1
|
Alcazar-Felix RJ, Shenkar R, Benavides CR, Bindal A, Srinath A, Li Y, Kinkade S, Terranova T, DeBose-Scarlett E, Lightle R, DeBiasse D, Almazroue H, Cruz DV, Romanos S, Jhaveri A, Koskimäki J, Hage S, Bennett C, Girard R, Marchuk DA, Awad IA. Except for Robust Outliers, Rapamycin Increases Lesion Burden in a Murine Model of Cerebral Cavernous Malformations. Transl Stroke Res 2025; 16:859-867. [PMID: 38980519 PMCID: PMC11711328 DOI: 10.1007/s12975-024-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Cerebral cavernous malformation (CCM) is a hemorrhagic cerebrovascular disease where lesions develop in the setting of endothelial mutations of CCM genes, with many cases also harboring somatic PIK3CA gain of function (GOF) mutations. Rapamycin, an mTORC1 inhibitor, inhibited progression of murine CCM lesions driven by Ccm gene loss and Pik3ca GOF, but it remains unknown if rapamycin is beneficial in the absence of induction of Pik3ca GOF. We investigated the effect of rapamycin at three clinically relevant doses on lesion development in the Ccm3-/-PDGFb-icreERPositive murine model of familial CCM disease, without induction of Pik3ca GOF. Lesion burden, attrition, and acute and chronic hemorrhaging were compared between placebo and rapamycin-treated mice. Plasma miRNome was compared to identify potential biomarkers of rapamycin response. Outlier, exceptionally large CCM lesions (> 2 SD above the mean lesion burden) were exclusively observed in the placebo group. Rapamycin, across all dosages, may have prevented the emergence of large outlier lesions. Yet rapamycin also appeared to exacerbate mean lesion burden of surviving mice when outliers were excluded, increased attrition, and did not alter hemorrhage. miR-30c-2-3p, decreased in rapamycin-treated mouse plasma, has gene targets in PI3K/AKT and mTOR signaling. Progression of outlier lesions in a familial CCM model may have been halted by rapamycin treatment, at the potential expense of increased mean lesion burden and increased attrition. If confirmed, this can have implications for potential rapamycin treatment of familial CCM disease, where lesion development may not be driven by PIK3CA GOF. Further studies are necessary to determine specific pathways that mediate potential beneficial and detrimental effects of rapamycin treatment, and whether somatic PIK3CA mutations drive particularly aggressive lesions.
Collapse
Affiliation(s)
- Roberto J Alcazar-Felix
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Christian R Benavides
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Akash Bindal
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Ying Li
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Serena Kinkade
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Tatiana Terranova
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Evon DeBose-Scarlett
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Dorothy DeBiasse
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Hanadi Almazroue
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Diana Vera Cruz
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Sharbel Romanos
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Aditya Jhaveri
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Stephanie Hage
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Carolyn Bennett
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Romuald Girard
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Issam A Awad
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Torresan S, de Scordilli M, Bortolot M, Di Nardo P, Foltran L, Fumagalli A, Guardascione M, Ongaro E, Puglisi F. Liquid biopsy in colorectal cancer: Onward and upward. Crit Rev Oncol Hematol 2024; 194:104242. [PMID: 38128627 DOI: 10.1016/j.critrevonc.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide. In recent years, liquid biopsy has emerged as one of the most interesting areas of research in oncology, leading to innovative trials and practical changes in all aspects of CRC management. RNAs and cell free DNA (cfDNA) methylation are emerging as promising biomarkers for early diagnosis. Post-surgical circulating tumour DNA (ctDNA) can aid in evaluating minimal residual disease and personalising adjuvant treatment. In rectal cancer, ctDNA could improve response assessment to neoadjuvant therapy and risk stratification, especially in the era of organ-preservation trials. In the advanced setting, ctDNA analysis offers the opportunity to monitor treatment response and identify driver and resistance mutations more comprehensively than traditional tissue analysis, providing prognostic and predictive information. The aim of this review is to provide a detailed overview of the clinical applications and future perspectives of liquid biopsy in CRC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Marco de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy.
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Paola Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Arianna Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
3
|
Wanram S, Klaewkla N, Pinyosri P. Downregulation of Serum miR-133b and miR-206 Associate with Clinical Outcomes of Progression as Monitoring Biomarkers for Metastasis Colorectal Cancer Patients. Microrna 2024; 13:56-62. [PMID: 38231064 PMCID: PMC11275315 DOI: 10.2174/0122115366266024240101075745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer in the world. Noncoding RNAs or microRNAs (miRNAs; miRs) biomarkers can play a role in cancer carcinogenesis and progression. Specific KRAS and EGFR mutation are associated with CRC development playing a role in controlling the cellular process as epigenetic events. Circulating serum miRs can serve for early diagnosis, monitoring, and prognosis of CRC as biomarkers but it is still unclear, clinically. OBJECTIVE To determine potential biomarkers of circulating serum miR-133b and miR-206 in CRC patients Methods: Bioinformatic prediction of microRNA was screened followed by TargetScanHuman7.2, miRTar2GO, miRDB, MiRanda, and DIANA-microT-CDS. Forty-four CRC serum (19 locally advanced, 23 distant advanced CRC) and 12 normal serum samples were subsequently extracted for RNA isolation, cDNA synthesis, and miR validation. The candidate circulating serum miR-133b and miR-206 were validated resulting in a relative expression via quantitative RT-PCR. Relative expression was normalized to the spike-internal control and compared to normal samples as 1 using the -2ΔΔCt method in principle. RESULTS Our results represented 9 miRs of miR-206, miR-155-5p, miR-143-3p, miR-193a-3p, miR-30a- 5p, miR-30d-5p, miR-30e-5p, miR-543, miR-877-5p relate to KRAS-specific miRs, whereas, 9 miRs of miR-133b, miR-302a-3p, miR-302b-3p, miR-302d-3p, miR-302e, miR-520a-3p, miR-520b, miR-520c- 3p and miR-7-5p relevance to EGFR-specific miRs by using the bioinformatic prediction tools. Our results showed a decreased expression level of circulating serum miR-133b as well as miR-206 associating with CRC patients (local and advanced metastasis) when compared to normal (P < 0.05), significantly. CONCLUSION The circulating serum miR-133b and miR-206 can serve as significant biomarkers for monitoring the clinical outcome of progression with metastatic CRC patients. Increased drug-responsive CRC patients associated with crucial molecular intervention should be further explored, clinically.
Collapse
Affiliation(s)
- Surasak Wanram
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
- Biomedical Science Research Unit, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Namphon Klaewkla
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Parichart Pinyosri
- Biomedical Science Research Unit, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
4
|
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA, Cherdyntseva NV. Genomic and Transcriptomic Research in the Discovery and Application of Colorectal Cancer Circulating Markers. Int J Mol Sci 2023; 24:12407. [PMID: 37569782 PMCID: PMC10419249 DOI: 10.3390/ijms241512407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.
