1
|
Pratt CJ, England EE, Vinzelj JM, Youssef NH, Elshahed MS. Anaeromyces corallioides, sp. nov., a new anaerobic gut fungus from the faeces of cattle. Int J Syst Evol Microbiol 2025; 75:006719. [PMID: 40094778 PMCID: PMC11936339 DOI: 10.1099/ijsem.0.006719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
We report on the isolation and characterization of three isolates of anaerobic gut fungi from a cattle faecal sample obtained in Stillwater, OK, USA. The isolates produced polycentric thalli with nucleated rhizomycelia, lobed appressorium-like structures, intercalary sporangia and constricted sausage-like hyphae. These morphological features are characteristic of members of the genus Anaeromyces. No zoospore production was observed during the isolation process or thereafter. The strains seemed to have propagated solely through their nucleated hyphae post initial enrichment. Phylogenetic analysis of the D1/D2 region of the large ribosomal subunit (D1/D2 LSU) rRNA, the ribosomal intergenic spacer region 1 (ITS1), RNA polymerase II large subunit (RPB1) and comparative average amino acid identity using transcriptomic datasets further confirmed the position of the type strain as a distinct member of the genus Anaeromyces, family Anaeromycetaceae and phylum Neocallimastigomycota. We propose to accommodate these isolates into a new species (Anaeromyces corallioides) within the genus Anaeromyces. The type strain is EE.1.
Collapse
Affiliation(s)
- Carrie J. Pratt
- Department of Microbiology and Molecular Genetics Oklahoma State University, Stillwater, OK, USA
| | - Emma E. England
- Department of Microbiology and Molecular Genetics Oklahoma State University, Stillwater, OK, USA
| | - Julia M. Vinzelj
- Department of Microbiology and Molecular Genetics Oklahoma State University, Stillwater, OK, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
2
|
Abdullah HM, Mohammed OB, Sheikh A, Almathen F, Khalid AM, Bakhiet AO, Abdelrahman MM. Molecular detection of ruminal micro-flora and micro-fauna in Saudi Arabian camels: Effects of season and region. Saudi J Biol Sci 2024; 31:103982. [PMID: 38600912 PMCID: PMC11004988 DOI: 10.1016/j.sjbs.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
This study investigated and explored the availability of micro-flora and micro-fauna in the ruminal contents of Arabian camel (Camelus dromedarius) from three different regions in Saudi Arabia along with two seasons. Samples were prepared and tested by conventional polymerase chain reaction (PCR). This study confirmed that the bacterial flora were dominating over other microbes. Different results of the availability of each microbe in each region and season were statistically analyzed and discussed. There was no significant effect of season on the micro-flora or micro-fauna however, the location revealed a positive effect with Ruminococcus flavefaciens (p < 0 0.03) in the eastern region. This study was the first to investigate the abundance of micro-flora and micro-fauna in the ruminal contents of camels of Saudi Arabia. This study underscores the significance of camel ruminal micro-flora and micro-fauna abundance, highlighting their correlation with both seasonality and geographic location. This exploration enhances our comprehension of camel rumination and digestion processes. The initial identification of these microbial communities serves as a foundational step, laying the groundwork for future in-depth investigations into camel digestibility and nutritional requirements.
Collapse
Affiliation(s)
- Hashim M. Abdullah
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Osama B. Mohammed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Faisal Almathen
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Ahmed M. Khalid
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Shambat 13314, Sudan
| | - Amel O. Bakhiet
- Deanship of Scientific Research, Sudan University of Science and Technology, P.O. Box 407, Khartoum, Sudan
| | - Mutassim M. Abdelrahman
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Young D, Joshi A, Huang L, Munk B, Wurzbacher C, Youssef NH, Elshahed MS, Moon CD, Ochsenreither K, Griffith GW, Callaghan TM, Sczyrba A, Lebuhn M, Flad V. Simultaneous Metabarcoding and Quantification of Neocallimastigomycetes from Environmental Samples: Insights into Community Composition and Novel Lineages. Microorganisms 2022; 10:1749. [PMID: 36144352 PMCID: PMC9504928 DOI: 10.3390/microorganisms10091749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Anaerobic fungi from the herbivore digestive tract (Neocallimastigomycetes) are primary lignocellulose modifiers and hold promise for biotechnological applications. Their molecular detection is currently difficult due to the non-specificity of published primer pairs, which impairs evolutionary and ecological research with environmental samples. We developed and validated a Neocallimastigomycetes-specific PCR primer pair targeting the D2 region of the ribosomal large subunit suitable for screening, quantifying, and sequencing. We evaluated this primer pair in silico on sequences from all known genera, in vitro with pure cultures covering 16 of the 20 known genera, and on environmental samples with highly diverse microbiomes. The amplified region allowed phylogenetic differentiation of all known genera and most species. The amplicon is about 350 bp long, suitable for short-read high-throughput sequencing as well as qPCR assays. Sequencing of herbivore fecal samples verified the specificity of the primer pair and recovered highly diverse and so far unknown anaerobic gut fungal taxa. As the chosen barcoding region can be easily aligned and is taxonomically informative, the sequences can be used for classification and phylogenetic inferences. Several new Neocallimastigomycetes clades were obtained, some of which represent putative novel lineages such as a clade from feces of the rodent Dolichotis patagonum (mara).
