1
|
Dvorak O, Ndukwe M, Slavickova M, Laco J, Spacek J. DNA methylation of selected tumor suppressor genes in endometrial hyperplasia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:68-73. [PMID: 36628559 DOI: 10.5507/bp.2022.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
AIMS To investigate DNA methylation of specific gene promoters in endometrial hyperplasia compared to normal endometrial tissue. MATERIALS AND METHODS To search for epigenetic events, methylation-specific multiplex ligation-dependent probe amplification was employed to compare the methylation status of 64 tissue samples with atypical endometrial hyperplasia, 60 tissue samples with endometrial hyperplasia without atypia, and 40 control tissue samples with normal endometrium. RESULTS Differences in DNA methylation among the groups were found in PTEN, CDH13, and MSH6 promoters (PTEN: atypical hyperplasia 32%, benign hyperplasia 6.8%, normal endometrium 10%; P=0.004; CDH13: atypical hyperplasia, 50%; benign hyperplasia, 43%; normal endometrium 8.1%; P=0.003; MSH6 atypical hyperplasia 84%, benign hyperplasia, 62%; normal endometrium, 52%; P=0.008.) Higher rates of CDH13 promoter methylation were identified in the groups with both forms of endometrial hyperplasia when compared to the control group (atypical hyperplasia, P=0.003, benign hyperplasia, P=0.0002). A higher rate of DNA methylation of the PTEN and MSH6 promoters was observed in samples with atypical endometrial hyperplasia than in samples with benign endometrial hyperplasia (PTEN: P=0.02; MSH6: P=0.01) and samples with normal endometrial tissue (PTEN, P=0.04; MSH6, P=0.006). CONCLUSION DNA methylation of CDH13, PTEN, and MSH6 appear to be involved in the development of endometrial hyperplasia.
Collapse
Affiliation(s)
- Ondrej Dvorak
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Munachiso Ndukwe
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Marcela Slavickova
- Department of Clinical Biochemistry and Diagnostics and Osteocenter, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Jiri Spacek
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Nascente EDP, Amorim RL, Fonseca-Alves CE, de Moura VMBD. Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions. Cancers (Basel) 2022; 14:2727. [PMID: 35681707 PMCID: PMC9179314 DOI: 10.3390/cancers14112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
First described in 1817, prostate cancer is considered a complex neoplastic entity, and one of the main causes of death in men in the western world. In dogs, prostatic carcinoma (PC) exhibits undifferentiated morphology with different phenotypes, is hormonally independent of aggressive character, and has high rates of metastasis to different organs. Although in humans, the risk factors for tumor development are known, in dogs, this scenario is still unclear, especially regarding castration. Therefore, with the advent of molecular biology, studies were and are carried out with the aim of identifying the main molecular mechanisms and signaling pathways involved in the carcinogenesis and progression of canine PC, aiming to identify potential biomarkers for diagnosis, prognosis, and targeted treatment. However, there are extensive gaps to be filled, especially when considering the dog as experimental model for the study of this neoplasm in humans. Thus, due to the complexity of the subject, the objective of this review is to present the main pathobiological aspects of canine PC from a comparative point of view to the same neoplasm in the human species, addressing the historical context and current understanding in the scientific field.
Collapse
Affiliation(s)
- Eduardo de Paula Nascente
- School of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74001-970, Brazil;
| | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | | |
Collapse
|
3
|
Zhu S, Jiao W, Xu Y, Hou L, Li H, Shao J, Zhang X, Wang R, Kong D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci 2021; 286:120046. [PMID: 34653428 DOI: 10.1016/j.lfs.2021.120046] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS Prostate cancer is one of the most frequent causes of cancer death in men worldwide, and novel drugs for prostate cancer therapies are still being developed. Palmitic acid is a common saturated long-chain fatty acid that is known to exhibit anti-inflammatory and metabolic regulatory effects and antitumor activities in several types of tumors. The present study aims to explore the antiproliferative and antimetastatic activities of palmitic acid on human prostate cancer cells and the underlying mechanism. MAIN METHODS MTT and colony formation assays were utilized to determine the antiproliferative effect of palmitic acid. Cell metastasis was evaluated by wound healing, Transwell migration and invasion assay. The in vivo anticancer effect was assessed by a nude mouse xenograft model of prostate cancer. The involved molecular mechanisms were investigated by flow cytometry and Western blot analysis. KEY FINDINGS Palmitic acid significantly suppressed prostate cancer cell growth in vitro and in vivo. Treatment with palmitic acid induced G1 phase arrest, which was associated with downregulation of cyclin D1 and p-Rb and upregulation of p27. In addition, palmitic acid could inhibit prostate cancer cell metastasis, in which suppression of PKCζ and p-Integrinβ1 and an increase in E-cadherin expression might be involved. Furthermore, a mechanistic study indicated that palmitic acid inhibited the key molecules of the PI3K/Akt pathway to block prostate cancer proliferation and metastasis. SIGNIFICANCE Our findings suggested the antitumor potential of palmitic acid for prostate cancer by targeting the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shan Zhu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wenhui Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yanglu Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lanjiao Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Hui Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jingrong Shao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoliang Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin 301700, China.