Collapse
Affiliation(s)
- Anastasia A. Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena Yu. Rykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Anastasia I. Solovyova
- Department of Biochemistry, Medico-Biological Faculty, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna S. Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dmitry N. Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Yu. Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey A. Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
- Faculty of Chemistry, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
5
|
Romanos SG, Srinath A, Li Y, Xie B, Chen C, Li Y, Moore T, Bi D, Sone JY, Lightle R, Hobson N, Zhang D, Koskimäki J, Shen L, McCurdy S, Lai CC, Stadnik A, Piedad K, Carrión-Penagos J, Shkoukani A, Snellings D, Shenkar R, Sulakhe D, Ji Y, Lopez-Ramirez MA, Kahn ML, Marchuk DA, Ginsberg MH, Girard R, Awad IA. Circulating Plasma miRNA Homologs in Mice and Humans Reflect Familial Cerebral Cavernous Malformation Disease. Transl Stroke Res 2023; 14:513-529. [PMID: 35715588 PMCID: PMC9758276 DOI: 10.1007/s12975-022-01050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023]
Abstract
Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.
Collapse
Affiliation(s)
- Sharbel G Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Ying Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yan Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dehua Bi
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Nick Hobson
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Sara McCurdy
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Catherine Chinhchu Lai
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Kristina Piedad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Julián Carrión-Penagos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abdallah Shkoukani
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Daniel Snellings
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dinanath Sulakhe
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yuan Ji
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Ruiz-Pozo VA, Cadena-Ullauri S, Guevara-Ramírez P, Paz-Cruz E, Tamayo-Trujillo R, Zambrano AK. Differential microRNA expression for diagnosis and prognosis of papillary thyroid cancer. Front Med (Lausanne) 2023; 10:1139362. [PMID: 37089590 PMCID: PMC10113479 DOI: 10.3389/fmed.2023.1139362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Papillary thyroid cancer accounts for 85% of thyroid cancer. The diagnosis is based on ultrasound methods and tumor biopsies (FNA). In recent years, research has revealed the importance of miRNAs, non-coding RNA molecules that regulate gene expression and are involved in many diseases. The present mini review describes upregulated and downregulated miRNAs expression in papillary thyroid cancer patient samples (tissue, serum, plasma) and the genes regulated by these non-coding molecules. In addition, a bibliographic search was performed to identify the expression of miRNAs that are common in tumor tissue and blood. The miRNAs miR-146b, miR-221-3p, miRNA 222, miR-21, miR-296-5p, and miR-145 are common in both tissue and bloodstream of PTC patient samples. Furthermore, these miRNAs regulate genes involved in biological processes such as cell differentiation, proliferation, migration, invasion, and apoptosis. In conclusion, miRNAs could potentially become valuable biomarkers, which could help in the early diagnosis and prognosis of papillary thyroid cancer.
Collapse
|
7
|
Wang R, Zhao J, Liu C, Li S, Liu W, Cao Q. Decreased AGGF1 facilitates the progression of placenta accreta spectrum via mediating the P53 signaling pathway under the regulation of miR-1296-5p. Reprod Biol 2023; 23:100735. [PMID: 36753931 DOI: 10.1016/j.repbio.2023.100735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Placenta accreta spectrum (PAS), an emerging health issue worldwide, is the major causative factor of maternal morbidity and mortality in modern obstetrics, but limited studies have contributed to our understanding of the molecular biology of PAS. This study addressed the expression of AGGF1 and its specific role in the etiology of PAS. The expression of AGGF1 in the placentas of PAS was determined by quantitative PCR, western blot and immunohistochemistry. CCK-8 assay, wound healing assay, Transwell invasion assay and flow cytometry assay were performed to monitor cell proliferation, migration, invasion and apoptosis. The interaction between miR-1296-5p and AGGF1 was detected by dual-luciferase reporter gene assay. Results showed that the mRNA and protein expression of AGGF1 was decremented in placental tissues of PAS patients, compared with samples from women with placenta previa and normal pregnant women. Downregulation of AGGF1 promoted cell proliferation, invasion and migration, inhibited apoptosis in vitro, decreased P53 and Bax expression, and simultaneously increased Bcl-2 expression, whereas overexpression of AGGF1 had the opposite results. Additionally, the dual-luciferase assay confirmed AGGF1 as a target gene of miR-1296-5p in placental tissues of PAS. Particularly, miR-1296-5p fostered HTR8/SVneo cell proliferation, invasion, repression of apoptosis and regulation of P53 signaling axis by downregulating AGGF1 expression. Collectively, our study accentuated that downregulation of placental AGGF1 promoted trophoblast over-invasion by mediating the P53 signaling pathway under the regulation of miR-1296-5p.
Collapse
Affiliation(s)
- Runfang Wang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Cuilian Liu
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shengxian Li
- Department of Obstetrics and Gynecology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qinying Cao
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Obstetrics and Gynecology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Global microRNA expression profile in laryngeal carcinoma unveils new prognostic biomarkers and novel insights into field cancerization. Sci Rep 2022; 12:17051. [PMID: 36224266 PMCID: PMC9556831 DOI: 10.1038/s41598-022-20338-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 12/30/2022] Open
Abstract
Laryngeal carcinoma is still a worldwide burden that has shown no significant improvement during the last few decades regarding definitive treatment strategies. The lack of suitable biomarkers for personalized treatment protocols and delineating field cancerization prevents further progress in clinical outcomes. In the light of this perspective, MicroRNAs could be promising biomarkers both in terms of diagnostic and prognostic value. The aim of this prospective study is to find strong prognostic microRNA biomarkers for advanced laryngeal carcinoma and molecular signatures of field cancerization. Sixty patients were enrolled and four samples were collected from each patient: tumor surface and depth, peritumor normal mucosa, and control distant laryngeal mucosa. Initially, a global microRNA profile was conducted in twelve patients from the whole cohort and subsequently, we validated a selected group of 12 microRNAs with RT-qPCR. The follow-up period was 24 months (SD ± 13 months). Microarray expression profile revealed 59 dysregulated microRNAs. The validated expression levels of miR-93-5p (χ2(2) = 4.68, log-rank p = 0.03), miR-144-3p (χ2(2) = 4.53, log-rank p = 0.03) and miR-210-3p (χ2(2) = 4.53, log-rank p = 0.03) in tumor samples exhibited strong association with recurrence-free survival as higher expression levels of these genes predict worse outcome. Tumor suppressor genes miR-144-3p (mean rank 1.58 vs 2.14 vs 2.29, p = 0.000) and miR-145-5p (mean rank 1.57 vs 2.15 vs 2.28, p = 0.000) were significantly dysregulated in peritumor mucosa with a pattern of expression consistent with paired tumor samples thus revealing a signature of field cancerization in laryngeal carcinoma. Additionally, miR-1260b, miR-21-3p, miR-31-3p and miR-31-5p were strongly associated with tumor grade. Our study reports the first global microRNA profile specifically in advanced laryngeal carcinoma that includes survival analysis and investigates the molecular signature of field cancerization. We report two strong biomarkers of field cancerization and three predictors for recurrence in advance stage laryngeal cancer.