Collapse
Affiliation(s)
- Diana Young
- Micro and Molecular Biology, Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, 85354 Freising, Germany
| | - Akshay Joshi
- Biocatalysis, Environment and Process Technology Unit, Life Science and Facility Management, ZHAW, 8820 Wadenswil, Switzerland
- Department of Microbiology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Liren Huang
- Center for Biotechnology (CeBiTec), University of Bielefeld, 33615 Bielefeld, Germany
| | - Bernhard Munk
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics (OSU), Oklahoma State University, Stillwater, OK 74074, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics (OSU), Oklahoma State University, Stillwater, OK 74074, USA
| | - Christina D. Moon
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Katrin Ochsenreither
- Process Engineering in Life Sciences 2: Technical Biology (KIT), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Gareth W. Griffith
- Department of Life Sciences (DoLS), Aberystwyth University, Aberystwyth SY23 3DD, Wales, UK
| | | | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), University of Bielefeld, 33615 Bielefeld, Germany
| | - Michael Lebuhn
- Micro and Molecular Biology, Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, 85354 Freising, Germany
| | - Veronika Flad
- Micro and Molecular Biology, Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, 85354 Freising, Germany
| |
Collapse
|
4
|
Saye LMG, Navaratna TA, Chong JPJ, O’Malley MA, Theodorou MK, Reilly M. The Anaerobic Fungi: Challenges and Opportunities for Industrial Lignocellulosic Biofuel Production. Microorganisms 2021; 9:694. [PMID: 33801700 PMCID: PMC8065543 DOI: 10.3390/microorganisms9040694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose is a promising feedstock for biofuel production as a renewable, carbohydrate-rich and globally abundant source of biomass. However, challenges faced include environmental and/or financial costs associated with typical lignocellulose pretreatments needed to overcome the natural recalcitrance of the material before conversion to biofuel. Anaerobic fungi are a group of underexplored microorganisms belonging to the early diverging phylum Neocallimastigomycota and are native to the intricately evolved digestive system of mammalian herbivores. Anaerobic fungi have promising potential for application in biofuel production processes due to the combination of their highly effective ability to hydrolyse lignocellulose and capability to convert this substrate to H2 and ethanol. Furthermore, they can produce volatile fatty acid precursors for subsequent biological conversion to H2 or CH4 by other microorganisms. The complex biological characteristics of their natural habitat are described, and these features are contextualised towards the development of suitable industrial systems for in vitro growth. Moreover, progress towards achieving that goal is reviewed in terms of process and genetic engineering. In addition, emerging opportunities are presented for the use of anaerobic fungi for lignocellulose pretreatment; dark fermentation; bioethanol production; and the potential for integration with methanogenesis, microbial electrolysis cells and photofermentation.
Collapse
Affiliation(s)
- Luke M. G. Saye
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Tejas A. Navaratna
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - James P. J. Chong
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - Michael K. Theodorou
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Matthew Reilly
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| |
Collapse
|
5
|
Hanafy RA, Johnson B, Youssef NH, Elshahed MS. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ Microbiol 2020; 22:3883-3908. [PMID: 32656919 DOI: 10.1111/1462-2920.15164] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 11/30/2022]
Abstract
The anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tracts of herbivores where they play a central role in the breakdown of plant material. Here, we report on the development of the hypervariable domains D1/D2 of the large ribosomal subunit (D1/D2 LSU) as a barcoding marker for the AGF. We generated a reference D1/D2 LSU database for all cultured AGF genera, as well as the majority of candidate genera encountered in prior internal transcribed spacer 1 (ITS1)-based surveys. Subsequently, a D1/D2 LSU-based diversity survey using long read PacBio SMRT sequencing was conducted on faecal samples from 21 wild and domesticated herbivores. Twenty-eight genera and candidate genera were identified, including multiple novel lineages that were predominantly, but not exclusively, identified in wild herbivores. Association between certain AGF genera and animal lifestyles, or animal host family was observed. Finally, to address the current paucity of AGF isolates, concurrent isolation efforts utilizing multiple approaches to maximize recovery yielded 216 isolates belonging to 12 different genera, several of which have no prior cultured-representatives. Our results establish the utility of D1/D2 LSU and PacBio sequencing for AGF diversity surveys, the culturability of multiple AGF taxa, and demonstrate that wild herbivores represent a yet-untapped reservoir of AGF diversity.
Collapse
Affiliation(s)
- Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Britny Johnson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
6
|
Edwards JE, Schennink A, Burden F, Long S, van Doorn DA, Pellikaan WF, Dijkstra J, Saccenti E, Smidt H. Domesticated equine species and their derived hybrids differ in their fecal microbiota. Anim Microbiome 2020; 2:8. [PMID: 33499942 PMCID: PMC7807894 DOI: 10.1186/s42523-020-00027-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/02/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Compared to horses and ponies, donkeys have increased degradation of dietary fiber. The longer total mean retention time of feed in the donkey gut has been proposed to be the basis of this, because of the increased time available for feed to be acted upon by enzymes and the gut microbiota. However, differences in terms of microbial concentrations and/or community composition in the hindgut may also underpin the increased degradation of fiber in donkeys. Therefore, a study was conducted to assess if differences existed between the fecal microbiota of pony, donkey and hybrids derived from them (i.e. pony × donkey) when fed the same forage diet. RESULTS Fecal community composition of prokaryotes and anaerobic fungi significantly differed between equine types. The relative abundance of two bacterial genera was significantly higher in donkey compared to both pony and pony x donkey: Lachnoclostridium 10 and 'probable genus 10' from the Lachnospiraceae family. The relative abundance of Piromyces was significantly lower in donkey compared to pony × donkey, with pony not significantly differing from either of the other equine types. In contrast, the uncultivated genus SK3 was only found in donkey (4 of the 8 animals). The number of anaerobic fungal OTUs was also significantly higher in donkey than in the other two equine types, with no significant differences found between pony and pony × donkey. Equine types did not significantly differ with respect to prokaryotic alpha diversity, fecal dry matter content or fecal concentrations of bacteria, archaea and anaerobic fungi. CONCLUSIONS Donkey fecal microbiota differed from that of both pony and pony × donkey. These differences related to a higher relative abundance and diversity of taxa with known, or speculated, roles in plant material degradation. These findings are consistent with the previously reported increased fiber degradation in donkeys compared to ponies, and suggest that the hindgut microbiota plays a role. This offers novel opportunities for pony and pony × donkey to extract more energy from dietary fiber via microbial mediated strategies. This could potentially decrease the need for energy dense feeds which are a risk factor for gut-mediated disease.