| |
Collapse
|
4
|
Akhlaghipour I, Bina AR, Abbaszadegan MR, Moghbeli M. Methylation as a critical epigenetic process during tumor progressions among Iranian population: an overview. Genes Environ 2021; 43:14. [PMID: 33883026 PMCID: PMC8059047 DOI: 10.1186/s41021-021-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
Cancer is one of the main health challenges and leading causes of deaths in the world. Various environmental and genetic risk factors are associated with tumorigenesis. Epigenetic deregulations are also important risk factors during tumor progression which are reversible transcriptional alterations without any genomic changes. Various mechanisms are involved in epigenetic regulations such as DNA methylation, chromatin modifications, and noncoding RNAs. Cancer incidence and mortality have a growing trend during last decades among Iranian population which are significantly related to the late diagnosis. Therefore, it is required to prepare efficient molecular diagnostic panels for the early detection of cancer in this population. Promoter hyper methylation is frequently observed as an inhibitory molecular mechanism in various genes associated with DNA repair, cell cycle regulation, and apoptosis during tumor progression. Since aberrant promoter methylations have critical roles in early stages of neoplastic transformations, in present review we have summarized all of the aberrant methylations which have been reported during tumor progression among Iranian cancer patients. Aberrant promoter methylations are targetable and prepare novel therapeutic options for the personalized medicine in cancer patients. This review paves the way to introduce a non-invasive methylation specific panel of diagnostic markers for the early detection of cancer among Iranians.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Strelnikov VV, Kuznetsova EB, Tanas AS, Rudenko VV, Kalinkin AI, Poddubskaya EV, Kekeeva TV, Chesnokova GG, Trotsenko ID, Larin SS, Kutsev SI, Zaletaev DV, Nemtsova MV, Simonova OA. Abnormal promoter DNA hypermethylation of the integrin, nidogen, and dystroglycan genes in breast cancer. Sci Rep 2021; 11:2264. [PMID: 33500458 PMCID: PMC7838398 DOI: 10.1038/s41598-021-81851-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
Cell transmembrane receptors and extracellular matrix components play a pivotal role in regulating cell activity and providing for the concerted integration of cells in the tissue structures. We have assessed DNA methylation in the promoter regions of eight integrin genes, two nidogen genes, and the dystroglycan gene in normal breast tissues and breast carcinomas (BC). The protein products of these genes interact with the basement membrane proteins LAMA1, LAMA2, and LAMB1; abnormal hypermethylation of the LAMA1, LAMA2, and LAMB1 promoters in BC has been described in our previous publications. In the present study, the frequencies of abnormal promoter hypermethylation in BC were 13% for ITGA1, 31% for ITGA4, 4% for ITGA7, 39% for ITGA9, 38% for NID1, and 41% for NID2. ITGA2, ITGA3, ITGA6, ITGB1, and DAG1 promoters were nonmethylated in normal and BC samples. ITGA4, ITGA9, and NID1 promoter hypermethylation was associated with the HER2 positive tumors, and promoter hypermethylation of ITGA1, ITGA9, NID1 and NID2 was associated with a genome-wide CpG island hypermethylated BC subtype. Given that ITGA4 is not expressed in normal breast, one might suggest that its abnormal promoter hypermethylation in cancer is non-functional and is thus merely a passenger epimutation. Yet, this assumption is not supported by our finding that it is not associated with a hypermethylated BC subtype. ITGA4 acquires expression in a subset of breast carcinomas, and methylation of its promoter may be preventive against expression in some tumors. Strong association of abnormal ITGA4 hypermethylation with the HER2 positive tumors (p = 0.0025) suggests that simultaneous presence of both HER2 and integrin α4 receptors is not beneficial for tumor cells. This may imply HER2 and integrin α4 signaling pathways interactions that are yet to be discovered.