Collapse
|
9
|
Ni L, Tang C, Wang Y, Wan J, Charles MG, Zhang Z, Li C, Zeng R, Jin Y, Song P, Wei M, Li B, Zhang J, Wu Z. Construction of a miRNA-Based Nomogram Model to Predict the Prognosis of Endometrial Cancer. J Pers Med 2022; 12:jpm12071154. [PMID: 35887651 PMCID: PMC9318842 DOI: 10.3390/jpm12071154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Objective: To investigate the differential expression of microRNA (miRNA) in patients with endometrial cancer and its relationship with prognosis and survival. Method: We used The Cancer Genome Atlas (TCGA) database to analyze differentially expressed miRNAs in endometrial cancer tissues and adjacent normal tissues. In addition, we successfully screened out key microRNAs to build nomogram models for predicting prognosis and we performed survival analysis on the key miRNAs as well. Result: We identified 187 differentially expressed miRNAs, which includes 134 up-regulated miRNAs and 53 down-regulated miRNAs. Further univariate Cox regression analysis screened out 47 significantly differentially expressed miRNAs and selected 12 miRNAs from which the prognostic nomogram model for ECA patients by LASSO analysis was constructed. Survival analysis showed that high expression of hsa-mir-138-2, hsa-mir-548f-1, hsa-mir-934, hsa-mir-940, and hsa-mir-4758 as well as low-expression of hsa-mir-146a, hsa-mir-3170, hsa-mir-3614, hsa-mir-3616, and hsa-mir-4687 are associated with poor prognosis in EC patients. However, significant correlations between the expressions levels of has-mir-876 and hsa-mir-1269a and patients' prognosis are not found. Conclusion: Our study found that 12 significantly differentially expressed miRNAs might promote the proliferation, invasion, and metastasis of cancer cells by regulating the expression of upstream target genes, thereby affecting the prognosis of patients with endometrial cancer.
Collapse
Affiliation(s)
- Leyi Ni
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Chengyun Tang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Yuning Wang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Jiaming Wan
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Morgan G. Charles
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Zilong Zhang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, 14195 Berlin, Germany;
| | - Ruijie Zeng
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Yiyao Jin
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Penghao Song
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Ming Wei
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Bocen Li
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence: (J.Z.); (Z.W.)
| | - Zhenghao Wu
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health, Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia; (L.N.); (C.T.); (Y.W.); (J.W.); (M.G.C.); (Z.Z.); (R.Z.); (Y.J.); (P.S.); (M.W.); (B.L.)
- Correspondence: (J.Z.); (Z.W.)
| |
Collapse
|
10
|
Karami Fath M, Anjomrooz M, Taha SR, Shariat Zadeh M, Sahraei M, Atbaei R, Fazlollahpour Naghibi A, Payandeh Z, Rahmani Z, Barati G. The therapeutic effect of exosomes from mesenchymal stem cells on colorectal cancer: Toward cell-free therapy. Pathol Res Pract 2022; 237:154024. [PMID: 35905664 DOI: 10.1016/j.prp.2022.154024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Colorectal cancer (CRC) is known for its high mortality rate and affects more men than women. The treatment requires invasive surgical interventions, however, the progression of CRC metastasis is difficult to control in most cases. Mesenchymal stem cells (MSCs) with their outstanding characteristics have been widely used in the treatment of degenerative diseases as well as cancers. They affect the tumor microenvironment through either cell-cell interactions or communications with their secretome. While stem cells may represent a dual role in tumor proliferation and progression, exosomes have attracted much attention as a cell-free therapy in CRC treatment. Exosomes derived from native or genetically modified MSCs, as well as exosomal microRNAs (miRNAs), have been evaluated on CRC progression. Moreover, MSC-derived exosomes have been used as a carrier to deliver anticancer agents in colorectal cancer. In this review, we overview and discuss the current knowledge in both stem cell-based and cell-free exosome therapy of CRC.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Faculty of Medicine, Islamic Azad University, Tehran Branch, Tehran, Iran
| | | | - Mahya Sahraei
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Raihaneh Atbaei
- Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Sweden
| | - Zobeir Rahmani
- Faculty of Paramedical, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
11
|
Fellizar A, Refuerzo V, Ramos JD, Albano PM. Expression of specific microRNAs in tissue and plasma in colorectal cancer. J Pathol Transl Med 2022; 57:147-157. [PMID: 35501673 DOI: 10.4132/jptm.2022.02.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNA/miR) play significant roles in the regulation of cell differentiation, cell cycle progression, and apoptosis. They become dysregulated during carcinogenesis and are eventually released into the circulation, enabling their detection in body fluids. Thus, this study compared the miRNA expression in tissue and plasma samples of colorectal cancer (CRC) patients and clinically healthy controls and determined miRNA expression as a potential CRC biomarker. METHODS Using quantitative reverse transcription polymerase chain reaction (RT-qPCR), miR-21-5p, miR-29a-3p, miR-92a-3p, miR-135b-5p, miR-196b-5p, and miR-197-3p, expression was analyzed and compared between the malignant (n = 41) and the adjacent neoplasm free mucosal tissues (n = 41) of CRC patients. The findings were validated in plasma samples (n = 36) collected from the same CRC patients prior to surgery or any form of treatment and compared to plasma from their age and sex-matched controls (n = 36). RESULTS MiR-21-5p, miR-29a-3p, miR-92a-3p, and miR- 196b-5p were upregulated and miR-135b-5p was downregulated in CRC malignant tissues compared to their expression in adjacent neoplasm-free tissue. This was further observed in the plasma of the same CRC cases compared to controls. MiR-92a-3p showed itself the most sensitive (0.93; p < .001) and most specific (0.95; p < .001) in detecting CRC in tissue. In plasma, miR-196b-5p was the most sensitive (0.97; p < .001) and specific (0.94; p < .001) in detecting CRC. Plasma miR-92a-3p and miR-196b-5p were the most sensitive (0.95; p < .001) and specific (0.94; p < .001) in the early detection of CRC. CONCLUSIONS Results show that specific miRNAs dysregulated in malignant tissues are released and can be detected in the circulation, supporting their potential as non-invasive biomarkers of CRC.
