R, Javed T, Al-Huqail AA, Ali HM, Chaudhry O, Yasin NA, Ahmed S, Hussain RA, Hussain I. Hydrogen sulphide alleviates cadmium stress in Trigonella foenum-graecum by modulating antioxidant enzymes and polyamine content. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:618-626. [PMID: 35114051 DOI: 10.1111/plb.13393] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/06/2022] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) toxicity reduces growth and yield of crops grown in metal-polluted sites. Research was conducted to estimate the potential of hydrogen sulphide (H2 S) to mitigate toxicity caused by Cd in fenugreek seedlings (Trigonella foenum-graecum L.). Different concentrations of CdCl2 (Cd1-1 mM, Cd2-1.5 mM, Cd3-2mM) and H2 S (HS1-100 µM, HS2-150 µM, HS3-200 µM) were assessed. Seeds of fenugreek were primed with sodium hydrosulphide (NaHS), as H2 S donor. Seedlings growing in Cd-spiked media treated with H2 S were harvested after 2 weeks. Cd stress affected growth of fenugreek seedlings. Cd toxicity decreased leaf relative water content (LRWC), intercellular CO2 concentration, net photosynthesis, stomatal conductance and transpiration. However, application of H2 S significantly improved seedling morphological attributes by increasing the activity of antioxidant enzymes, i.e. APX, CAT and SOD, in Cd-contaminated soil. H2 S treatment also regulated phenolic and flavonoid content. H2 S-induced biosynthesis of spermidine (Spd) and putrescine (Put) could account for the enhancement of growth and physiological performance of fenugreek seedlings under Cd stress. H2 S treatment also reduced H2 O2 production (38%) and electrolyte leakage (EL, 51%) in seedlings grown in different concentrations of Cd. It is recommended to evaluate the efficacy of H2 S in alleviating Cd toxicity in other crop plants.
Collapse
Affiliation(s)
- S Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - A A Shah
- Department of Botany, Division of Science and Technology., University of Education, Lahore, Pakistan., Lahore, Pakistan
| | - M Ramzan
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - R Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - T Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - A A Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - H M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - O Chaudhry
- Ontario Institute of Agrology, Biology and Environmental Sciences, Albert Campbell Collegiate Institute (NS), Scarborough, Ontario, Canada
| | - N A Yasin
- Senior Superintendent Garden, RO-II Office, University of the Punjab, Lahore, Pakistan
| | - S Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - R A Hussain
- Department of Botany, Division of Science and Technology., University of Education, Lahore, Pakistan., Lahore, Pakistan
| | - I Hussain
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, Pakistan
| |
Collapse
|
26
|
Gulzar ABM, Mazumder PB. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40319-40341. [PMID: 35316490 DOI: 10.1007/s11356-022-19756-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals (HMs) are not destroyable or degradable and persist in the environment for a long duration. Thus, eliminating and counteracting the HMs pollution of the soil environment is an urgent task to develop a safe and sustainable environment. Plants are in close contact with the soil and can play an important role in soil clean-up, and the process is known as phytoremediation. However, under HM contaminated conditions, plants suffer from several complications, like nutrient and mineral deficiencies, alteration of various physiological and biological processes, which reduces the plant's growth rate. On the other hand, the bioavailability of HMs is another factor for reduced phytoremediation, as most of the HMs are not bioavailable to plants for efficient phytoremediation. The altered plant growth and reduced bioavailability of HMs could be overcome and enhance the phytoremediation efficiency by incorporating either nanotechnology, i.e., nanoparticles (NPs) or plant growth promoting rhizobacteria (PGPR) along with phytoremediation. Single incorporation of NPs and PGPR might improve the growth rate in plants by enhancing nutrient availability and uptake and also by regulating plant growth regulators under HM contaminated conditions. However, there are certain limitations, like a high dose of NPs that might have toxic effects on plants. Thus, the combination of two techniques such as PGPR and NPs-based remediation can conquer the limitations of individual techniques and consequently enhance phytoremediation efficiency. Considering the negative impacts of HMs on the environment and living organisms, this review is aimed at highlighting the concept of phytoremediation, the single or combined integration of NPs and PGPR to help plants deal with HMs and their basic mechanisms involved in the process of phytoremediation. Additionally, the complications of using NPs and PGPR in the phytoremediation process are discussed to determine future research questions and this will assist to stimulate further research in this field and increase its effectiveness in practical application.