Collapse
Affiliation(s)
- Vladimir V Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia.
| | - Ekaterina B Kuznetsova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St 8-2, 119991, Moscow, Russia
| | - Alexander S Tanas
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Viktoria V Rudenko
- Molecular Genetic Diagnostics Laboratory 2, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Alexey I Kalinkin
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Elena V Poddubskaya
- Clinic of Personalized Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St 8-2, 119991, Moscow, Russia.,VitaMed LLC, Seslavinskaya St 10, 121309, Moscow, Russia
| | - Tatiana V Kekeeva
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Galina G Chesnokova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Ivan D Trotsenko
- Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St 6, 117198, Moscow, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Federal Scientific Clinical Centre of Pediatric Hematology Oncology Immunology Named After Dmitry Rogachev, Samory Mashela St 1, 117997, Moscow, Russia.,Gene Therapy Laboratory, Institute of Gene Biology, Vavilova St 34/5, 119334, Moscow, Russia
| | - Sergey I Kutsev
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Dmitry V Zaletaev
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St 8-2, 119991, Moscow, Russia
| | - Marina V Nemtsova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St 8-2, 119991, Moscow, Russia
| | - Olga A Simonova
- Molecular Genetic Diagnostics Laboratory 2, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| |
Collapse
|
6
|
Ghayour-Mobarhan M, Ferns GA, Moghbeli M. Genetic and molecular determinants of prostate cancer among Iranian patients: An update. Crit Rev Clin Lab Sci 2020; 57:37-53. [PMID: 31895010 DOI: 10.1080/10408363.2019.1657061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common age-related cancers among men. Various environmental and genetic factors are involved in the development and progression of PCa. In most cases, the primary symptoms of disease are not severe. Therefore, it is common for patients to be referred with severe clinical manifestations at advanced stages of disease. Since this malignancy is age related and Iran will face a significant increase in the number of seniors, it is expected that the prevalence of PCa among Iranian men will rise. PCa progression has been observed to be associated with genetic and ethnic factors. It may therefore be clinically useful to determine a panel of genetic markers, in addition to routine diagnostic methods, to detect tumors in the early stages. In the present review, we have summarized the reported genetic markers in PCa Iranian patients to pave the way for the determination of an ethnic specific genetic marker panel for the early detection of PCa. To understand the genetic and molecular biology of PCa among Iranians, we have categorized these genetic markers based on their cellular functions.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Fonseca-Alves CE, Kobayashi PE, Leis-Filho AF, Lainetti PDF, Grieco V, Kuasne H, Rogatto SR, Laufer-Amorim R. E-Cadherin Downregulation is Mediated by Promoter Methylation in Canine Prostate Cancer. Front Genet 2019; 10:1242. [PMID: 31850082 PMCID: PMC6895247 DOI: 10.3389/fgene.2019.01242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is a transmembrane glycoprotein responsible for cell-to-cell adhesion, and its loss has been associated with metastasis development. Although E-cadherin downregulation was previously reported in canine prostate cancer (PC), the mechanism involved in this process is unclear. It is well established that dogs, besides humans, spontaneously develop PC with high frequency; therefore, canine PC is an interesting model to study human PC. In human PC, CDH1 methylation has been associated with E-cadherin downregulation. However, no previous studies have described the methylation pattern of CDH1 promoter in canine PC. Herein, we evaluated the E-cadherin protein and gene expression in canine PC compared to normal tissues. DNA methylation pattern was investigated as a regulatory mechanism of CDH1 silencing. Our cohort is composed of 20 normal prostates, 20 proliferative inflammatory atrophy (PIA) lesions, 20 PC, and 11 metastases from 60 dogs. The E-cadherin protein expression was assessed by immunohistochemistry and western blotting and gene expression by qPCR. Bisulfite- pyrosequencing assay was performed to investigate the CDH1 promoter methylation pattern. Membranous E-cadherin expression was observed in all prostatic tissues. A higher number of E-cadherin negative cells was detected more frequently in PC compared to normal and PIA samples. High-grade PC showed a diffuse membranous positive immunostaining. Furthermore, PC patients with a higher number of E-cadherin negative cells presented shorter survival time and higher Gleason scores. Western blotting and qPCR assays confirmed the immunohistochemical results, showing lower E-cadherin protein and gene expression levels in PC compared to normal samples. We identified CDH1 promoter hypermethylation in PIA and PC samples. An in vitro assay with two canine prostate cancer cells (PC1 and PC2 cell lines) was performed to confirm the methylation as a regulatory mechanism of E-cadherin expression. PC1 cell line presented CDH1 hypermethylation and after 5-Aza-dC treatment, a decreased CDH1 methylation and increased gene expression levels were observed. Positive E-cadherin cells were massively found in metastases (mean of 90.6%). In conclusion, low levels of E-cadherin protein, gene downregulation and CDH1 hypermethylation was detected in canine PC. However, in metastatic foci occur E-cadherin re-expression confirming its relevance in these processes.