Collapse
|
12
|
LiKidMiRs: A ddPCR-Based Panel of 4 Circulating miRNAs for Detection of Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14040858. [PMID: 35205607 PMCID: PMC8869982 DOI: 10.3390/cancers14040858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/26/2023] Open
Abstract
Simple Summary Early detection of renal cell carcinoma (RCC) significantly increases the likelihood of curative treatment, avoiding the need of adjuvant therapies, associated side effects and comorbidities. Thus, we aimed to discover circulating microRNAs that might aid in early, minimally invasive, RCC detection/diagnosis. Abstract Background: Decreased renal cell cancer-related mortality is an important societal goal, embodied by efforts to develop effective biomarkers enabling early detection and increasing the likelihood of curative treatment. Herein, we sought to develop a new biomarker for early and minimally invasive detection of renal cell carcinoma (RCC) based on a microRNA panel assessed by ddPCR. Methods: Plasma samples from patients with RCC (n = 124) or oncocytomas (n = 15), and 64 healthy donors, were selected. Hsa-miR-21-5p, hsa-miR-126-3p, hsa-miR-155-5p and hsa-miR-200b-3p levels were evaluated using a ddPCR protocol. Results: RCC patients disclosed significantly higher circulating levels of hsa-miR-155-5p compared to healthy donors, whereas the opposite was observed for hsa-miR-21-5p levels. Furthermore, hsa-miR-21-5p and hsa-miR-155-5p panels detected RCC with high sensitivity (82.66%) and accuracy (71.89%). The hsa-miR-126-3p/hsa-miR-200b-3p panel identified the most common RCC subtype (clear cell, ccRCC) with 74.78% sensitivity. Conclusion: Variable combinations of plasma miR levels assessed by ddPCR enable accurate detection of RCC in general, and of ccRCC. These findings, if confirmed in larger studies, provide evidence for a novel ancillary tool which might aid in early detection of RCC.
Collapse
|
13
|
The Role of Circulating MicroRNAs in Patients with Early-Stage Pancreatic Adenocarcinoma. Biomedicines 2021; 9:biomedicines9101468. [PMID: 34680585 PMCID: PMC8533318 DOI: 10.3390/biomedicines9101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is still associated with a high rate of mortality. Only a minority of patients are diagnosed in the early stage. Radical surgery is the only potential curative procedure. However, radicality is reached in 20% of patients operated on. Despite the multidisciplinary approach in resectable tumors, early tumor recurrences are common. Options on how to select optimal candidates for resection remain limited. Nevertheless, accumulating evidence shows an important role of circulating non-coding plasma and serum microRNAs (miRNAs), which physiologically regulate the function of a target protein. miRNAs also play a crucial role in carcinogenesis. In PDAC patients, the expression levels of certain miRNAs vary and may modulate the function of oncogenes or tumor suppressor genes. As they can be detected in a patient's blood, they have the potential to become promising non-invasive diagnostic and prognostic biomarkers. Moreover, they may also serve as markers of chemoresistance. Thus, miRNAs could be useful for early and accurate diagnosis, prognostic stratification, and individual treatment planning. In this review, we summarize the latest findings on miRNAs in PDAC patients, focusing on their potential use in the early stage of the disease.
Collapse
|
14
|
Chong ZX, Yeap SK, Ho WY. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res 2021; 172:105818. [PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
15
|
A three-microRNA panel in serum as novel biomarker for papillary thyroid carcinoma diagnosis. Chin Med J (Engl) 2021; 133:2543-2551. [PMID: 33009019 PMCID: PMC7722608 DOI: 10.1097/cm9.0000000000001107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Accumulating evidence has revealed that circulating microRNAs (miRNAs) can serve as non-invasive biomarkers for cancer diagnosis. This study aimed to identify differentially expressed miRNAs in serum which might become potential biomarkers for non-invasive diagnosis of papillary thyroid carcinoma (PTC). Methods The experiment was carried out between 2015 and 2017. In the screening stage, the Exiqon miRNA quantitative real-time polymerase chain reaction (qPCR) panel was applied to select candidate miRNAs. In the following training, testing, and external validation stages, the serum samples of 100 patients and 96 healthy controls (HCs) were analyzed to compare the expression levels of the identified miRNAs. The areas under the receiver operating characteristic curves (AUCs) were calculated to assess the diagnostic value of the identified signature. Results Three miRNAs (miR-25-3p, miR-296-5p, and miR-92a-3p) in serum were consistently up-regulated in PTC patients compared with HCs. A three-miRNA panel was constructed by logistic regression analysis and showed better diagnostic performance than a single miRNA for PTC detection. The AUCs of the panel were 0.727, 0.771, and 0.862 for the training, testing, and external validation stage, respectively. Meanwhile, the panel showed stable capability in differentiating PTC patients from patients with benign goiters, with an AUC as high as 0.969. For further exploration, the three identified miRNAs were analyzed in tissue samples (23 PTC vs. 23 HCs) and serum-derived exosomes samples (24 PTC vs. 24 HCs), and the altered expression in the tumor also indicated their close relationship with PTC disease. Conclusion We identify a three-miRNA panel in serum which might serve as a promising biomarker for PTC diagnosis.