Collapse
Affiliation(s)
- J. E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
| | - A. Schennink
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
- Present address: Micreos Human Health B.V, Bilthoven, Netherlands
| | - F. Burden
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - S. Long
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - D. A. van Doorn
- Division of Nutrition, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, Netherlands
- Department of Equine Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, Netherlands
| | - W. F. Pellikaan
- Animal Nutrition Group, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - J. Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - E. Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - H. Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
| |
Collapse
|
7
|
Wang H, Li P, Liu X, Zhang C, Lu Q, Xi D, Yang R, Wang S, Bai W, Yang Z, Zhou R, Cheng X, Leng J. The Composition of Fungal Communities in the Rumen of Gayals ( Bos frontalis), Yaks ( Bos grunniens), and Yunnan and Tibetan Yellow Cattle ( Bos taurs). Pol J Microbiol 2019; 68:505-514. [PMID: 31880894 PMCID: PMC7260705 DOI: 10.33073/pjm-2019-050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/14/2022] Open
Abstract
The rumen is a microbial-rich ecosystem in which rumen fungi play an important role in the feed digestion of ruminants. The composition of rumen fungi in free-range ruminants such as gayals, yaks, Tibetan yellow cattle, and the domesticated Yunnan yellow cattle was investigated by sequencing an internal transcribed spacer region 1 (ITS1) using Illumina MiSeq. A total of 285 092 optimized sequences and 904 operational taxonomic units (OTUs) were obtained from the four cattle breeds. The rumen fungi abundance and Chao and Simpson indexes were all higher in free-range ruminants than in domesticated ruminants. Three fungal phyla were identified by sequence comparison: Neocallimastigomycota, Basidiomycota, and Ascomycota. Basidiomycota and Ascomycota have very low abundance in the rumen of four breeds cattle but anaerobic fungi (AF) Neocallimastigomycota occurred in a high abundance. In Neocallimastigomycota, the dominant genera were Piromyces, Anaeromyces, Cyllamyces, Neocallimastix, and Orpionmyces in four cattle breeds. The composition of the major genera of Neocallimastigaceae varied greatly among the four cattle breeds. The unclassified genera were unequally distributed in gayals, yaks, Tibetan and Yunnan yellow cattle, accounting for 90.63%, 98.52%, 97.79%, and 27.01% respectively. It appears that free-range ruminants have more unknown rumen fungi than domesticated ruminants and the cattle breeds and animal diets had an impact on the diversity of rumen fungi.
Collapse
Affiliation(s)
- Houfu Wang
- Key Laboratory of Animal and Feed Science of Yunnan Provincial, Yunnan Agricultural University , Kunming , China
| | - Pengfei Li
- Key Laboratory of Animal and Feed Science of Yunnan Provincial, Yunnan Agricultural University , Kunming , China
| | - Xuchuan Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming , China
| | - Chunyong Zhang
- Key Laboratory of Animal and Feed Science of Yunnan Provincial, Yunnan Agricultural University , Kunming , China ; Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming , China
| | - Qiongfen Lu
- Key Laboratory of Animal and Feed Science of Yunnan Provincial, Yunnan Agricultural University , Kunming , China ; Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming , China
| | - Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming , China
| | - Renhui Yang
- Key Laboratory of Animal and Feed Science of Yunnan Provincial, Yunnan Agricultural University , Kunming , China
| | - Shuling Wang
- Key Laboratory of Animal and Feed Science of Yunnan Provincial, Yunnan Agricultural University , Kunming , China
| | - Wenshun Bai
- Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming , China
| | - Zhen Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming , China
| | - Rongkang Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming , China
| | - Xiao Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming , China
| | - Jing Leng
- Key Laboratory of Animal and Feed Science of Yunnan Provincial, Yunnan Agricultural University , Kunming , China ; Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming , China
| |
Collapse
|
8
|
Saminathan M, Kumari Ramiah S, Gan HM, Abdullah N, Wong CMVL, Ho YW, Idrus Z. In vitro study on the effects of condensed tannins of different molecular weights on bovine rumen fungal population and diversity. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1681304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Suriya Kumari Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Norhani Abdullah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Yin Wan Ho
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zulkifli Idrus
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
9
|
Langer SG, Gabris C, Einfalt D, Wemheuer B, Kazda M, Bengelsdorf FR. Different response of bacteria, archaea and fungi to process parameters in nine full-scale anaerobic digesters. Microb Biotechnol 2019; 12:1210-1225. [PMID: 30995692 PMCID: PMC6801161 DOI: 10.1111/1751-7915.13409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2019] [Accepted: 03/29/2019] [Indexed: 01/20/2023] Open
Abstract
Biogas production is a biotechnological process realized by complex bacterial, archaeal and likely fungal communities. Their composition was assessed in nine full-scale biogas plants with distinctly differing feedstock input and process parameters. This study investigated the actually active microbial community members by using a comprehensive sequencing approach based on ribosomal 16S and 28S rRNA fragments. The prevailing taxonomical units of each respective community were subsequently linked to process parameters. Ribosomal rRNA of bacteria, archaea and fungi, respectively, showed different compositions with respect to process parameters and supplied feedstocks: (i) bacterial communities were affected by the key factors temperature and ammonium concentration; (ii) composition of archaea was mainly related to process temperature; and (iii) relative abundance of fungi was linked to feedstocks supplied to the digesters. Anaerobic digesters with a high methane yield showed remarkably similar bacterial communities regarding identified taxonomic families. Although archaeal communities differed strongly on genus level from each other, the respective digesters still showed high methane yields. Functional redundancy of the archaeal communities may explain this effect. 28S rRNA sequences of fungi in all nine full-scale anaerobic digesters were primarily classified as facultative anaerobic Ascomycota and Basidiomycota. Since the presence of ribosomal 28S rRNA indicates that fungi may be active in the biogas digesters, further research should be carried out to examine to which extent they are important players in anaerobic digestion processes.