Collapse
Affiliation(s)
- Carlos Eduardo Fonseca-Alves
- Institute of Health Sciences, Paulista University—UNIP, Bauru, Brazil
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Priscila Emiko Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Patricia de Faria Lainetti
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Valeria Grieco
- Department of Veterinary Medicine, Università degli studi di Milano, Milan, Italy
| | - Hellen Kuasne
- International Center for Research (CIPE), AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Renee Laufer-Amorim
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| |
Collapse
|
8
|
High Detection Rate for Non-Muscle-Invasive Bladder Cancer Using an Approved DNA Methylation Signature Test. Clin Genitourin Cancer 2019; 18:210-221. [PMID: 32139301 DOI: 10.1016/j.clgc.2019.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Cystoscopy and transurethral resection are the current reference standard tests to diagnose and histologically confirm non-muscle-invasive bladder cancer (NMIBC). In other tumor entities (ie, colon carcinoma, cervical cancer), DNA methylation markers have been approved as diagnostic tests with high diagnostic power. In our case-control study, we used an approved molecular cervical cancer diagnostics test that includes 6 DNA methylation markers (GynTect) for the detection of bladder cancer. PATIENTS AND METHODS We included samples from 40 patients with bladder cancer and 34 control subjects. In a pilot study, we analyzed DNA methylation in 38 tumor tissues and 4 healthy ureters using methylation-specific polymerase chain reaction. Subsequently, we determined the sensitivity and specificity of the GynTect for the detection of bladder cancer in urine sediments from 40 patients with bladder cancer and 30 control subjects with benign prostatic hyperplasia or urolithiasis. RESULTS The markers showed very different methylation rates in the NMIBC tissues, ranging from 2.6% to 78.9%. No methylation of any of the markers was detectable in the healthy ureters. Using the urine sediments from the patients with cancer and control subjects, we found surprisingly high sensitivity and specificity for the GynTect assay (60% and 96.7%, respectively). The application of different algorithms for evaluation of the markers included in GynTect resulted in a sensitivity of ≤ 90% and specificity of ≤ 100%. CONCLUSION The GynTect assay, originally designed for cervical cancer diagnostics, showed unexpectedly high diagnostic accuracy for bladder cancer detection. The inclusion of additional methylation markers might allow for the development of a suitable diagnostic marker set based on the GynTect test for NMIBC diagnostics.