Collapse
Affiliation(s)
- Abu Barkat Md Gulzar
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India.
| |
Collapse
|
27
|
Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:794373. [PMID: 35058954 PMCID: PMC8764127 DOI: 10.3389/fpls.2021.794373] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 05/17/2023]
Abstract
Food safety has emerged as a high-urgency matter for sustainable agricultural production. Toxic metal contamination of soil and water significantly affects agricultural productivity, which is further aggravated by extreme anthropogenic activities and modern agricultural practices, leaving food safety and human health at risk. In addition to reducing crop production, increased metals/metalloids toxicity also disturbs plants' demand and supply equilibrium. Counterbalancing toxic metals/metalloids toxicity demands a better understanding of the complex mechanisms at physiological, biochemical, molecular, cellular, and plant level that may result in increased crop productivity. Consequently, plants have established different internal defense mechanisms to cope with the adverse effects of toxic metals/metalloids. Nevertheless, these internal defense mechanisms are not adequate to overwhelm the metals/metalloids toxicity. Plants produce several secondary messengers to trigger cell signaling, activating the numerous transcriptional responses correlated with plant defense. Therefore, the recent advances in omics approaches such as genomics, transcriptomics, proteomics, metabolomics, ionomics, miRNAomics, and phenomics have enabled the characterization of molecular regulators associated with toxic metal tolerance, which can be deployed for developing toxic metal tolerant plants. This review highlights various response strategies adopted by plants to tolerate toxic metals/metalloids toxicity, including physiological, biochemical, and molecular responses. A seven-(omics)-based design is summarized with scientific clues to reveal the stress-responsive genes, proteins, metabolites, miRNAs, trace elements, stress-inducible phenotypes, and metabolic pathways that could potentially help plants to cope up with metals/metalloids toxicity in the face of fluctuating environmental conditions. Finally, some bottlenecks and future directions have also been highlighted, which could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zainab Zahid
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shanza Bashir
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicology and Food Sciences, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
28
|
Antioxidant enzymatic activities and profiling of gene expression associated with organophosphate stress tolerance in Solanum melongena L.cv. Longai. 3 Biotech 2021; 11:510. [PMID: 34926108 DOI: 10.1007/s13205-021-03061-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022] Open
Abstract
The tolerance mechanism of chemical pesticide is necessary to combat the pest infestation challenges. This study intended to analyze the responses of enzymatic activity and expression level of an antioxidant gene to organophosphate pesticide stress. The alteration of anti-oxidative correlated with pesticide treatment in eggplant (S. melongena L.cv. Longai) using varying concentrations (0, 50, 100, 150 and 200 ppm) of malathion (PM) and tatafen (PTF) each. The enzyme activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were observed to be elevated with pesticide treatment in eggplant seedling. FeSOD (iron SOD), CAT and APX genes associated in defense mechanisms were significantly expressed under PM and PTF stress which contributed to stress tolerance to the plant. The different concentration of both pesticide stresses altered the expression level of mRNA, FeSOD, CAT and APX genes in comparison to the non-treated plant. While mRNA level of three antioxidant genes were evaluated and found to be APX gene expression was more potent than the CAT and FeSOD gene subjected to different concentrations of PM and PTF in eggplant. The current experiment highlights the presence of minimum level of pesticide concentration impacted positively towards the plant growth and metabolism, while high level of pesticide concentration impacted negatively. In summary, antioxidant enzymes activity responded to both pesticide stresses at an early stage of exposure and their gene expression profiles provided more details about their complex interaction and effectively scavenge reactive oxygen species. This allows the plant to maintain growth under pesticide stress.