Collapse
|
16
|
Wang W, Cheng X, Zhu J. Long non-coding RNA OTUD6B-AS1 overexpression inhibits the proliferation, invasion and migration of colorectal cancer cells via downregulation of microRNA-3171. Oncol Lett 2021; 21:193. [PMID: 33574932 PMCID: PMC7816294 DOI: 10.3892/ol.2021.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a common digestive system malignancy and a major cause of cancer-associated mortality worldwide. Aberrant expression of long non-coding RNAs has been reported in several types of cancer. The aim of the present study was to investigate the role of ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) in CRC and its underlying mechanisms. OTUD6B-AS1 expression in CRC cell lines was examined using reverse transcription-quantitative PCR. Furthermore, The Cancer Genome Atlas database was utilized to examine the expression levels of OTUD6B-AS1 in CRC tissues. Following OTUD6B-AS1 overexpression, Cell Counting Kit-8 and colony formation assays were used to detect the proliferation ability of HCT116 cells. The expression levels of proliferation-related protein Ki67 were determined using immunofluorescence staining. Subsequently, Transwell and wound healing assays were used to evaluate the invasion and migration of HCT116 cells, respectively. The expression levels of migration-related proteins (MMP2 and MMP9) were measured using western blotting. Additionally, a luciferase reporter assay was used to verify the potential interaction between OTUD6B-AS1 and microRNA-3171 (miR-3171). Subsequently, rescue assays were performed to clarify the regulatory effects of OTUD6B-AS1 and miR-3171 on CRC development. The results demonstrated that OTUD6B-AS1 expression was low in CRC cells and tissues. Overexpression of OTUD6B-AS1 inhibited the proliferation, invasion and migration of HCT116 cells. Furthermore, miR-3171 was demonstrated to be a direct target of OTUD6B-AS1 using a luciferase reporter assay. The rescue assays revealed that miR-3171 mimics markedly reversed the inhibitory effects of OTUD6B-AS1 overexpression on proliferation, invasion and migration of CRC cells. Overall, these findings demonstrated that OTUD6B-AS1 overexpression inhibited the proliferation, invasion and migration of HCT116 cells via downregulation of miR-3171, suggesting that OTUD6B-AS1 may serve as a novel biomarker for CRC treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| | - Xia Cheng
- Graduate School, Dalian Medical University, Dalian, Liaoning 116000, P.R. China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Jianhua Zhu
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| |
Collapse
|
17
|
Chhatriya B, Sarkar P, Nath D, Ray S, Das K, Mohapatra SK, Goswami S. Pilot study identifying circulating miRNA signature specific to alcoholic chronic pancreatitis and its implication on alcohol-mediated pancreatic tissue injury. JGH OPEN 2020; 4:1079-1087. [PMID: 33319040 PMCID: PMC7731805 DOI: 10.1002/jgh3.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 11/12/2022]
Abstract
Background and Aim Alcohol exerts its effects on organs in multiple ways. Alcoholic chronic pancreatitis (ACP) is a disease in which alcohol triggers the pathological changes in pancreas, leading to chronic inflammation and fibrosis. The molecular mechanism behind these changes is not clear. Identification of key circulating miRNA changes in ACP patients and determination of the fraction that is secreted from diseased pancreas not only could serve as potential biomarker for assessing disease severity, but also could help identifying the molecular alterations prevailing in the organ precipitating the disease, to some extent. Methods We performed microRNA microarray using the Affymetrix miRNA 4.0 platform to identify differentially expressed miRNAs in serum of ACP patients as compared to alcoholic control individuals and then found out how many of them could be pancreas-specific and exosomally secreted. We further analyzed a pancreatitis-specific gene expression data set to find out the differentially expressed genes in diseased pancreas and explored the possible role of those selected miRNAs in regulation of gene expression in ACP. Results We identified 14 miRNAs differentially expressed in both serum and pancreas and also identified their experimentally validated targets. Transcription factors modulating the miRNA expression in an alcohol-dependent manner were also identified and characterized to derive the miRNA-gene-TF interaction network responsible for progression of the disease. Conclusions Differentially expressed miRNA signature demonstrated significant changes in both pro- and anti-inflammatory pathways probably balancing the chronic inflammation in the pancreas. Our findings also suggested possible involvement of pancreatic stellate cells in disease progression.
Collapse
Affiliation(s)
| | - Piyali Sarkar
- Department of Cytogenetics Tata Medical Centre Kolkata India
| | - Debashis Nath
- Department of Medicine Indira Gandhi Memorial Hospital Agartala India
| | - Sukanta Ray
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | - Kshaunish Das
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | | | | |
Collapse
|
18
|
Rodriguez-Rius A, Martinez-Perez A, López S, Sabater-Lleal M, Souto JC, Soria JM. Expression of microRNAs in human platelet-poor plasma: analysis of the factors affecting their expression and association with proximal genetic variants. Epigenetics 2020; 15:1396-1406. [PMID: 32543954 PMCID: PMC7678917 DOI: 10.1080/15592294.2020.1783497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022] Open
Abstract
To translate circulating microRNAs (miRNAs) into the clinic, a deeper understanding of the factors affecting their expression is needed. In this study, we explored the features affecting the expression of miRNAs and their genetic regulation using the expression data of 103 miRNAs obtained by qPCR in the platelet-poor plasma of 104 subjects. The principal components (PCs) of the expression of the miRNAs were associated with technical and biological features (e.g., synthetic controls or sex) and with blood cell counts. Also, the associations with proximal genetics variants were analysed. We found that haemolysis marker (dCt hsa-miR-23a-3p-hsa-miR-451a) was correlated strongly (β = 0.84, p = 2.07x10-29) with the second PC, which explained 10.1% of the overall variability. Thus, we identified haemolysis as a source of variability for miRNA expression even in mild hemolyzed samples (haemolysis marker dCt <5). In addition to hsa-miR-23a-3p and hsa-miR-451a, the miRNAs most stable and most susceptible to haemolysis were identified. Then, we discovered that the expression of miRNAs in platelet-poor plasma was not biased by any blood cell count, and thus, our results supported their role as biomarkers of tissue-specific conditions. Finally, we identified 1,323 genetic variants that corresponded to 158 miRNA expression quantitative trait loci for 14 miRNAs (FDR <0.2), which were enriched in promoter regions (p = 0.03). This enrichment corresponded to a range of specific tissues (e.g., breast or fat) although not to blood tissue, supporting the concept that the expression of circulating miRNAs is under the genetic control of different tissues.
Collapse
Affiliation(s)
- Alba Rodriguez-Rius
- Genomics of Complex Diseases Group, Research Institute of Hospital De La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Angel Martinez-Perez
- Genomics of Complex Diseases Group, Research Institute of Hospital De La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Sonia López
- Genomics of Complex Diseases Group, Research Institute of Hospital De La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Maria Sabater-Lleal
- Genomics of Complex Diseases Group, Research Institute of Hospital De La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Carlos Souto
- Unit of Thrombosis and Hemostasis, Hospital De La Santa Creu I Sant Pau. Barcelona, Spain
| | - José Manuel Soria
- Genomics of Complex Diseases Group, Research Institute of Hospital De La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
| |
Collapse
|
19
|
Liu M, Si Q, Ouyang S, Zhou Z, Wang M, Zhao C, Yang T, Wang Y, Zhang X, Xie W, Dai L, Li J. Serum MiR-4687-3p Has Potential for Diagnosis and Carcinogenesis in Non-small Cell Lung Cancer. Front Genet 2020; 11:597508. [PMID: 33329742 PMCID: PMC7721467 DOI: 10.3389/fgene.2020.597508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
The lack of a useful biomarker partly contributes to the increased mortality of non-small cell lung cancer (NSCLC). MiRNAs have become increasingly appreciated in diagnosis of NSCLC. In the present study, we used microarray to screen 2,549 miRNAs in serum samples from the training cohort (NSCLC, n = 10; the healthy, n = 10) to discover differentially expressed miRNAs (DEMs). Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay was applied to validate the expression level of selected overexpressed DEMs of NSCLC in a validation cohort (NSCLC, n = 30; the healthy, n = 30). Area under the receiver operating characteristic curve (AUC) was performed to evaluate diagnostic capability of the DEMs. The expression of the miRNAs in tissues was analyzed based on the TCGA database. Subsequently, the target genes of the miR-4687-3p were predicted by TargetScan. Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were tested by R software (ClusterProfiler package). NSCLC cells were transfected with inhibitor or mimic to down-regulate or up-regulate the miR-4687-3p level. The function of miR-4687-3p on proliferation, invasion, and migration of lung cancer cells were investigated through CCK-8 and Transwell assays, respectively. In the results, we identified serum miR-4687-3p that provided a high diagnostic accuracy of NSCLC (AUC = 0.679, 95%CI: 0.543-0.815) in the validation cohort. According to the TCGA database, we found that the miR-4687-3p level was significantly higher in NSCLC tissues than in normal lung tissues (p < 0.05). GO and KEGG pathway enrichment analysis showed that postsynaptic specialization and TGF-β signaling pathway were significantly enriched. Down-regulation of miR-4687-3p could suppress the proliferation, invasion, and migration of the NSCLC cells, compared with inhibitor negative control (NC). Meanwhile, overexpression of miR-4687-3p could promote the proliferation, invasion, and migration of the NSCLC cells compared with mimic NC. As a conclusion, our study first discovered that serum miR-4687-3p might have clinical potential as a non-invasive diagnostic biomarker for NSCLC and play an important role in the development of NSCLC.
