1
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
2
|
Qiu J, Fu Y, Liu T, Wang J, Liu Y, Zhang Z, Ye Z, Cao Z, Su D, Luo W, Tao J, Weng G, Ye L, Zhang F, Liang Z, Zhang T. Single-cell RNA-seq reveals heterogeneity in metastatic renal cell carcinoma and effect of anti-angiogenesis therapy in the pancreas metastatic lesion. Cancer Lett 2024; 601:217193. [PMID: 39159881 DOI: 10.1016/j.canlet.2024.217193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Metastatic clear cell renal cell carcinoma has heterogenous tumor microenvironment (TME). Among the metastatic lesions, pancreas metastasis is rare and controversy in treatment approaches. Here, extensive primary and metastatic lesion samples were included by single-cell RNA-seq to decipher the distinct metastasis TME. The hypoxic and inflammatory TME of pancreas metastasis was decoded in this study, and the activation of PAX8-myc signaling, and metabolic reprogramming were observed. The active components including endothelial cells, fibroblasts and T cells were profiled. Meanwhile, we also evaluated the effect of anti-angiogenesis treatment in the pancreas metastasis patient. The potential mechanisms of pancreatic tropism, instability of genome, and the response of immunotherapy were also discussed in this work. Taken together, our findings suggest a clue to the heterogeneity in metastasis TME and provide evidence for the treatment of pancreas metastasis in renal cell carcinoma patients.
Collapse
Affiliation(s)
- Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jun Wang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zeyu Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Ziwen Ye
- Department of Urology, The Fist Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Guihu Weng
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Liyuan Ye
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Feifan Zhang
- Department of Computer Science, University College London, UK.
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Cancer Stem Cells in Renal Cell Carcinoma: Origins and Biomarkers. Int J Mol Sci 2023; 24:13179. [PMID: 37685983 PMCID: PMC10487877 DOI: 10.3390/ijms241713179] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The term "cancer stem cell" (CSC) refers to a cancer cell with the following features: clonogenic ability, the expression of stem cell markers, differentiation into cells of different lineages, growth in nonadhesive spheroids, and the in vivo ability to generate serially transplantable tumors that reflect the heterogeneity of primary cancers (tumorigenicity). According to this model, CSCs may arise from normal stem cells, progenitor cells, and/or differentiated cells because of striking genetic/epigenetic mutations or from the fusion of tissue-specific stem cells with circulating bone marrow stem cells (BMSCs). CSCs use signaling pathways similar to those controlling cell fate during early embryogenesis (Notch, Wnt, Hedgehog, bone morphogenetic proteins (BMPs), fibroblast growth factors, leukemia inhibitory factor, and transforming growth factor-β). Recent studies identified a subpopulation of CD133+/CD24+ cells from ccRCC specimens that displayed self-renewal ability and clonogenic multipotency. The development of agents targeting CSC signaling-specific pathways and not only surface proteins may ultimately become of utmost importance for patients with RCC.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
4
|
Wang Y, Yu H, Yu M, Liu H, Zhang B, Wang Y, Zhao S, Xia Q. CD24 blockade as a novel strategy for cancer treatment. Int Immunopharmacol 2023; 121:110557. [PMID: 37379708 DOI: 10.1016/j.intimp.2023.110557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The CD24 protein is a heat-stable protein with a small core that undergoes extensive glycosylation. It is expressed on the surface of various normal cells, including lymphocytes, epithelial cells, and inflammatory cells. CD24 exerts its function by binding to different ligands. Numerous studies have demonstrated the close association of CD24 with tumor occurrence and progression. CD24 not only facilitates tumor cell proliferation, metastasis, and immune evasion but also plays a role in tumor initiation, thus, serving as a marker on the surface of cancer stem cells (CSCs). Additionally, CD24 induces drug resistance in various tumor cells following chemotherapy. To counteract the tumor-promoting effects of CD24, several treatment strategies targeting CD24 have been explored, such as the use of CD24 monoclonal antibodies (mAb) alone, the combination of CD24 and chemotoxic drugs, or the combination of these drugs with other targeted immunotherapeutic techniques. Regardless of the approach, targeting CD24 has demonstrated significant anti-tumor effects. Therefore, the present study focuses on anti-tumor therapy and provides a comprehensive review of the structure and fundamental physiological function of CD24 and its impact on tumor development, and suggests that targeting CD24 may represent an effective strategy for treating malignant tumors.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Haoran Yu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Mengyuan Yu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Hui Liu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Bing Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China
| | - Yuanyuan Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China
| | - Simin Zhao
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China.