Collapse
|
29
|
Dubey AK, Kumar A, Kumar N, Kumar S, Gautam A, Ansari MA, Manika N, Lal S, Behera SK, Mallick S, Sanyal I. Over-expression of chickpea metallothionein 1 gene confers tolerance against major toxic heavy metal stress in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2665-2678. [PMID: 35035129 PMCID: PMC8720129 DOI: 10.1007/s12298-021-01103-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
UNLABELLED Heavy metals are ubiquitously present in nature, including soil, water, and thus in plants, thereby causing a potential health risk. This study has investigated the role and efficiency of the chickpea metallothionein 1 (MT1) gene against the major toxic heavy metals, i.e., As [As(III) and As(V)], Cr(VI), and Cd toxicity. MT1 over-expressing transgenic lines had reduced As(V) and Cr(VI) accumulation, whereas Cd accumulation was enhanced in the L3 line. The physiological responses (WUE, A, Gs, E, ETR, and qP) were noted to be enhanced in transgenic plants, whereas qN was decreased. Similarly, the antioxidant molecules and enzymatic activities (GSH/GSSG, Asc/DHA, APX, GPX, and GRX) were higher in the transgenic plants. The activity of antioxidant enzymes, i.e., SOD, APX, GPX, and POD, were highest in the Cd-treated lines, whereas higher CAT activity was observed in As(V)-L1 and GRX in Cr-L3 line. The stress markers TBARS, H2O2, and electrolyte leakage were lower in transgenic lines in comparison to WT, while RWC was enhanced in the transgenic lines, and the transcript of MT1 gene was accumulated in the transgenic lines. Similarly, the level of stress-responsive amino acid cysteine was higher in transgenic plants as compared to WT plants. Among all the heavy metals, MT1 over-expressing lines showed a highly increased accumulation of Cd, whereas a non-significant effect was observed with As(III) treatment. Overall, the results demonstrate that Arabidopsis thaliana transformed with the MT1 gene mitigates heavy metal stress by regulating the defense mechanisms in plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01103-1.
Collapse
Affiliation(s)
- Arvind Kumar Dubey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Anil Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Navin Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Sanoj Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Ambedkar Gautam
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Mohd Akram Ansari
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - N. Manika
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Swati Lal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Soumit Kumar Behera
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Shekhar Mallick
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| |
Collapse
|
30
|
Sharifi P, Bidabadi SS, Zaid A, Abdel Latef AAH. Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L. cultivated on Pb and Cd polluted soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112051. [PMID: 33601169 DOI: 10.1016/j.ecoenv.2021.112051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have recently attracted huge attention to their impacts on the environment and plants. Therefore, this experiment was conducted to investigate the responses of lead (Pb) and cadmium (Cd) exposed pot marigold plants to various levels of MWCNT. Calendula officinalis (L.) seedlings were cultivated in Pb and Cd-polluted soils with exposure to 0, 50, 100, 250, 500 and 1000 mg L-1 of MWCNT. The results demonstrated that foliar-applied MWCNT up to 250 mg L-1 not only alleviated Pb and Cd-induced toxicity by reducing oxidative damage and boosting both enzymatic and non-enzymatic antioxidant defense system but also promoted the phytoremediation property of pot marigold plants by enhancing the accumulation of both Pb and Cd from the soil. Interestingly, oxidative damage exacerbation and both Pb and Cd accumulation reduction were noticed in pot marigold seedlings exposed to 500 and 1000 mg L-1 MWCNTs. The findings of this study clearly showed that the use of appropriate concentrations of MWCNTs in increasing the phytoremediation properties of pot marigold was justified, while the use of high concentrations is toxic to the plant and intensifies the toxic effects of heavy metals (HMs) on plant physiology. This study provides a novel method to facilitate the phytoremediation of HMs polluted soils using MWCNT as well as explores the potential risks of these nanoparticles to the plants.