Collapse
Affiliation(s)
- Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Qiufang Si
- BGI College, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital in Zhengzhou University, Zhengzhou, China
| | - Zhigang Zhou
- Department of Radiology, The First Affiliated Hospital in Zhengzhou University, Zhengzhou, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital in Zhengzhou University, Zhengzhou, China
| | - Chunling Zhao
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital in Zhengzhou University, Zhengzhou, China
| | - Ting Yang
- BGI College, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Yulin Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Wenbo Xie
- Department of Computer Science, College of Engineering, University of Texas at El Paso, El Paso, TX, United States
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| |
Collapse
|
20
|
MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int J Mol Sci 2020; 21:ijms21217893. [PMID: 33114313 PMCID: PMC7660644 DOI: 10.3390/ijms21217893] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal tract. The IBD population includes a heterogeneous group of patients with varying disease courses requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these important epigenetic regulators and the cellular localization may even contribute to an alternative repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling, next generation sequencing and in situ hybridization of microRNA biomarkers identified in the circulation and in tissue biopsies.
Collapse
|
21
|
Pop-Bica C, Pintea S, Magdo L, Cojocneanu R, Gulei D, Ferracin M, Berindan-Neagoe I. The Clinical Utility of miR-21 and let-7 in Non-small Cell Lung Cancer (NSCLC). A Systematic Review and Meta-Analysis. Front Oncol 2020; 10:516850. [PMID: 33194579 PMCID: PMC7604406 DOI: 10.3389/fonc.2020.516850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a problem worldwide due to its rapid progression and low rate of response to treatment. The heterogeneity of these tumors observed in histopathology exam but also in the mutational status and gene expression pattern makes this malignancy difficult to treat in clinic. The present study investigated the effect of miR-21 and let-7 family members as prognostic biomarkers in NSCLC patients based on the results published in different studies regarding this subject until March 2019. The analysis revealed that these two transcripts are steady biomarkers for prediction of patient outcome or survival. Upregulated expression of miR-21 is associated with poor outcome of patients with NSCLC [HR = 1.87, 95% CI = (1.41, 2.47), p < 0.001]. The analysis regarding let-7 family, specifically let-7a/b/e/f, revealed that downregulated expression of these transcripts predicts poor outcome for NSCLC patients [HR = 2.61, 95% CI = (1.58, 4.30), p < 0.001]. Besides, the reliability of these microRNAs is reflected in the fact that their prognostic significance is constant given the different sample types (tissue, FFPE tissue, serum, serum/plasma or exosomes) used in the selected studies.
Collapse
Affiliation(s)
- Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Sebastian Pintea
- Department of Psychology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lorand Magdo
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine MedFuture, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Manuela Ferracin
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricută", Cluj-Napoca, Romania
| |
Collapse
|
22
|
Addo KA, Palakodety N, Hartwell HJ, Tingare A, Fry RC. Placental microRNAs: Responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol Rep 2020; 7:1046-1056. [PMID: 32913718 PMCID: PMC7472806 DOI: 10.1016/j.toxrep.2020.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are epigenetic modifiers that play an important role in the regulation of the expression of genes across the genome. miRNAs are expressed in the placenta as well as other organs, and are involved in several biological processes including the regulation of trophoblast differentiation, migration, invasion, proliferation, apoptosis, angiogenesis and cellular metabolism. Related to their role in disease process, miRNAs have been shown to be differentially expressed between normal placentas and placentas obtained from women with pregnancy/health complications such as preeclampsia, gestational diabetes mellitus, and obesity. This dysregulation indicates that miRNAs in the placenta likely play important roles in the pathogenesis of diseases during pregnancy. Furthermore, miRNAs in the placenta are susceptible to altered expression in relation to exposure to environmental toxicants. With relevance to the placenta, the dysregulation of miRNAs in both placenta and blood has been associated with maternal exposures to several toxicants. In this review, we provide a summary of miRNAs that have been assessed in the context of human pregnancy-related diseases and in relation to exposure to environmental toxicants in the placenta. Where data are available, miRNAs are discussed in their context as biomarkers of exposure and/or disease, with comparisons made across-tissue types, and conservation across studies detailed.
Collapse
Affiliation(s)
- Kezia A. Addo
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Niharika Palakodety
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Hadley J. Hartwell
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Aishani Tingare
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Keller A, Fehlmann T, Backes C, Kern F, Gislefoss R, Langseth H, Rounge TB, Ludwig N, Meese E. Competitive learning suggests circulating miRNA profiles for cancers decades prior to diagnosis. RNA Biol 2020; 17:1416-1426. [PMID: 32456538 DOI: 10.1080/15476286.2020.1771945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are regulators of gene expressionand may be key markers in liquid biopsy.Early diagnosis is an effective means to increase patients' overall survival. We generated genome-wide miRNA profiles from serum of patients and controls from the population-based Janus Serum Bank (JSB) and analysed them by bioinformatics and artificial intelligence approaches. JSB contains sera from 318,628 originally healthy persons, more than 96,000 of whom developed cancer. We selected 210 serum samples from patients with lung, colon or breast cancer at three time points prior to diagnosis (up to 32 years prior to diagnosis with median 5 years interval between TPs), one time-point after diagnosis and from individually matched controls. The controls were matched on age and year of all pre-diagnostic sampling time-points for the corresponding case. Using ANOVA we report 70 significantly deregulated markers (adjusted p-value<0.05). The driver for the significance was the diagnostic time point (miR-575, miR-6821-5p, miR-630 with adjusted p-values<10-10). Further, 91miRNAs were differently expressed in pre-diagnostic samples as compared to controls (nominal p < 0.05). Self-organized maps (SOMs)indicated larges effects in lung cancer samples while breast cancer samples showed the least pronounced changes. SOMsalsohighlighted cancer and time point specific miRNA dys-regulation. Intriguingly, a detailed breakdown of the results highlighted that 51% of all miRNAs were highly specific, either for a time-point or a cancer entity. Pathway analysis highlighted 12 pathways including Hipo signalling and ABC transporters.Our results indicate that tumours may be indicated by serum miRNAs decades prior the clinical manifestation.