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China.
| |
Collapse
|
5
|
Shrestha S, Haque ME, Ighofose E, Mcmahon M, Kalyan G, Guyer R, Kalonick M, Kochanowski J, Wegner K, Somji S, Sens DA, Garrett SH. Primary and Immortalized Cultures of Human Proximal Tubule Cells Possess Both Progenitor and Non-Progenitor Cells That Can Impact Experimental Results. J Pers Med 2023; 13:613. [PMID: 37108999 PMCID: PMC10146827 DOI: 10.3390/jpm13040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/12/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Studies have reported the presence of renal proximal tubule specific progenitor cells which co-express PROM1 and CD24 markers on the cell surface. The RPTEC/TERT cell line is a telomerase-immortalized proximal tubule cell line that expresses two populations of cells, one co-expressing PROM1 and CD24 and another expressing only CD24, identical to primary cultures of human proximal tubule cells (HPT). The RPTEC/TERT cell line was used by the authors to generate two new cell lines, HRTPT co-expressing PROM1 and CD24 and HREC24T expressing only CD24. The HRTPT cell line has been shown to express properties expected of renal progenitor cells while HREC24T expresses none of these properties. The HPT cells were used in a previous study to determine the effects of elevated glucose concentrations on global gene expression. This study showed the alteration of expression of lysosomal and mTOR associated genes. In the present study, this gene set was used to determine if pure populations of cells expressing both PROM1 and CD24 had different patterns of expression than those expressing only CD24 when exposed to elevated glucose concentrations. In addition, experiments were performed to determine whether cross-talk might occur between the two cell lines based on their expression of PROM1 and CD24. It was shown that the expression of the mTOR and lysosomal genes was altered in expression between the HRTPT and HREC24T cell lines based on their PROM1 and CD24 expression. Using metallothionein (MT) expression as a marker demonstrated that both cell lines produced condition media that could alter the expression of the MT genes. It was also determined that PROM1 and CD24 co-expression was limited in renal cell carcinoma (RCC) cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, USA; (S.S.); (M.E.H.); (E.I.); (M.M.); (G.K.); (R.G.); (M.K.); (J.K.); (K.W.); (S.S.); (D.A.S.)
| |
Collapse
|
6
|
Heumos S, Dehn S, Bräutigam K, Codrea MC, Schürch CM, Lauer UM, Nahnsen S, Schindler M. Multiomics surface receptor profiling of the NCI-60 tumor cell panel uncovers novel theranostics for cancer immunotherapy. Cancer Cell Int 2022; 22:311. [PMID: 36221114 PMCID: PMC9555072 DOI: 10.1186/s12935-022-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized cancer therapy. However, therapeutic targeting of inhibitory T cell receptors such as PD-1 not only initiates a broad immune response against tumors, but also causes severe adverse effects. An ideal future stratified immunotherapy would interfere with cancer-specific cell surface receptors only. METHODS To identify such candidates, we profiled the surface receptors of the NCI-60 tumor cell panel via flow cytometry. The resulting surface receptor expression data were integrated into proteomic and transcriptomic NCI-60 datasets applying a sophisticated multiomics multiple co-inertia analysis (MCIA). This allowed us to identify surface profiles for skin, brain, colon, kidney, and bone marrow derived cell lines and cancer entity-specific cell surface receptor biomarkers for colon and renal cancer. RESULTS For colon cancer, identified biomarkers are CD15, CD104, CD324, CD326, CD49f, and for renal cancer, CD24, CD26, CD106 (VCAM1), EGFR, SSEA-3 (B3GALT5), SSEA-4 (TMCC1), TIM1 (HAVCR1), and TRA-1-60R (PODXL). Further data mining revealed that CD106 (VCAM1) in particular is a promising novel immunotherapeutic target for the treatment of renal cancer. CONCLUSION Altogether, our innovative multiomics analysis of the NCI-60 panel represents a highly valuable resource for uncovering surface receptors that could be further exploited for diagnostic and therapeutic purposes in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Sandra Dehn
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | | | - Marius C Codrea
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital Tübingen, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Ni YH, Zhao X, Wang W. CD24, A Review of its Role in Tumor Diagnosis, Progression and Therapy. Curr Gene Ther 2021; 20:109-126. [PMID: 32576128 DOI: 10.2174/1566523220666200623170738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
CD24, is a mucin-like GPI-anchored molecules. By immunohistochemistry, it is widely detected in many solid tumors, such as breast cancers, genital system cancers, digestive system cancers, neural system cancers and so on. The functional roles of CD24 are either fulfilled by combination with ligands or participate in signal transduction, which mediate the initiation and progression of neoplasms. However, the character of CD24 remains to be intriguing because there are still opposite voices about the impact of CD24 on tumors. In preclinical studies, CD24 target therapies, including monoclonal antibodies, target silencing by RNA interference and immunotherapy, have shown us brighten futures on the anti-tumor application. Nevertheless, evidences based on clinical studies are urgently needed. Here, with expectancy to spark new ideas, we summarize the relevant studies about CD24 from a tumor perspective.