Collapse
MESH Headings
- Anaerobiosis
- Archaea/classification
- Archaea/genetics
- Archaea/growth & development
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/growth & development
- Biofuels
- Bioreactors/microbiology
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fungi/classification
- Fungi/genetics
- Fungi/growth & development
- Manure/microbiology
- Metagenomics
- Microbiota
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 28S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
| | - Christina Gabris
- Institute of Microbiology and BiotechnologyUlm UniversityUlmGermany
- Present address:
Bühlmann Laboratories AGSchönenbuchSwitzerland
| | - Daniel Einfalt
- Institute of Systematic Botany and EcologyUlm UniversityUlmGermany
- Present address:
Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| | - Bernd Wemheuer
- Genomic and Applied Microbiology & Göttingen Genomics LaboratoryGeorg‐August University GöttingenGöttingenGermany
| | - Marian Kazda
- Institute of Systematic Botany and EcologyUlm UniversityUlmGermany
| | | |
Collapse
|
10
|
Wang XW, Benoit I, Groenewald JZ, Houbraken J, Dai X, Peng M, Yang X, Han DY, Gao C, Guo LD. Community dynamics of Neocallimastigomycetes in the rumen of yak feeding on wheat straw revealed by different primer sets. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Brown N, Güttler J, Shilton A. Probiotic effects of anaerobic co-digestion substrates. ENVIRONMENTAL TECHNOLOGY 2019; 40:2455-2459. [PMID: 29465006 DOI: 10.1080/09593330.2018.1444097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
Manure is often added to stabilise anaerobic digesters especially when co-digesting high-energy substrates such as whey. While different researchers have attributed its beneficial effect to various components including alkalinity, nutrients or trace elements this research instead aimed to determine whether microorganisms, such as lactic acid bacteria which are naturally present in the feedstocks, were having a notable beneficial effect on biogas production. Casein whey and cow manure were co-digested with primary sludge and produced 151.1% biogas compared to the control reactor digesting primary sludge alone. It was found that targeting the microorganisms in the manure via autoclaving decreased reactor performance to only 112.8% compared to the control potentially indicating that the manure is providing a probiotic effect. It was also found that storing casein whey (which is needed to balance out its seasonal production peaks) produces microorganisms that play a similarly important role as evidenced by the decrease in performance from 151.1% to 112.9% when they were removed via filtration.
Collapse
Affiliation(s)
- Nicola Brown
- a School of Engineering and Advanced Technology, Massey University , Wellington , New Zealand
| | - Johanna Güttler
- a School of Engineering and Advanced Technology, Massey University , Wellington , New Zealand
| | - Andy Shilton
- a School of Engineering and Advanced Technology, Massey University , Wellington , New Zealand
| |
Collapse
|
12
|
Mura E, Edwards J, Kittelmann S, Kaerger K, Voigt K, Mrázek J, Moniello G, Fliegerova K. Anaerobic fungal communities differ along the horse digestive tract. Fungal Biol 2018; 123:240-246. [PMID: 30798879 DOI: 10.1016/j.funbio.2018.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/23/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Anaerobic fungi are potent fibre degrading microbes in the equine hindgut, yet our understanding of their diversity and community structure is limited to date. In this preliminary work, using a clone library approach we studied the diversity of anaerobic fungi along six segments of the horse hindgut: caecum, right ventral colon (RVC), left ventral colon (LVC), left dorsal colon (LDC), right dorsal colon (RDC) and rectum. Of the 647 ITS1 clones, 61.7 % were assigned to genus level groups that are so far without any cultured representatives, and 38.0 % were assigned to the cultivated genera Neocallimastix (35.1 %), Orpinomyces (2.3 %), and Anaeromyces (0.6 %). AL1 dominated the group of uncultured anaerobic fungi, particularly in the RVC (88 %) and LDC (97 %). Sequences from the LSU clone library analysis of the LDC, however, split into two distinct phylogenetic clusters with low sequence identity to Caecomyces sp. (94-96 %) and Liebetanzomyces sp. (92 %) respectively. Sequences belonging to cultured Neocallimastix spp. dominated in LVC (81 %) and rectum (75.5 %). Quantification of anaerobic fungi showed significantly higher concentrations in RVC and RDC compared to other segments, which influenced the interpretation of the changes in anaerobic fungal diversity along the horse hindgut. These preliminary findings require further investigation.
Collapse
Affiliation(s)
- Erica Mura
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Joan Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands
| | - Sandra Kittelmann
- Wilmar International Ltd., Wil@NUS Corporate Lab, National University of Singapore, Singapore 117599, Singapore
| | - Kerstin Kaerger
- Institute of Microbiology, University of Jena, Neugasse 25, 07743 Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Jena Microbial Resource Collection, Adolf-Reichwein-Str. 23, 07745 Jena, Germany
| | - Kerstin Voigt
- Institute of Microbiology, University of Jena, Neugasse 25, 07743 Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Jena Microbial Resource Collection, Adolf-Reichwein-Str. 23, 07745 Jena, Germany
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics, CAS, Vídeňská 1083, Prague 14220, Czech Republic
| | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics, CAS, Vídeňská 1083, Prague 14220, Czech Republic.
| |
Collapse
|
13
|
Young D, Dollhofer V, Callaghan TM, Reitberger S, Lebuhn M, Benz JP. Isolation, identification and characterization of lignocellulolytic aerobic and anaerobic fungi in one- and two-phase biogas plants. BIORESOURCE TECHNOLOGY 2018; 268:470-479. [PMID: 30114666 DOI: 10.1016/j.biortech.2018.07.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Aerobic and anaerobic fungi are among the most effective plant biomass degraders known and have high potential to increase the efficiency of lignocellulosic biomass utilization, such as for biogas generation. However, limited information is available on their contribution to such industrial processes. Therefore, the presence of fungi along the biogas production chain of one-phase and two-phase biogas plants in Germany was analyzed. Seventeen aerobic species of Zygomycota, Ascomycota and Basidiomycota were identified, including efficient producers of lignocellulases, such as Trichoderma capillare isolated from a hydrolysis tank and Coprinopsis cinerea from fibers separated from pressed digestate. Five anaerobic fungal species of the phylum Neocallimastigomycota (comprising two novel clades) were present in an slightly acidic fermenter of a biogas plant fed with cow manure displaying endoglucanase transcriptional activity. The broad fungal presence demonstrated in this study can serve developing bioaugmentation systems with relevant lignocellulolytic fungi to improve biogas production from recalcitrant fiber material.