Collapse
Affiliation(s)
- Parisa Sharifi
- Department of Agricultural Extension and Education, Higher Education Center Shahid Bakeri Miyandoab, Urmia University, Urmia 94171-71946, Iran
| | - Siamak Shirani Bidabadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
31
|
Zhang X, Zhu Y, Ye J, Ye Z, Zhu R, Xie G, Zhao Y, Qin M. Iris domestica (iso)flavone 7- and 3'-O-Glycosyltransferases Can Be Induced by CuCl 2. FRONTIERS IN PLANT SCIENCE 2021; 12:632557. [PMID: 33633770 PMCID: PMC7900552 DOI: 10.3389/fpls.2021.632557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
In many plants, isoflavones are the main secondary metabolites that have various pharmacological activities, but the low water solubility of aglycones limits their usage. The O-glycosylation of (iso)flavones is a promising way to overcome this barrier. O-glycosyltransferases (UGTs) are key enzymes in the biosynthesis of (iso)flavonoid O-glycosides in plants. However, limited investigations on isoflavonoid O-UGTs have been reported, and they mainly focused on legumes. Iris domestica (L.) Goldblatt et Mabberley is a non-legume plant rich in various isoflavonoid glycosides. However, there are no reports regarding its glycosylation mechanism, despite the I. domestica transcriptome previously being annotated as having non-active isoflavone 7-O-UGTs. Our previous experiments indicated that isoflavonoid glycosides were induced by CuCl2 in I. domestica calli; therefore, we hypothesized that isoflavone O-UGTs may be induced by Cu2+. Thus, a comparative transcriptome analysis was performed using I. domestica seedlings treated with CuCl2, and eight new active BcUGTs were obtained. Biochemical analyses showed that most of the active BcUGTs had broad substrate spectra; however, substrates lacking 5-OH were rarely catalyzed. Real-time quantitative PCR results further indicated that the transcriptional levels of BcUGTs were remarkably induced by Cu2+. Our study increases the understanding of UGTs and isoflavone biosynthesis in non-legume plants.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Jun Ye
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Ziyu Ye
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Ruirui Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Hu R, Li Q, Huang Y, Zhao Y, Xiao L, Jing Q, Zou Y, Lin L. Intercropping with post-grafting generation of Solanum photeinocarpum decreases cadmium accumulation in soybean ( Glycine max). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1124-1131. [PMID: 33528274 DOI: 10.1080/15226514.2021.1880366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A pot experiment was designed to explore the effects of different post-grafting generations of Solanum photeinocarpum Nakamura et Odashima intercropping on growth and cadmium (Cd) accumulation in soybeans (varieties: "Zaodou" and "Liaoxian"). Post generation of S. photeinocarpum (ungrafted, grafted on eggplant, potato, and tomato, respectively) were utilized to intercrop with two varieties of soybean in Cd-contaminated soil. Soybean monoculture was employed as a control. Consequently, intercropping with different post-grafting S. photeinocarpum generation, except for tomato rootstock grafts post-generation, could reduce soybean biomass and photosynthetic pigment content. Additionally, all S. photeinocarpum post-grafting generations had the capacity to reduce Cd content in soybean when intercropping, while tomato rootstock grafts post-generation exhibited an adequate ability to accumulate Cd in S. photeinocarpum compared to the ungrafted treatment. In particular, tomato rootstock grafts post-generation could effectively decrease Cd content in soybean organs by 14.09-62.13%, relative to soybean monoculture, but increased shoot Cd content and shoot Cd extraction of S. photeinocarpum by 10.33-13.49% and 10.38-12.03%, respectively, compared to the ungrafted treatment. Thus, tomato rootstock grafting may enhance the ability of post-grafting generation of S. photeinocarpum to remediate Cd-contaminated soil, and this grafting was able to reduce Cd accumulation in soybean.
Collapse
Affiliation(s)
- Rongping Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- MOA Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qinyuan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ling Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qianhe Jing
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yao Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Dolui D, Saha I, Adak MK. 2, 4-D removal efficiency of Salvinia natans L. and its tolerance to oxidative stresses through glutathione metabolism under induction of light and darkness. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111708. [PMID: 33396039 DOI: 10.1016/j.ecoenv.2020.111708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
In a laboratory based study, Salvinia natans L. was pre-treated with reduced glutathione (GSH) following transfer under 2, 4-Dicholro phenoxy acetic acid (2,4-D), peroxide (H2O2), dark and irradiation. Plants recorded 2, 4-D bio-accumulation and tolerance maximally under 500 µM following absorption kinetics modulated with GSH in changes of relative water content (20.98%), growth rate (3.04%) and net assimilation rate (1.3 fold) over control. GSH pre-treatment minimized the oxidative revelation with reactive oxygen species (ROS) by 5.55% decrease under 2, 4-D and 1.3, 1.2, 0.8 fold increase through the other stresses. Apoplastic NADPH-oxidase expression was moderated by GSH with 11.76% less over the control. Also the activity of alcohol dehydrogenase and glutathione-S-transferase had their altered values by 1.5 and 9.0 fold increases respectively and may serve as biomarkers. The oxidized:reduced glutathione was positively correlated with glutathione-peroxidase (r=+0.99) and negatively with glutathione reductase (r=-0.04). The induced activities sustained oxidized:reduced GSH pool by 1.09 fold and had varied polymorphic gene expression under 2, 4-D and allied stresses. This study may be relevant to consider Salvinia as a potent weed species remediating 2, 4-D toxicity in soil with its wider hyper-accumulating efficiency. The cellular responses in tolerance to oxidative stress and thereby, induced physiological attributes may opt for selection pressures in other weed flora for broader aspects of phytoremediation against xenobiotics like 2, 4-D.