Collapse
Affiliation(s)
- Yang-Hong Ni
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, Guo XV, Aggen DH, Rathmell WK, Jonasch E, Johnson JE, Roth M, Beckermann KE, Rini BI, McKiernan J, Califano A, Drake CG. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 2021; 184:2988-3005.e16. [PMID: 34019793 PMCID: PMC8479759 DOI: 10.1016/j.cell.2021.04.038] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
Clear cell renal carcinoma (ccRCC) is a heterogeneous disease with a variable post-surgical course. To assemble a comprehensive ccRCC tumor microenvironment (TME) atlas, we performed single-cell RNA sequencing (scRNA-seq) of hematopoietic and non-hematopoietic subpopulations from tumor and tumor-adjacent tissue of treatment-naive ccRCC resections. We leveraged the VIPER algorithm to quantitate single-cell protein activity and validated this approach by comparison to flow cytometry. The analysis identified key TME subpopulations, as well as their master regulators and candidate cell-cell interactions, revealing clinically relevant populations, undetectable by gene-expression analysis. Specifically, we uncovered a tumor-specific macrophage subpopulation characterized by upregulation of TREM2/APOE/C1Q, validated by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort, these markers were significantly enriched in tumors from patients who recurred following surgery. The study thus identifies TREM2/APOE/C1Q-positive macrophage infiltration as a potential prognostic biomarker for ccRCC recurrence, as well as a candidate therapeutic target.
Collapse
MESH Headings
- Adult
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cohort Studies
- Female
- Gene Expression/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Kidney/metabolism
- Kidney Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/pathology
- Macrophages/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Prognosis
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Sequence Analysis, RNA/methods
- Single-Cell Analysis/methods
- Tumor Microenvironment
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/physiology
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Systems Biology, HICC, New York, NY 10032, USA
| | - Nivedita Chowdhury
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Casey Ager
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | - Vinson Wang
- Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA
| | - Lukas Vlahos
- Department of Systems Biology, HICC, New York, NY 10032, USA
| | - Xinzheng V Guo
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | - David H Aggen
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | | | - Eric Jonasch
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Marc Roth
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Brian I Rini
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - James McKiernan
- Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA; HICC, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, HICC, New York, NY 10032, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; HICC, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY; Department of Biomedical Informatics, Columbia University, New York, NY, USA; Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, New York, NY, USA.
| | - Charles G Drake
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA; HICC, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
The Emerging Role of CD24 in Cancer Theranostics-A Novel Target for Fluorescence Image-Guided Surgery in Ovarian Cancer and Beyond. J Pers Med 2020; 10:jpm10040255. [PMID: 33260974 PMCID: PMC7712410 DOI: 10.3390/jpm10040255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Complete cytoreductive surgery is the cornerstone of the treatment of epithelial ovarian cancer (EOC). The application of fluorescence image-guided surgery (FIGS) allows for the increased intraoperative visualization and delineation of malignant lesions by using fluorescently labeled targeting biomarkers, thereby improving intraoperative guidance. CD24, a small glycophosphatidylinositol-anchored cell surface receptor, is overexpressed in approximately 70% of solid cancers, and has been proposed as a prognostic and therapeutic tumor-specific biomarker for EOC. Recently, preclinical studies have demonstrated the benefit of CD24-targeted contrast agents for non-invasive fluorescence imaging, as well as improved tumor resection by employing CD24-targeted FIGS in orthotopic patient-derived xenograft models of EOC. The successful detection of miniscule metastases denotes CD24 as a promising biomarker for the application of fluorescence-guided surgery in EOC patients. The aim of this review is to present the clinical and preclinically evaluated biomarkers for ovarian cancer FIGS, highlight the strengths of CD24, and propose a future bimodal approach combining CD24-targeted fluorescence imaging with radionuclide detection and targeted therapy.