Collapse
Affiliation(s)
- Diana Young
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, Holzforschung München, 85354 Freising, Germany
| | - Veronika Dollhofer
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - Tony Martin Callaghan
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - Stefan Reitberger
- INNOVAS GbR Innovative Energie- und Umwelttechnik, 80939 Munich, Germany
| | - Michael Lebuhn
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - J Philipp Benz
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Holzforschung München, 85354 Freising, Germany.
| |
Collapse
|
14
|
Matthews C, Crispie F, Lewis E, Reid M, O’Toole PW, Cotter PD. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2018; 10:115-132. [PMID: 30207838 PMCID: PMC6546327 DOI: 10.1080/19490976.2018.1505176] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/08/2018] [Accepted: 06/26/2018] [Indexed: 02/03/2023] Open
Abstract
Methane is generated in the foregut of all ruminant animals by the microorganisms present. Dietary manipulation is regarded as the most effective and most convenient way to reduce methane emissions (and in turn energy loss in the animal) and increase nitrogen utilization efficiency. This review examines the impact of diet on bovine rumen function and outlines what is known about the rumen microbiome. Our understanding of this area has increased significantly in recent years due to the application of omics technologies to determine microbial composition and functionality patterns in the rumen. This information can be combined with data on nutrition, rumen physiology, nitrogen excretion and/or methane emission to provide comprehensive insights into the relationship between rumen microbial activity, nitrogen utilisation efficiency and methane emission, with an ultimate view to the development of new and improved intervention strategies.
Collapse
Affiliation(s)
- Chloe Matthews
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Eva Lewis
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Michael Reid
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Xue D, Chen H, Luo X, Guan J, He Y, Zhao X. Microbial diversity in the rumen, reticulum, omasum, and abomasum of yak on a rapid fattening regime in an agro-pastoral transition zone. J Microbiol 2018; 56:734-743. [PMID: 30136259 DOI: 10.1007/s12275-018-8133-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 11/26/2022]
Abstract
The ruminant digestive system harbors a complex gut microbiome, which is poorly understood in the case of the four stomach compartments of yak. High-throughput sequencing and quantitative PCR were used to analyse microbial communities in the rumen, reticulum, omasum, and abomasum of six domesticated yak. The diversity of prokaryotes was higher in reticulum and omasum than in rumen and abomasum. Bacteroidetes predominated in the four stomach compartments, with abundance gradually decreasing in the trend rumen > reticulum > omasum > abomasum. Microorganism composition was different among the four compartments, all of which contained high levels of bacteria, methanogens, protozoa and anaerobic fungi. Some prokaryotic genera were associated with volatile fatty acids and pH. This study provides the first insights into the microorganism composition of four stomach compartments in yak, and may provide a foundation for future studies in this area.
Collapse
Affiliation(s)
- Dan Xue
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, P. R. China
| | - Huai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, P. R. China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu, 611731, P. R. China.
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu, 611731, P. R. China
| | - Yixin He
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, P. R. China
| | - Xinquan Zhao
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, P. R. China
| |
Collapse
|
16
|
Schulz D, Qablan MA, Profousova-Psenkova I, Vallo P, Fuh T, Modry D, Piel AK, Stewart F, Petrzelkova KJ, Fliegerová K. Anaerobic Fungi in Gorilla (Gorilla gorilla gorilla) Feces: an Adaptation to a High-Fiber Diet? INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0052-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, Chang J, Kittelmann S, Fliegerova K, Puniya AK, Henske JK, Gilmore SP, O'Malley MA, Griffith GW, Smidt H. PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities. Front Microbiol 2017; 8:1657. [PMID: 28993761 PMCID: PMC5622200 DOI: 10.3389/fmicb.2017.01657] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.
Collapse
Affiliation(s)
- Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| | - Robert J. Forster
- Lethbridge Research and Development Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Tony M. Callaghan
- Department for Quality Assurance and Analytics, Bavarian State Research Center for AgricultureFreising, Germany
| | - Veronika Dollhofer
- Department for Quality Assurance and Analytics, Bavarian State Research Center for AgricultureFreising, Germany
| | | | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural UniversityNanjing, China
| | - Jongsoo Chang
- Department of Agricultural Science, Korea National Open UniversitySeoul, South Korea
| | - Sandra Kittelmann
- Grasslands Research Centre, AgResearch Ltd.Palmerston North, New Zealand
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics, Czech Academy of SciencesPrague, Czechia
| | - Anil K. Puniya
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
- Dairy Microbiology Division, ICAR-National Dairy Research InstituteKarnal, India
| | - John K. Henske
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Sean P. Gilmore
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Gareth W. Griffith
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| |
Collapse
|
18
|
Kittelmann S, Manohar CS, Kearney R, Natvig DO, Gleason FH. Chapter 18 Adaptations of Fungi and Fungal-Like Organisms for Growth under Reduced Dissolved Oxygen Concentrations. Mycology 2017. [DOI: 10.1201/9781315119496-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Gleason FH, Scholz B, Jephcott TG, van Ogtrop FF, Henderson L, Lilje O, Kittelmann S, Macarthur DJ. Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0038-2016. [PMID: 28361735 PMCID: PMC11687468 DOI: 10.1128/microbiolspec.funk-0038-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Indexed: 12/25/2022] Open
Abstract
The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.