Collapse
Affiliation(s)
- Andreas Keller
- Department of Clinical Bioinformatics, Saarland University , Saarbrücken, Germany.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine , Stanford, CA, USA
| | - Tobias Fehlmann
- Department of Clinical Bioinformatics, Saarland University , Saarbrücken, Germany
| | - Christina Backes
- Department of Clinical Bioinformatics, Saarland University , Saarbrücken, Germany
| | - Fabian Kern
- Department of Clinical Bioinformatics, Saarland University , Saarbrücken, Germany
| | - Randi Gislefoss
- Department of Research, Cancer Registry of Norway , Oslo, Norway
| | - Hilde Langseth
- Department of Research, Cancer Registry of Norway , Oslo, Norway.,Department of Epidemiology and Biostatistics, Imperial College London , London, UK
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway , Oslo, Norway.,Department of Informatics, University of Oslo , Oslo, Norway
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University , Homburg/Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University , Homburg/Saar, Germany
| |
Collapse
|
24
|
Kashyap D, Kaur H. Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci 2020; 246:117417. [PMID: 32044304 DOI: 10.1016/j.lfs.2020.117417] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the genetic diseases causing a high mortality among women around the world. Despite the availability of advanced diagnostic tools and treatment strategies, the incidence of breast cancer is increasing every year. This is due to the lack of accurate and reliable biomarkers whose deficiency creates difficulty in early breast cancer recognition, subtypes determination, and metastasis prophecy. Although biomarkers such as ER, PR, Her2, Ki-67, and other genetic platforms e.g. MammaPrint®, Oncotype DX®, Prosigna® or EndoPredict® are available for determination of breast cancer diagnosis and prognosis. However, pertaining to heterogeneous nature, lack of sensitivity, and specificity of these markers, it is still incessant to overcome breast cancer burden. Therefore, a novel biomarker is urgently needed for therapeutic diagnosis and improving prognosis. Lately, it has become more evident that cell-free miRNAs might be useful as good non-invasive biomarkers that are associated with different events in carcinogenesis. For example, some known biomarkers such as miR-21, miR-23a, miR-34a are associated with molecular subtyping and different biomolecular aspects i.e. apoptosis, angiogenesis, metastasis, and miR-1, miR-10b, miR-16 are associated with drug response. Cell-free miRNAs present in human body fluids have proven to be potential biomarkers with significant prognostic and predictive values. Numerous studies have found a distinct expression profile of circulating miRNAs in breast tumour versus non-tumour and in early and advanced-stage, thus implicating its clinical relevance. This review article will highlight the importance of different cell-free miRNAs as a biomarker for early breast cancer detection, subtype classification, and metastasis forecast.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
The Regulatory Role of MicroRNA in Hepatitis-B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) Pathogenesis. Cells 2019; 8:cells8121504. [PMID: 31771261 PMCID: PMC6953055 DOI: 10.3390/cells8121504] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
The incidence and mortality of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) is an intractable public health problem in developing countries that is compounded by limited early detection and therapeutic options. Despite the early promise of utilizing the regulatory role of miRNA in liver cancer, this field remains largely in the work-in-progress phase. This exploratory review paper adopts a broad focus in order to collate evidence of the regulatory role of miRNA in each stage of the HBV-HCC continuum. This includes the regulatory role of miRNA in early HBV infection, chronic inflammation, fibrosis/cirrhosis, and the onset of HCC. The paper specifically investigates HBV dysregulated miRNA that influence the expression of the host/HBV genome in HBV-HCC pathogenesis and fully acknowledges that this does not cover the full spectrum of dysregulated miRNA. The sheer number of dysregulated miRNA in each phase support a hypothesis that future therapeutic interventions will need to consider incorporating multiple miRNA panels.
Collapse
|
26
|
An T, Fan T, Zhang XQ, Liu YF, Huang J, Liang C, Lv BH, Wang YQ, Zhao XG, Liu JX, Fu YH, Jiang GJ. Comparison of Alterations in miRNA Expression in Matched Tissue and Blood Samples during Spinal Cord Glioma Progression. Sci Rep 2019; 9:9169. [PMID: 31235820 PMCID: PMC6591379 DOI: 10.1038/s41598-019-42364-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Abnormal expression of microRNAs (miRNAs) contributes to glioma initiation. However, the expression of miRNAs in tumour tissue or blood of spinal cord glioma (SCG) patients, particularly in high-grade spinal gliomas (Grade IV) known as glioblastoma (GBM), remains largely unknown. In this study we aimed to determine differentially expressed miRNAs (DEmiRNAs) in the tissue and blood between spinal cord glioblastoma (SC-GBM) patients and low grade SCG (L-SCG) patients. Additionally, we predicted key miRNA targets and pathways that may be critical in glioma development using pathway and gene ontology analysis. A total of 74 miRNAs were determined to be differentially expressed (25 upregulated and 49 downregulated) in blood, while 207 miRNAs (20 up-regulated and 187 down-regulated) were identified in tissue samples. Gene ontology analysis revealed multicellular organism development and positive regulation of macromolecule metabolic process to be primarily involved. Pathway analysis revealed "Glioma", "Signalling pathways regulating pluripotency of stem cells" to be the most relevant pathways. miRNA-mRNA analysis revealed that hsa-miRNA3196, hsa-miR-27a-3p, and hsa-miR-3664-3p and their target genes are involved in cancer progression. Our study provides a molecular basis for SCG pathological grading based on differential miRNA expression.