Collapse
|
10
|
Fang P, Zhou L, Lim LY, Fu H, Yuan ZX, Lin J. Targeting Strategies for Renal Cancer Stem Cell Therapy. Curr Pharm Des 2020; 26:1964-1978. [PMID: 32188377 DOI: 10.2174/1381612826666200318153106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is an intractable genitourinary malignancy that accounts for approximately 4% of adult malignancies. Currently, there is no approved targeted therapy for RCC that has yielded durable remissions, and they remain palliative in intent. Emerging evidence has indicated that renal tumorigenesis and RCC treatment-resistance may originate from renal cancer stem cells (CSCs) with tumor-initiating capacity (CSC hypothesis). A better understanding of the mechanism underlying renal CSCs will help to dissect RCC heterogeneity and drug treatment efficiency, to promote more personalized and targeted therapies. In this review, we summarized the stem cell characteristics of renal CSCs. We outlined the targeting strategies and challenges associated with developing therapies that target renal CSCs angiogenesis, immunosuppression, signaling pathways, surface biomarkers, microRNAs and nanomedicine. In conclusion, CSCs are an important role in renal carcinogenesis and represent a valid target for treatment of RCC patients.
Collapse
Affiliation(s)
- Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuting Zhou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lee Y Lim
- Department of Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA 6009, Perth, Australia
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Identification of CD24 as a potential diagnostic and therapeutic target for malignant pleural mesothelioma. Cell Death Discov 2020; 6:127. [PMID: 33298865 PMCID: PMC7674463 DOI: 10.1038/s41420-020-00364-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleura that is currently incurable due to the lack of an effective early diagnostic method and specific medication. The CDKN2A (p16) and NF2 genes are both frequently mutated in MPM. To understand how these mutations contribute to MPM tumor growth, we generated NF2/p16 double-knockout (DKO) cell clones using human MeT-5A and HOMC-B1 mesothelial cell lines. Cell growth and migration activities were significantly increased in DKO compared with parental cells. cDNA microarray analysis revealed differences in global gene expression profiles between DKO and parental cells. Quantitative PCR and western blot analyses showed upregulation of CD24 concomitant with increased phosphorylation of AKT, p70S6K, and c-Jun in DKO clones. This upregulation was abrogated by exogenous expression of NF2 and p16. CD24 knockdown in DKO cells significantly decreased TGF-β1 expression and increased expression of E-cadherin, an epithelial-mesenchymal transition marker. CD24 was highly expressed in human mesothelioma tissues (28/45 cases, 62%) and associated with the loss of NF2 and p16. Public data analysis revealed a significantly shorter survival time in MPM patients with high CD24 gene expression levels. These results strongly indicate the potential use of CD24 as a prognostic marker as well as a novel diagnostic and therapeutic target for MPM.
Collapse
|
12
|
Wang TW, Chern E, Hsu CW, Tseng KC, Chao HM. SIRT1-Mediated Expression of CD24 and Epigenetic Suppression of Novel Tumor Suppressor miR-1185-1 Increases Colorectal Cancer Stemness. Cancer Res 2020; 80:5257-5269. [PMID: 33046442 DOI: 10.1158/0008-5472.can-19-3188] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 07/19/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
NAD-dependent deacetylase sirtuin-1 (SIRT1) is a class III histone deacetylase that positively regulates cancer-related pathways such as proliferation and stress resistance. SIRT1 has been shown to promote progression of colorectal cancer and is associated with cancer stemness, yet the precise mechanism between colorectal cancer stemness and SIRT1 remains to be further clarified. Here we report that SIRT1 signaling regulates colorectal cancer stemness by enhancing expression of CD24, a colorectal cancer stemness promoter. A novel miRNA, miR-1185-1, suppressed the expression of CD24 by targeting its 3'UTR (untranslated region) and could be inhibited by SIRT1 via histone deacetylation. Targeting SIRT1 by RNAi led to elevated H3 lysine 9 acetylation on the promoter region of miR-1185-1, which increased expression of miR-1185-1 and further repressed CD24 translation and colorectal cancer stemness. In a mouse xenograft model, overexpression of miR-1185-1 in colorectal cancer cells substantially reduced tumor growth. In addition, expression of miR-1185-1 was downregulated in human colorectal cancer tissues, whereas expression of CD24 was increased. In conclusion, this study not only demonstrates the essential roles of a SIRT1-miR-1185-1-CD24 axis in both colorectal cancer stemness properties and tumorigenesis but provides a potential therapeutic target for colorectal cancer treatment. SIGNIFICANCE: A novel tumor suppressor miR-1185-1 is involved in molecular regulation of CD24- and SIRT1-related cancer stemness networks, marking it a potential therapeutic target in colorectal cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/23/5257/F1.large.jpg.