Collapse
Affiliation(s)
- Frank H Gleason
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Bettina Scholz
- Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Nordurslod, IS 600 Akureyri, Iceland
- BioPol ehf., Einbúastig 2, 545 Skagaströnd, Iceland
| | - Thomas G Jephcott
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Floris F van Ogtrop
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Linda Henderson
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Osu Lilje
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Sandra Kittelmann
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Deborah J Macarthur
- School of Science, Faculty of Health Sciences, Australian Catholic University, NSW 2059, Australia
| |
Collapse
|
20
|
Wang X, Liu X, Groenewald JZ. Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Antonie van Leeuwenhoek 2016; 110:87-103. [PMID: 27734254 PMCID: PMC5222902 DOI: 10.1007/s10482-016-0779-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022]
Abstract
The phylum Neocallimastigomycota contains eight genera (about 20 species) of strictly anaerobic fungi. The evolutionary relationships of these genera are uncertain due to insufficient sequence data to infer their phylogenies. Based on morphology and molecular phylogeny, thirteen isolates obtained from yak faeces and rumen digesta in China were assigned to Neocallimastix frontalis (nine isolates), Orpinomyces joyonii (two isolates) and Caecomyces sp. (two isolates), respectively. The phylogenetic relationships of the eight genera were evaluated using complete ITS and partial LSU sequences, compared to the ITS1 region which has been widely used in this phylum in the past. Five monophyletic lineages corresponding to six of the eight genera were statistically supported. Isolates of Caecomyces and Cyllamyces were present in a single lineage and could not be separated properly. Members of Neocallimastigomycota with uniflagellate zoospores represented by Piromyces were polyphyletic. The Piromyces-like genus Oontomyces was consistently closely related to the traditional Anaeromyces, and separated the latter genus into two clades. The phylogenetic position of the Piromyces-like genus Buwchfawromyces remained unresolved. Orpinomyces and Neocallimastix, sharing polyflagellate zoospores, were supported as sister genera in the LSU phylogeny. Apparently ITS, specifically ITS1 alone, is not a good marker to resolve the generic affinities of the studied fungi. The LSU sequences are easier to align and appear to work well to resolve generic relationships. This study provides a comparative phylogenetic revision of Neocallimastigomycota isolates known from culture and sequence data.
Collapse
Affiliation(s)
- Xuewei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China.,CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Johannes Z Groenewald
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
21
|
Sun R, Dsouza M, Gilbert JA, Guo X, Wang D, Guo Z, Ni Y, Chu H. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environ Microbiol 2016; 18:5137-5150. [PMID: 27581342 DOI: 10.1111/1462-2920.13512] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/17/2016] [Accepted: 08/26/2016] [Indexed: 11/29/2022]
Abstract
Organic matter application is a widely used practice to increase soil carbon content and maintain soil fertility. However, little is known about the effect of different types of organic matter, or the input of exogenous species from these materials, on soil fungal communities. In this study, fungal community composition was characterized from soils amended with three types of organic matter over a 30-year fertilization experiment. Chemical fertilization significantly changed soil fungal community composition and structure, which was exacerbated by the addition of organic matter, with the direction of change influenced by the type of organic matter used. The addition of organic matter significantly increased soil fungal richness, with the greatest richness achieved in soils amended with pig manure. Importantly, following addition of cow and pig manure, fungal taxa associated with these materials could be found in the soil, suggesting that these exogenous species can augment soil fungal composition. Moreover, the addition of organic matter decreased the relative abundance of potential pathogenic fungi. Overall, these results indicate that organic matter addition influences the composition and structure of soil fungal communities in predictable ways.
Collapse
Affiliation(s)
- Ruibo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Melissa Dsouza
- Marine Biological Laboratory, University of Chicago, Woods Hole, MA, 02543, USA.,Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Jack A Gilbert
- Marine Biological Laboratory, University of Chicago, Woods Hole, MA, 02543, USA.,Department of Surgery, University of Chicago, Chicago, IL, 60637, USA.,Argonne National Laboratory, Institute for Genomics and Systems Biology, Argonne, IL, 60439, USA
| | - Xisheng Guo
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, South Nongke Road 40, Hefei, 230031, China
| | - Daozhong Wang
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, South Nongke Road 40, Hefei, 230031, China
| | - Zhibin Guo
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, South Nongke Road 40, Hefei, 230031, China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| |
Collapse
|
22
|
|
23
|
|
24
|
Kumar S, Indugu N, Vecchiarelli B, Pitta DW. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol 2015; 6:781. [PMID: 26284058 PMCID: PMC4521595 DOI: 10.3389/fmicb.2015.00781] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/16/2015] [Indexed: 11/13/2022] Open
Abstract
The rumen microbiome represents a complex microbial genetic web where bacteria, anaerobic rumen fungi (ARF), protozoa and archaea work in harmony contributing to the health and productivity of ruminants. We hypothesized that the rumen microbiome shifts as the dairy cow advances in lactations and these microbial changes may contribute to differences in productivity between primiparous (first lactation) and multiparous (≥second lactation) cows. To this end, we investigated shifts in the ruminal ARF and methanogenic communities in both primiparous (n = 5) and multiparous (n = 5) cows as they transitioned from a high forage to a high grain diet upon initiation of lactation. A total of 20 rumen samples were extracted for genomic DNA, amplified using archaeal and fungal specific primers, sequenced on a 454 platform and analyzed using QIIME. Community comparisons (Bray-Curtis index) revealed the effect of diet (P < 0.01) on ARF composition, while archaeal communities differed between primiparous and multiparous cows (P < 0.05). Among ARF, several lineages were unclassified, however, phylum Neocallimastigomycota showed the presence of three known genera. Abundance of Cyllamyces and Caecomyces shifted with diet, whereas Orpinomyces was influenced by both diet and age. Methanobrevibacter constituted the most dominant archaeal genus across all samples. Co-occurrence analysis incorporating taxa from bacteria, ARF and archaea revealed syntrophic interactions both within and between microbial domains in response to change in diet as well as age of dairy cows. Notably, these interactions were numerous and complex in multiparous cows, supporting our hypothesis that the rumen microbiome also matures with age to sustain the growing metabolic needs of the host. This study provides a broader picture of the ARF and methanogenic populations in the rumen of dairy cows and their co-occurrence implicates specific relationships between different microbial domains in response to diet and age.