Collapse
Affiliation(s)
- Debabrata Dolui
- Plant Physiology and Plant Molecular Biology Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Indraneel Saha
- Plant Physiology and Plant Molecular Biology Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
34
|
Abdel Latef AAH, Zaid A, Abo-Baker ABAE, Salem W, Abu Alhmad MF. Mitigation of Copper Stress in Maize by Inoculation with Paenibacillus polymyxa and Bacillus circulans. PLANTS 2020; 9:plants9111513. [PMID: 33171623 PMCID: PMC7695152 DOI: 10.3390/plants9111513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 01/24/2023]
Abstract
Copper (Cu) is a micronutrient that assumes a principal role in plant growth and development. However, its excess concentration in soil is imperiling crop productivity. Inoculation with different bacterial strains in cereals could modify growth traits, photosynthetic effectiveness, and generation of strong antioxidant defense systems to make them more tolerant of Cu stress. Therefore, a pot study was designed to test plant growth-promoting rhizobacteria (PGPR) including Paenibacillus polymyxa and Bacillus circulans to Cu exposed maize (Zea mays L.) plants. Increasing Cu (100 to 500 µM of CuSO4) concentration decreased growth traits, photosynthetic pigments, soluble sugars, phosphorous (P) and potassium (K) contents, and the activity of catalase (CAT) but increased proline and malondialdehyde (MDA) content, the activity of peroxidase (POD) and Cu ions at root and shoot level. Moreover, the bacterial treatment also modulated the antioxidant capability in stress-free plants. Nevertheless, inoculation with P. polymyxa and B. circulans alleviated Cu-induced growth, photosynthetic pigments and mineral nutrient (P and K) on one hand and regulating the pools of osmolytes and antioxidant enzymes, whilst simultaneously reducing MDA and Cu root and shoot contents. These improved activities of antioxidant enzymes and the regulation of osmolytes content elicited by the blend of bacterial inoculation would have retained the ability of maize plants to confer resilience to Cu stress. This study further affirms that the application of two specific bacterial strains to maize plants proved very effective to ameliorate the Cu toxicity.
Collapse
Affiliation(s)
- Arafat Abdel Hamed Abdel Latef
- Biology Department, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (W.S.); (M.F.A.A.)
- Correspondence: or or
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | | | - Wesam Salem
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (W.S.); (M.F.A.A.)
| | - Mona Fawzy Abu Alhmad
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (W.S.); (M.F.A.A.)
- Biology Department, Faculty of Science, Taif University, Al-Hawiyah, Taif 21944, Saudi Arabia
| |
Collapse
|
35
|
|
36
|
Shehata HS, Galal TM. Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. J Verbrauch Lebensm 2020. [DOI: 10.1007/s00003-020-01284-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Shirani Bidabadi S. The role of Fe-nano particles in scarlet sage responses to heavy metals stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1259-1268. [PMID: 32393119 DOI: 10.1080/15226514.2020.1759507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the stabilized ornamental markets for scarlet sage (Salvia splendens), little is known about the stress resistance of heavy metals (HMs). Therefore, a hydroponic study was conducted to determine whether the addition of Fe nanoparticles (Fe NPs) at 0, 5, 10, 20 and 30 µM in Hoagland's nutrient solution reduce the toxicity caused by 100 μM of HMs (Cd, Cu, Ni, Cr and Pb). Exposure to HMs significantly reduced relative growth rate (RGR), chlorophyll content, chlorophyll fluorescence (Fv/Fm), total antioxidant activity (TAA), total phenol content (TPC) and antioxidant power assay (FRAP), while the malondialdehyde (MDA) accumulation, H2O2 generation and electrolyte leakage (EL) significantly increased. Fe NPs improved HMs toxicity by significant reduction in MDA content, H2O2 generation and EL while increase in the PGR, chlorophyll content, Fv/Fm, the TAA, TPC and FRAP. Exposure to HMs caused Fe deficiency-induced chlorosis while Fe NPs reduced the negative effects of HM by preventing further reduction of leaf Fe. The results highlighted that although using Fe NPs significantly improved plant growth and motivated the plant defense mechanisms in response to HMs toxicity, it had a negative effect on the phytoremediation properties of salvia splendens by reducing the accumulation of HMs in plant organs.