Collapse
Affiliation(s)
- Teh-Wei Wang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Wei Hsu
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chang Tseng
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Mei Chao
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan. .,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Ortiz-Montero P, Liu-Bordes WY, Londoño-Vallejo A, Vernot JP. CD24 expression and stem-associated features define tumor cell heterogeneity and tumorigenic capacities in a model of carcinogenesis. Cancer Manag Res 2018; 10:5767-5784. [PMID: 30510447 PMCID: PMC6248383 DOI: 10.2147/cmar.s176654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Most carcinomas are composed of heterogeneous populations of tumor cells with distinct and apparently stable phenotypic characteristics. Methods Using an in vitro model of carcinogenesis we aimed at experimentally elucidating the significance of heterogeneity in the expression of CD24, a marker frequently overexpressed in various cancers and correlated with poor prognosis. Results We show that CD24Neg and CD24Pos cells issued from the same tumorigenic cell line display striking differences in stem-related properties, expression of epithelial-mesenchymal transition/mesenchymal-epithelial transition markers, and tumorigenic capacity. Indeed, while CD24Neg cells were as tumorigenic as the parental cell line, CD24Pos cells, although unable to form tumors, were unexpectedly more mesenchymal, displayed enhanced stemness-related properties, and expressed a proinflammatory signature. Conclusion Our findings support the view that acquisition of stem-like cell, CD24-associated, attributes like migration, invasion, and plasticity by a tumor subpopulation is not necessarily related to local tumor growth but may be required for escaping the niche and colonizing distant sites.
Collapse
Affiliation(s)
- Paola Ortiz-Montero
- Cellular and Molecular Physiology Group, Faculty of Medicine, Department of Physiological Sciences, National University of Colombia, Bogotá, Colombia,
| | - Win-Yan Liu-Bordes
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR3244 Telomere and Cancer Lab, Paris, France
| | - Arturo Londoño-Vallejo
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR3244 Telomere and Cancer Lab, Paris, France
| | - Jean-Paul Vernot
- Cellular and Molecular Physiology Group, Faculty of Medicine, Department of Physiological Sciences, National University of Colombia, Bogotá, Colombia, .,Biomedical Research Institute, Faculty of Medicine, National University of Colombia, Bogotá, Colombia,
| |
Collapse
|
14
|
Corrò C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res 2018; 4:3-18. [PMID: 29416873 PMCID: PMC5783955 DOI: 10.1002/cjp2.91] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Characterised by high intra- and inter-tumor heterogeneity, metastatic renal cell carcinoma (RCC) is resistant to chemo- and radiotherapy. Therefore, the development of new prognostic and diagnostic markers for RCC patients is needed. Cancer stem cells (CSCs) are a small population of neoplastic cells within a tumor which present characteristics reminiscent of normal stem cells. CSCs are characterised by unlimited cell division, maintenance of the stem cell pool (self-renewal), and capability to give rise to all cell types within a tumor; and contribute to metastasis in vivo (tumourigenicity), treatment resistance and recurrence. So far, many studies have tried to establish unique biomarkers to identify CSC populations in RCC. At the same time, different approaches have been developed with the aim to isolate CSCs. Consequently, several markers were found to be specifically expressed in CSCs and cancer stem-like cells derived from RCC such as CD105, ALDH1, OCT4, CD133, and CXCR4. However, the contribution of genetic and epigenetic mechanisms, and tumor microenvironment, to cellular plasticity have made the discovery of unique biomarkers a very difficult task. In fact, contrasting results regarding the applicability of such markers to the isolation of renal CSCs have been reported in the literature. Therefore, a better understanding of the mechanism underlying CSC may help dissecting tumor heterogeneity and drug treatment efficiency.
Collapse
Affiliation(s)
- Claudia Corrò
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| |
Collapse
|