Collapse
Affiliation(s)
- Sanjay Kumar
- Agriculture Systems and Microbial Genomics Laboratory, Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Nagaraju Indugu
- Agriculture Systems and Microbial Genomics Laboratory, Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Bonnie Vecchiarelli
- Agriculture Systems and Microbial Genomics Laboratory, Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Dipti W Pitta
- Agriculture Systems and Microbial Genomics Laboratory, Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| |
Collapse
|
25
|
Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerová K. Anaerobic Fungi and Their Potential for Biogas Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:41-61. [PMID: 26337843 DOI: 10.1007/978-3-319-21993-6_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plant biomass is the largest reservoir of environmentally friendly renewable energy on earth. However, the complex and recalcitrant structure of these lignocellulose-rich substrates is a severe limitation for biogas production. Microbial pro-ventricular anaerobic digestion of ruminants can serve as a model for improvement of converting lignocellulosic biomass into energy. Anaerobic fungi are key players in the digestive system of various animals, they produce a plethora of plant carbohydrate hydrolysing enzymes. Combined with the invasive growth of their rhizoid system their contribution to cell wall polysaccharide decomposition may greatly exceed that of bacteria. The cellulolytic arsenal of anaerobic fungi consists of both secreted enzymes, as well as extracellular multi-enzyme complexes called cellulosomes. These complexes are extremely active, can degrade both amorphous and crystalline cellulose and are probably the main reason of cellulolytic efficiency of anaerobic fungi. The synergistic use of mechanical and enzymatic degradation makes anaerobic fungi promising candidates to improve biogas production from recalcitrant biomass. This chapter presents an overview about their biology and their potential for implementation in the biogas process.
Collapse
Affiliation(s)
- Veronika Dollhofer
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Micro- and Molecular Biology, Lange Point 6, 85354, Freising, Germany,
| | | | | | | | | |
Collapse
|
26
|
Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 2014; 90:1-17. [PMID: 25046344 DOI: 10.1111/1574-6941.12383] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/05/2023] Open
Abstract
Anaerobic fungi (phylum Neocallimastigomycota) inhabit the gastrointestinal tract of mammalian herbivores, where they play an important role in the degradation of plant material. The Neocallimastigomycota represent the earliest diverging lineage of the zoosporic fungi; however, understanding of the relationships of the different taxa (both genera and species) within this phylum is in need of revision. Issues exist with the current approaches used for their identification and classification, and recent evidence suggests the presence of several novel taxa (potential candidate genera) that remain to be characterised. The life cycle and role of anaerobic fungi has been well characterised in the rumen, but not elsewhere in the ruminant alimentary tract. Greater understanding of the 'resistant' phase(s) of their life cycle is needed, as is study of their role and significance in other herbivores. Biotechnological application of anaerobic fungi, and their highly active cellulolytic and hemi-cellulolytic enzymes, has been a rapidly increasing area of research and development in the last decade. The move towards understanding of anaerobic fungi using -omics based (genomic, transcriptomic and proteomic) approaches is starting to yield valuable insights into the unique cellular processes, evolutionary history, metabolic capabilities and adaptations that exist within the Neocallimastigomycota.
Collapse
|
27
|
Liu Y, Tan H, Deng Q, Cao L. Characterization of fibrolytic and lipid accumulating fungi isolated from fresh cattle feces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9228-9233. [PMID: 24710729 DOI: 10.1007/s11356-014-2846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
To characterize coprophilous fungi for converting lignocellulose into lipids, four fungal strains utilizing cellulose microcrystalline and xylan were screened. The fungi were identified as Cladosporium sp. F1, Circinella sp. F6, Mycocladus sp. F49, and Byssochlamys sp. F52 based on the ITS1-5.8S-ITS2 sequence similarity. The strain F52 accumulated 336.0 mg/L reducing sugars on cottonseed shells treated with ethanol. The combination of F1+F52 increased the reducing sugar accumulating rates. However, the activities of avicelase and xylanase were not correlated with the reducing sugars accumulated by the test strains. Strains F6 and F52 produced higher cellular lipids (above 530.7 mg/L) than other strains. However, the strain F52 could produce more cellular lipids with xylose and mannose as the sole carbon sources. The results indicated that the reducing sugar contents accumulated by the different strains were influenced by the fungal taxa and ligocellulosic types. With fibrolytic and lipid accumulating activities, diverse fungi harboring in herbivore feces need to be further characterized.
Collapse
Affiliation(s)
- Yupei Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota). PLoS One 2014; 9:e91928. [PMID: 24663345 PMCID: PMC3963862 DOI: 10.1371/journal.pone.0091928] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 02/17/2014] [Indexed: 11/20/2022] Open
Abstract
The internal transcribed spacer (ITS) is a popular barcode marker for fungi and in particular the ITS1 has been widely used for the anaerobic fungi (phylum Neocallimastigomycota). A good number of validated reference sequences of isolates as well as a large number of environmental sequences are available in public databases. Its highly variable nature predisposes the ITS1 for low level phylogenetics; however, it complicates the establishment of reproducible alignments and the reconstruction of stable phylogenetic trees at higher taxonomic levels (genus and above). Here, we overcame these problems by proposing a common core secondary structure of the ITS1 of the anaerobic fungi employing a Hidden Markov Model-based ITS1 sequence annotation and a helix-wise folding approach. We integrated the additional structural information into phylogenetic analyses and present for the first time an automated sequence-structure-based taxonomy of the ITS1 of the anaerobic fungi. The methodology developed is transferable to the ITS1 of other fungal groups, and the robust taxonomy will facilitate and improve high-throughput anaerobic fungal community structure analysis of samples from various environments.