Collapse
|
9
|
Importance of Cadherins Methylation in Ovarian Cancer: a Next Generation Sequencing Approach. Pathol Oncol Res 2018; 25:1457-1465. [DOI: 10.1007/s12253-018-0500-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/15/2018] [Indexed: 12/21/2022]
|
10
|
Kianpour S, Ebrahiminezhad A, Negahdaripour M, Mohkam M, Mohammadi F, Niknezhad SV, Ghasemi Y. Characterization of biogenic Fe (III)-binding exopolysaccharide nanoparticles produced by Ralstonia sp. SK03. Biotechnol Prog 2018; 34:1167-1176. [PMID: 29882269 DOI: 10.1002/btpr.2660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/06/2018] [Indexed: 12/13/2022]
Abstract
A new technological approach to nanoparticle synthesis is using microorganisms, such as bacteria, which have the ability to synthesize nontoxic nanoparticles with high biocompatibility. In addition, bacteria have strict control over size, structure, shape, and dimension of produced nanoparticles. In the present work, Fe (III)-binding exopolysaccharide (Fe-EPS) nanoparticles were biosynthesized by Ralstonia pickettii sp. SK03, a bacterium isolated from a mineral spring. 16S rRNA gene sequencing and biochemical tests were done for identification of the isolated bacterium. For the first time, critical biological and physicochemical properties of this iron oxide nanoparticle were characterized using Fourier Transform Infrared (FTIR) Spectroscopy, Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM), Dynamic Light Scattering (DLS), Thermogravimetric analysis (TGA), X-ray crystallography (XRD), Atomic absorption spectroscopy (AAS), and cell viability assays (MTT assay). The characterization results showed that Fe-EPS nanoparticles were composed of spherical ferrihydrite nanoparticles (with a size range of 1.2-2 nm), trapped in a polysaccharide matrix. The TGA analysis demonstrated that Fe-EPS nanoparticles contained ∼25.2% polysaccharide. Therefore, this polysaccharide matrix showed a very low magnetic saturation value (0.25 emu/g) and a large negative charge of -93.8 mV. In addition, treatment of hepatocarcinoma cell line (Hep-G2) with 1-500 µg/mL concentrations of Fe-EPS nanoparticles caused 40% increase in the cell viability, which indicated that the biosynthesized nanoparticles were nontoxic and biocompatible. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1167-1176, 2018.
Collapse
Affiliation(s)
- Sedigheh Kianpour
- Dept. of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ebrahiminezhad
- Dept. of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Manica Negahdaripour
- Dept. of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Dept. of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mohammadi
- Dept. of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Dept. of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol, Iran
| | - Younes Ghasemi
- Dept. of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Mostafavi-Pour Z, Ashrafi MR, Talaei-Khozani T. Down regulation of ITGA4 and ITGA5 genes after formation of 3D spherules by human Wharton's jelly stem cells (hWJSCs). Mol Biol Rep 2018; 45:245-252. [PMID: 29411210 DOI: 10.1007/s11033-018-4157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
Human Wharton's jelly mesenchymal stem cells (hWJSCs) are multipotent stem cells that could be aggregated into 3D spherules. ITGA4 and ITGA5 genes encode α4 and α5 subunits of integrins, respectively. In this study, we analyzed expression levels of ITGA4 and ITGA5 gene mRNAs in undifferentiated and 3D spherules forming hWJSCs in order to determine their expression pattern for possible future treatment of cancer cells in a co-culture fashion. For the purpose of obtaining hWJSCs, umbilical cords were collected from patients with caesarian section at full term delivery. The cells were then characterized according to cell surface markers using flow cytometry. Furthermore pluripotency of the obtained cells was verified. Subsequently the cells were aggregated in 3D spherules using hanging drop cultures. Expression levels of ITGA4 and ITGA5 gene mRNAs were determined by RT-PCR and Real time PCR, both in the initial undifferentiated cells and those aggregated in the spherules. The obtained hWJSCs demonstrated pluripotency, differentiating to adipogenic and osteogenic cells. They also expressed mesenchymal stem cell surface markers. Following the aggregation of these cells and formation of 3D spherules, mRNA expression levels of both genes were significantly reduced (P < 0.05) compared with the initial undifferentiated state. The results of this study demonstrated that aggregation of hWJSCs into spherules alters their expression of ITGA4 and ITGA5. The implications of such an alteration would require further research.