Collapse
|
38
|
Islam S, Mohammad F. Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:871-883. [PMID: 32377038 PMCID: PMC7196594 DOI: 10.1007/s12298-020-00815-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 04/07/2020] [Indexed: 05/21/2023]
Abstract
Triacontanol (TRIA) being an endogenous plant growth regulator facilitates numerous plant metabolic activities leading to better growth and development. Moreover, TRIA plays essential roles in alleviating the stress-accrued alterations in crop plants via modulating the activation of the stress tolerance mechanisms. The present article critically focuses on the role of exogenously applied TRIA in morpho-physiology and biochemistry of plants for example, in terms of growth, photosynthesis, enzymatic activity, biofuel synthesis, yield and quality under normal and stressful conditions. This article also enlightens the mode of action of TRIA and its interaction with other phytohormones in regulating the physio-biochemical processes in counteracting the stress-induced damages in plants.
Collapse
Affiliation(s)
- Shaistul Islam
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
39
|
Shah AA, Ahmed S, Abbas M, Ahmad Yasin N. Seed priming with 3-epibrassinolide alleviates cadmium stress in Cucumis sativus through modulation of antioxidative system and gene expression. SCIENTIA HORTICULTURAE 2020; 265:109203. [DOI: 10.1016/j.scienta.2020.109203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
40
|
Amdoun R, Bendifallah N, Sahli F, Moustafa K, Hefferon K, Makhzoum A, Khelifi L. Improving zinc phytoremediation characteristics in Salix pedicellata with a new acclimation approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:745-754. [PMID: 32026720 DOI: 10.1080/15226514.2019.1708862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Some species of Salix sp. (willows) are a potential phytoremediator that can accumulate substantial contents of mineral elements and, therefore, to detoxify soils contaminated with pollutants and heavy metals such as the zinc (Zn). However, high concentrations of Zn inhibit plant growth and reduce biomass production in plants. In an attempt to overcome this inconvenience and to enhance plant tolerance to Zn toxicity, we tested a new tolerance induction approach by acclimation in two clones of Salix pedicellata, named SPK-12 and SP-K20. The approach comprises two successive phases. The first is a "tolerance induction phase" consisting of gradual exposure of plants to low concentrations of Zn sulfate (ZnSO4) at regular intervals until reaching DI100 (ZnSO4 inhibitory concentration). And, the second is a "tolerance maintenance phase" to uphold the acquired tolerance to Zn toxicity. The SP-K20 clone was acclimated to DI100 threshold over 33 days without noticeable symptoms of chlorosis or growth inhibition. Compared to controls, the SP-K20 clone was able to accumulate high concentrations of Zn, suggesting that phytoremediation abilities of S. pedicellata have been improved throughout the applied approach. Acclimated Salix plants might thus improve metal phytoextraction in heavily polluted soils without biomass growth inhibition.
Collapse
Affiliation(s)
- Ryad Amdoun
- Institut National de la Recherche Forestière (INRF), Algiers, Algeria
| | | | - Fatiha Sahli
- Institut National de la Recherche Forestière (INRF), Algiers, Algeria
| | | | - Kathleen Hefferon
- Food Science and Technology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Lakhdar Khelifi
- Laboratoire des Ressources Génétiques et Biotechnologie, Ecole Nationale Supérieure Agronomique (ES1603), Algiers, Algeria
| |
Collapse
|
41
|
Serratia marcescens BM1 Enhances Cadmium Stress Tolerance and Phytoremediation Potential of Soybean Through Modulation of Osmolytes, Leaf Gas Exchange, Antioxidant Machinery, and Stress-Responsive Genes Expression. Antioxidants (Basel) 2020; 9:antiox9010043. [PMID: 31947957 PMCID: PMC7023057 DOI: 10.3390/antiox9010043] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 01/24/2023] Open
Abstract
The heavy metal contamination in plant-soil environment has increased manifold recently. In order to reduce the harmful effects of metal stress in plants, the application of beneficial soil microbes is gaining much attention. In the present research, the role of Serratia marcescens BM1 in enhancing cadmium (Cd) stress tolerance and phytoremediation potential of soybean plants, was investigated. Exposure of soybean plants to two Cd doses (150 and 300 µM) significantly reduced plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Additionally, Cd induced the stress levels of Cd, proline, glycine betaine, hydrogen peroxide, malondialdehyde, antioxidant enzymes (i.e., catalase, CAT; ascorbate peroxidase, APX; superoxide dismutase, SOD; peroxidise, POD), and the expression of stress-related genes (i.e., APX, CAT, Fe-SOD, POD, CHI, CHS, PHD2, VSO, NR, and P5CS) in soybean leaves. On the other hand, inoculation of Cd-stressed soybean plants with Serratia marcescens BM1 significantly enhanced the plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Moreover, Serratia marcescens BM1 inoculation reduced the levels of cadmium and oxidative stress markers, but significantly induced the activities of antioxidant enzymes and the levels of osmolytes and stress-related genes expression in Cd-stressed plants. The application of 300 µM CdCl2 and Serratia marcescens triggered the highest expression levels of stress-related genes. Overall, this study suggests that inoculation of soybean plants with Serratia marcescens BM1 promotes phytoremediation potential and Cd stress tolerance by modulating the photosynthetic attributes, osmolytes biosynthesis, antioxidants machinery, and the expression of stress-related genes.