Collapse
|
29
|
Sirohi SK, Choudhury PK, Puniya AK, Singh D, Dagar SS, Singh N. Ribosomal ITS1 sequence-based diversity analysis of anaerobic rumen fungi in cattle fed on high fiber diet. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0620-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
30
|
Bengelsdorf FR, Gerischer U, Langer S, Zak M, Kazda M. Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues. FEMS Microbiol Ecol 2012; 84:201-12. [DOI: 10.1111/1574-6941.12055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/07/2012] [Accepted: 12/02/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Ulrike Gerischer
- Theoretical and Computational Biophysics Department; Max Planck Institute for Biophysical Chemistry; Göttingen; Germany
| | - Susanne Langer
- Institute for Microbiology and Biotechnology; University of Ulm; Ulm; Germany
| | - Manuel Zak
- Institute for Systematic Botany and Ecology; University of Ulm; Ulm; Germany
| | - Marian Kazda
- Institute for Systematic Botany and Ecology; University of Ulm; Ulm; Germany
| |
Collapse
|
31
|
Boots B, Lillis L, Clipson N, Petrie K, Kenny DA, Boland TM, Doyle E. Responses of anaerobic rumen fungal diversity (phylum Neocallimastigomycota) to changes in bovine diet. J Appl Microbiol 2012; 114:626-35. [PMID: 23163953 DOI: 10.1111/jam.12067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/12/2012] [Accepted: 11/10/2012] [Indexed: 12/25/2022]
Abstract
AIMS Anaerobic rumen fungi (Neocallimastigales) play important roles in the breakdown of complex, cellulose-rich material. Subsequent decomposition products are utilized by other microbes, including methanogens. The aim of this study was to determine the effects of dietary changes on anaerobic rumen fungi diversity. METHODS AND RESULTS Altered diets through increasing concentrate/forage (50 : 50 vs 90 : 10) ratios and/or the addition of 6% soya oil were offered to steers and the Neocallimastigales community was assessed by PCR-based fingerprinting with specific primers within the barcode region. Both a decrease in fibre content and the addition of 6% soya oil affected Neocallimastigales diversity within solid and liquid rumen phases. The addition of 6% soya oil decreased species richness. Assemblages were strongly affected by the addition of 6% soya oil, whereas unexpectedly, the fibre decrease had less effect. Differences in volatile fatty acid contents (acetate, propionate and butyrate) were significantly associated with changes in Neocallimastigales assemblages between the treatments. CONCLUSIONS Diet clearly influences Neocallimastigales assemblages. The data are interpreted in terms of interactions with other microbial groups involved in fermentation processes within the rumen. SIGNIFICANCE AND IMPACT OF THE STUDY Knowledge on the influence of diet on anaerobic fungi is necessary to understand changes in microbial processes occurring within the rumen as this may impact on other rumen processes such as methane production.
Collapse
Affiliation(s)
- B Boots
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Science Institute, University College Dublin, Belfield, Ireland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0577-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Sirohi SK, Singh N, Dagar SS, Puniya AK. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 2012; 95:1135-54. [PMID: 22782251 DOI: 10.1007/s00253-012-4262-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 12/30/2022]
Abstract
Rumen microbial community comprising of bacteria, archaea, fungi, and protozoa is characterized not only by the high population density but also by the remarkable diversity and the most complex microecological interactions existing in the biological world. This unprecedented biodiversity is quite far from full elucidation as only about 15-20 % of the rumen microbes are identified and characterized till date using conventional culturing and microscopy. However, the last two decades have witnessed a paradigm shift from cumbersome and time-consuming classical methods to nucleic acid-based molecular approaches for deciphering the rumen microbial community. These techniques are rapid, reproducible and allow both the qualitative and quantitative assessment of microbial diversity. This review describes the different molecular methods and their applications in elucidating the rumen microbial community.
Collapse
Affiliation(s)
- Sunil Kumar Sirohi
- Nutrition Biotechnology Laboratory, Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | | | | | | |
Collapse
|
34
|
Kittelmann S, Naylor GE, Koolaard JP, Janssen PH. A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS One 2012; 7:e36866. [PMID: 22615827 PMCID: PMC3353986 DOI: 10.1371/journal.pone.0036866] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/14/2012] [Indexed: 01/21/2023] Open
Abstract
Anaerobic fungi are key players in the breakdown of fibrous plant material in the rumen, but not much is known about the composition and stability of fungal communities in ruminants. We analyzed anaerobic fungi in 53 rumen samples from farmed sheep (4 different flocks), cattle, and deer feeding on a variety of diets. Denaturing gradient gel electrophoresis fingerprinting of the internal transcribed spacer 1 (ITS1) region of the rrn operon revealed a high diversity of anaerobic fungal phylotypes across all samples. Clone libraries of the ITS1 region were constructed from DNA from 11 rumen samples that had distinctly different fungal communities. A total of 417 new sequences were generated to expand the number and diversity of ITS1 sequences available. Major phylogenetic groups of anaerobic fungi in New Zealand ruminants belonged to the genera Piromyces, Neocallimastix, Caecomyces and Orpinomyces. In addition, sequences forming four novel clades were obtained, which may represent so far undetected genera or species of anaerobic fungi. We propose a revised phylogeny and pragmatic taxonomy for anaerobic fungi, which was tested and proved suitable for analysis of datasets stemming from high-throughput next-generation sequencing methods. Comparing our revised taxonomy to the taxonomic assignment of sequences deposited in the GenBank database, we believe that >29% of ITS1 sequences derived from anaerobic fungal isolates or clones are misnamed at the genus level.
Collapse
Affiliation(s)
- Sandra Kittelmann
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Graham E. Naylor
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - John P. Koolaard
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H. Janssen
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
35
|
Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, van der Giezen M, Voigt K, Beakes G. Anaerobic fungi: Neocallimastigomycota. IMA Fungus 2010; 1:181-5. [PMID: 22679578 PMCID: PMC3348783 DOI: 10.5598/imafungus.2010.01.02.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 11/20/2010] [Indexed: 11/11/2022] Open
Abstract
This contribution is based on the six oral presentations given at the Special Interest Group session on anaerobic fungi held during IMC9. These fungi, recently elevated to the status of a separate phylum (Neocallimastigomycota), distinct from the chytrid fungi, possess several unique traits that make their study both fascinating yet challenging to mycologists. There are several genome sequencing programs underway in the US but these are hampered by the highly AT-rich genomes. Next-generation sequencing has also allowed more detailed investigation of the ecology and diversity of these fungi, and it is apparent that several new taxa beyond the six genera already named exist within the digestive tracts of mammalian herbivores, with others potentially inhabiting other anaerobic niches. By increased collaboration between the various labs studying these fungi, it is hoped to develop a stable taxonomic backbone for these fungi and to facilitate exchange of both cultures and genetic data.
Collapse
|