Collapse
Affiliation(s)
- Zohreh Mostafavi-Pour
- Recombinant Protein Laboratory, School of Advance Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. .,Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Ashrafi
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Tissue Engineering Lab, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Konac E, Kiliccioglu I, Sogutdelen E, Dikmen AU, Albayrak G, Bilen CY. Do the expressions of epithelial-mesenchymal transition proteins, periostin, integrin-α4 and fibronectin correlate with clinico-pathological features and prognosis of metastatic castration-resistant prostate cancer? Exp Biol Med (Maywood) 2017; 242:1795-1801. [PMID: 28836852 DOI: 10.1177/1535370217728499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Development of metastatic castration-resistant prostate cancer is a result of the lack of an apoptotic response by the tumor cells and loss of the ability to stick to adjacent cells through epithelial-mesenchymal transition. Although there are several strongly recommended biomarkers for determining prognosis of metastatic castration-resistant prostate cancer, only few of them may help decide the selection of the optimal treatment option. The mode of treatment sequencing in metastatic castration-resistant prostate cancer will be based on the individual characteristics of the patient. In this study, we aimed to explain the correlation between the expression characteristics of periostin, integrin-α4, and fibronectin in metastatic castration-resistant prostate cancer patients and their clinico-pathological data comprising Gleason score, PSA levels, and metastatic sites in the process of epithelial-mesenchymal transition. We evaluated by using Western blotting, periostin, integrin-α4, and fibronectin expressions in peripheral blood samples of metastatic castration-resistant prostate cancer patients ( n = 40), benign prostatic hyperplasia patients ( n = 20), and the healthy control group ( n = 20). Associations between changes in the protein expressions and clinico-pathological parameters were also analyzed in the metastatic castration-resistant prostate cancer group. When comparing BPH and healthy groups with the metastatic castration-resistant prostate cancer group, a reduced expression of integrin-α4 was found in metastatic patients, albeit being statistically insignificant ( P > 0.05). Protein expressions of periostin and fibronectin in the metastatic castration-resistant prostate cancer group were higher than those in the BPH and heathy groups ( P < 0.001). Increased periostin expression in metastatic patients was significantly associated with bone metastasis ( P < 0.05). Elevated periostin and fibronectin levels in metastatic castration-resistant prostate cancer patients may be appropriate targets of therapeutic intervention in the future. Impact statement Prostate cancer is the third most common cancer in the world and the most common cancer among men. Development of metastatic castration-resistant prostate cancer (mCRPC) is a result of the lack of an apoptotic response by the tumor cells and loss of the ability to stick to adjacent cells through epithelial-mesenchymal transition (EMT). The present study analyzes for the first time the expressions of EMT marker proteins - periostin, integrin α4, fibronectin - in mCRPC and in benign prostatic hyperplasia (BPH) with the aim to determine the clinical relevance of changes in these three proteins vis-a-vis the PCa aggressive phenotype. In doing so, it sheds light on the molecular mechanism underlying the disease. We concluded that elevated periostin and fibronectin levels in mCRPC patients may be appropriate targets of therapeutic intervention in the future; hence, adopting methods that target these proteins may help treat prostate cancer effectively.
Collapse
Affiliation(s)
- Ece Konac
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Ilker Kiliccioglu
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Emrullah Sogutdelen
- 2 Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| | - Asiye U Dikmen
- 3 Department of Public Health, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Gulsah Albayrak
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Cenk Y Bilen
- 2 Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| |
Collapse
|
13
|
Correlation between the germline methylation status in ERβ promoter and the risk in prostate cancer: a prospective study. Fam Cancer 2016; 15:309-15. [PMID: 26547439 DOI: 10.1007/s10689-015-9850-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Familial aggregation of cancer may reflect an overall contribution of inherited genes or a shared mechanism for the manipulation of gene function. DNA methylation in the promoter regions is considered to be a mechanism through which tumor suppressor genes are inhibited, which will lead to tumorigenesis and tumor progression. To evaluate the association between the methylation status in the promoter of estrogen receptor (ER) β,possibly a tumor suppressor gene specific for prostate cancer, and the risk in prostate cancer in a Chinese population, a case-control study that included 56 sporadic prostate cancer cases and 60 healthy controls was conducted. Genomic DNA was extracted from peripheral blood of all the subjects for analyzing the methylation status of the ERβ promoter by methylation-specific PCR, which was verified by bisulfite genomic sequencing PCR. A significant difference was observed in the methylation frequencies of the ERβ promoter between cancer patients (12/56, 21.4%) and healthy controls (5/60, 8.3%). Prostate cancer (PC-3 and DU-145) and prostatic epithelial (RWPE-1) cell lines were treated with various concentrations of the methyltransferase inhibitor 5-Aza-2'-dC. Expression of ERβ was detected at both transcriptional and translational levels. As a result, both mRNA and protein of ERβ were elevated following treatment with increasing concentrations of the demethylating agent. Taken together, our results support the conclusion that abnormal methylation of the ERβ promoter may increase genetic susceptibility to prostate cancer.
Collapse
|