Collapse
|
42
|
Zaid A, Mohammad F, Fariduddin Q. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint ( Mentha arvensis L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:25-39. [PMID: 32158118 PMCID: PMC7036404 DOI: 10.1007/s12298-019-00715-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/01/2019] [Accepted: 09/16/2019] [Indexed: 05/02/2023]
Abstract
Menthol mint (Mentha arvensis L.) cultivation is significantly affected by the heavy metals like cadmium (Cd) which also imposes severe health hazards. Two menthol mint cultivars namely Kosi and Kushal were evaluated under Cd stress conditions. Impact of plant growth regulators (PGRs) like salicylic acid (SA), gibberellic acid (GA3) and triacontanol (Tria) on Cd stress tolerance was assessed. Reduced growth, photosynthetic parameters, mineral nutrient concentration, and increased oxidative stress biomarkers like electrolyte leakage, malondialdehyde, and hydrogen peroxide contents were observed under Cd stress. Differential upregulation of proline content and antioxidant activities under Cd stress was observed in both the cultivars. Interestingly, low electrolyte leakage, lipid peroxidation, hydrogen peroxide and Cd concentration in leaves were observed in Kushal compared to Kosi. Among all the PGRs tested, SA proved to be the best in improving Cd-stress tolerance in both the cultivars but Kushal responded better than Kosi.
Collapse
Affiliation(s)
- Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
43
|
Bhalani H, Thankappan R, Mishra GP, Sarkar T, Bosamia TC, Dobaria JR. Regulation of antioxidant mechanisms by AtDREB1A improves soil-moisture deficit stress tolerance in transgenic peanut (Arachis hypogaea L.). PLoS One 2019; 14:e0216706. [PMID: 31071165 PMCID: PMC6508701 DOI: 10.1371/journal.pone.0216706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
The present study evaluated the soil-moisture deficit stress tolerance of AtDREB1A transgenic peanut lines during reproductive stages using lysimetric system under controlled glasshouse conditions. The antioxidant activities of AtDREB1A transgenic lines were measured by biochemical assays. The transgenic peanut lines recorded significantly lower accumulation of malondialdehyde and hydrogen peroxide than the wild-type. Whereas, specific activity of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and ascorbic acid were found to be significantly higher in transgenic lines than in the wild-type line under drought stress. The results showed that the transgenic lines expressed lower oxidative damage than wild-type and could protect themselves from the elevated levels of reactive oxygen species under drought stress. This could be attributed to the regulation of various stress-inducible genes by AtDREB1A transcription factor. Improved photosynthetic and growth parameters were also recorded in transgenic lines over wild-type under drought stress. Improved physio-biochemical mechanisms in transgenic peanut lines might have resulted in improved growth-related traits as significant correlations were observed between physio-biochemical parameters and growth-related traits under drought stress. The potential target genes of AtDREB1A transcription factor in transgenic peanut lines during drought stress were identified, which helped in understanding the molecular mechanisms of DREB-regulated stress responses. The transgenic line D6 reported the best physio-biochemical mechanisms and growth-related parameters under drought stress over other transgenic lines and wild-type, suggesting it may be used to develop high yielding and terminal drought-tolerant peanut varieties.
Collapse
Affiliation(s)
- Hiren Bhalani
- Directorate of Groundnut Research, Junagadh, Gujarat, India
- Junagadh Agricultural University, Junagadh, Gujarat, India
| | | | - Gyan P. Mishra
- Directorate of Groundnut Research, Junagadh, Gujarat, India
| | - Tanmoy Sarkar
- Directorate of Groundnut Research, Junagadh, Gujarat, India
| | | | | |
Collapse
|
44
|
Ashfaque F, Inam A. Interactive effect of potassium and flyash: a soil conditioner on metal accumulation, physiological and biochemical traits of mustard (Brassica juncea L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7847-7862. [PMID: 30675712 DOI: 10.1007/s11356-019-04243-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
At present plants continuously bare to various environmental stresses due to the rapid climate change that adversely affects the growth and nutrient status of the soil and plant. Application of flyash (FA) in combination with potassium (K) fertilizer amendment improves soil physico-chemical characteristics, growth and yield of plants. Mustard grown in combination with FA (0, 20, 40 or 60 t ha-1) and K (0, 30 or 60 kg ha-1) treated soil was used to evaluate the effect on heavy metals (Cd, Cr and Pb) concentration and antioxidant system. The experiment was conducted in a net house of the Department of Botany, Aligarh Muslim University, Aligarh. Sampling was done at 70 DAS. The results showed that concentration of metals was found maximum in roots than the leaf and seeds. FA60 accompanied by K30 and K60 cause oxidative stress through lipid peroxidation and showed reduced levels of photosynthesis and enzymatic activity. Proline and ascorbate content increases with increasing flyash doses to combat stress. However, flyash at the rate of 40 t ha-1 together with K60 followed by K30 significantly boosted crop growth by enhancing antioxidant activity which plays a critical role in ameliorating the oxidative stress. Graphical abstract.
Collapse
Affiliation(s)
- Farha Ashfaque
- Department of Botany, Environmental Plant Physiology section, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| | - Akhtar Inam
- Department of Botany, Environmental Plant Physiology section, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
45
|
Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S, Ibrahim E, Hani H. Copper Nanoparticles Induced Genotoxicty, Oxidative Stress, and Changes in Superoxide Dismutase (SOD) Gene Expression in Cucumber ( Cucumis sativus) Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:872. [PMID: 30061904 PMCID: PMC6055047 DOI: 10.3389/fpls.2018.00872] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/04/2018] [Indexed: 05/20/2023]
Abstract
With the increased use of metal nanoparticles (NPs), their access to the food chain has become a main concern to scientists and holds controversial social implications. This research particularly sheds light on copper nanoparticles (CuNP), as they have been commonly used in several industries nowadays. In this study, we investigated the phytotoxicity of CuNP on cucumber (Cucumis sativus) plants grown hydroponically. Atomic Absorption Spectroscopy (AAS), X-Ray Fluorescence (XRF), and Scanning Electron Microscopy (SEM) analysis confirmed that C. sativus treated with CuNP accumulated CuNP in the plant tissues, with higher levels in roots, with amounts that were concentration dependent. Furthermore, genotoxicity was assessed using Random amplified polymorphic DNA (RAPD) technique, and our results showed that CuNP caused genomic alterations in C. sativus. Phenotypical, physiological, and biochemical changes were assessed by determining the CuNP treated plant's total biomass, chlorophyll, H2O2 and MDA contents, and electrolyte leakage percentage. The results revealed notable adverse phenotypical changes along with decreased biomass and decreased levels of the photosynthetic pigments (Chlorophyll a and b) in a concentration-dependent manner. Moreover, CuNP induced damage to the root plasma membrane as determined by the increased electrolyte leakage. A significant increase in H2O2 and MDA contents were detected in C. sativus CuNP treated plants. Additionally, copper-zinc superoxide dismutase (Cu-Zn SOD) gene expression was induced under CuNP treatment. Overall, our results demonstrated that CuNP of 10-30 nm size were toxic to C. sativus plants. This finding will encourage the safe production and disposal NPs. Thus, reducing nano-metallic bioaccumulation into our food chain through crop plants; that possesses a threat to the ecological system.
Collapse
Affiliation(s)
- Kareem A. Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Naggar
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Kalidoss Ramamoorthy
- Environmental and Chemical Biology Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Hussain Alawadhi
- Center of Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Attiat Elnaggar
- Environmental and Chemical Biology Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Sylvie Wartanian
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Emy Ibrahim
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Hani
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|