Collapse
Affiliation(s)
- Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tao Fan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| | - Xin Qing Zhang
- Department of Neurosurgery, ChuiYangLiu Hospital affiliated to Tsinghua University, Beijing, 100022, China
| | - Yu-Fei Liu
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | | | - Cong Liang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Bo-Han Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yin-Qian Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xin-Gang Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jia-Xian Liu
- University of Southern California, Los Angeles, CA, 90007, USA
| | - Yu- Huan Fu
- Molecular Development and Diagnosis of Tumor Pathology, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan, 063000, China
| | - Guang-Jian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
27
|
Upregulation of the long noncoding RNA ADPGK-AS1 promotes carcinogenesis and predicts poor prognosis in gastric cancer. Biochem Biophys Res Commun 2019; 513:127-134. [PMID: 30944080 DOI: 10.1016/j.bbrc.2019.03.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Numerous previous studies have revealed that many long non-coding RNAs (lncRNAs) are upregulated in gastric cancer (GC) and are associated with tumor onset and progression in GC. ADPGK-AS1, a novel lncRNA, has been discovered as an oncogenic lncRNA in pancreatic cancer while its function in GC remains unclear. MATERIALS AND METHODS The expression of ADPGK-AS1 and miR-3196 was determined by RT-qPCR. The expression of KDM1B was assessed by RT-qPCR and WB. The association between ADPGK-AS1 and overall survival of GC patients was explored using Kaplan-Meier curves. The function of ADPGK-AS1 in GC was examined through CCK-8, EdU, transwell as well as flow cytometry analysis. The interaction of miR-3196 and ADPGK-AS1 or KDM1B was confirmed by RIP, RNA pull down and luciferase reporter assay.Materials and Methods RESULTS: ADPGK-AS1 was increased in GC tissues and cell lines. GC patients with an increased expression of ADPGK-AS1 had a poor prognosis compared to those with a reduced expression. ADPGK-AS1 knockdown led to inhibition of GC cell proliferation and migration. The suppressive effect of ADPGK-AS1 silence on GC progression was abolished by KDM1B upregulation.Results CONCLUSIONS: We unveiled that ADPGK-AS1 could promote GC progression via sponging miR-3196 and therefore upregulating KDM1B, providing a novel prognostic biomarker and therapeutic target for GC patients. CONCLUSIONS
Collapse
|
28
|
Hou X, Niu Z, Liu L, Guo Q, Li H, Yang X, Zhang X. miR-1207-5p regulates the sensitivity of triple-negative breast cancer cells to Taxol treatment via the suppression of LZTS1 expression. Oncol Lett 2018; 17:990-998. [PMID: 30655858 PMCID: PMC6312986 DOI: 10.3892/ol.2018.9687] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Taxol-based chemotherapy is a conventional therapeutic approach for the treatment of triple-negative breast cancer (TNBC). However, the insensitivity of TNBC cells to Taxol greatly limits the anticancer effect of the drug and leads to patient mortality. The present study first evaluated the expression levels of microRNA (miR)-1207-5p in human normal breast epithelial MCF-10A cells and TNBC cell lines (MDA-MB-231, MDA-MB-436 and MDA-MB-453). The results revealed that the highest miR-1207-5p level was in MDA-MB-231, which suggested an oncogenic role of miR-1207-5p in TNBC. Therefore, MDA-MB-231 served as the present study's research model in subsequent experiments. The mRNAs that functioned as tumor suppressor factors for miR-1207-5p were then determined. Leucine zipper tumor suppressor gene 1 (LZTS1), which was predicted by TargetScan 6.2 and was supported by the results of a dual luciferase assay, was identified as a target of miR-1207-5p. AntagomiR-1207-5p increased LZTS1 mRNA and protein expressions, enhanced cell growth arrest and cell apoptosis induced by Taxol in MDA-MB-231 cells. Additionally, it was observed that, when compared with Taxol treatment, the combination of Taxol and antagomiR-1207-5p induced a sharp decrease in B-cell lymphoma 2 (Bcl-2) and phosphorylated-protein kinase B expression accompanied by an increase in the Bcl-2-associated X protein expression. Finally, miR-1207-5p expression was significantly increased, while LZTS1 expression was significantly decreased, in TNBC tissues when compared with normal adjacent tissues, and there was a negative correlation between miR-1207-5p and LZTS1 expression. In addition, there was a notable elevation in the expression of miR-1207-5p and a reduction in the expression of LZTS1 in the Taxol non-responsive TNBC tissues when compared with the Taxol-responsive TNBC tissues. The results of the present study suggested that miR-1207-5p may be a promising predictor of sensitivity towards Taxol in TNBC.
Collapse
Affiliation(s)
- Xiaoke Hou
- Department of Breast Surgery, Yuncheng Central Hospital, Yuncheng, Shanxi 044000, P.R. China
| | - Zhaofeng Niu
- Department of Breast Surgery, Yuncheng Central Hospital, Yuncheng, Shanxi 044000, P.R. China
| | - Leilei Liu
- The First Department of Oncology, Linfen Central Hospital, Linfen, Shanxi 041000, P.R. China
| | - Qiang Guo
- Department of Breast Surgery, Yuncheng Central Hospital, Yuncheng, Shanxi 044000, P.R. China
| | - Haiyang Li
- The First Department of Oncology, Linfen Central Hospital, Linfen, Shanxi 041000, P.R. China
| | - Xiaojun Yang
- Department of Breast Surgery, Yuncheng Central Hospital, Yuncheng, Shanxi 044000, P.R. China
| | - Xia Zhang
- Department of Oncology, Linfen People's Hospital, Linfen, Shanxi 041000, P.R. China
| |
Collapse
|
29
|
Han B, Feng D, Yu X, Zhang Y, Liu Y, Zhou L. Identification and Interaction Analysis of Molecular Markers in Colorectal Cancer by Integrated Bioinformatics Analysis. Med Sci Monit 2018; 24:6059-6069. [PMID: 30168505 PMCID: PMC6129036 DOI: 10.12659/msm.910106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is an extremely common gastrointestinal malignancy. MATERIAL AND METHODS Three mRNA and 2 microRNA microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and microRNAs (DEMs) were obtained. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) program was utilized to perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) network analysis was performed with the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape and Molecular Complex Detection (MCODE). Kaplan-Meier curves were plotted to determine overall survival (OS) estimates. DEMs targets were predicted by miRWalk. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was utilized to detect the expression of genes and microRNAs. RESULTS A total of 264 DEGs and 8 DEMs were obtained. GO analysis revealed that the DEGs were enriched in terms of cell structure, digestion, receptor binding, and extracellular material (ECM). KEGG pathway analysis showed that the DEGs were enriched in ECM interaction and mineral absorption. Additionally, a PPI network consisting of 181 nodes and 450 edges was established. Three modules with 38 high-degree hubs were extracted from the PPI network and found to be involved in pathways such as chemokine signaling. Five DEGs located in the network of DEM-DEG pairs were associated with the overall survival of CRC patients. Furthermore, hsa-miR-551b was demonstrated to be significantly down-regulated in CRC tissues. CONCLUSIONS The key biomarkers could provide new clues for CRC.
Collapse
Affiliation(s)
- Bin Han
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland).,Health Service Center of Southeast Community, Nanchong, Sichuan, China (mainland)
| | - Dan Feng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Xin Yu
- Health Service Center of Southeast Community, Nanchong, Sichuan, China (mainland)
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Yuanqi Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
30
|
Chayeb V, Mahjoub S, Zitouni H, Jrah-Harzallah H, Zouari K, Letaief R, Mahjoub T. Contribution of microRNA-149, microRNA-146a, and microRNA-196a2 SNPs in colorectal cancer risk and clinicopathological features in Tunisia. Gene 2018; 666:100-107. [DOI: 10.1016/j.gene.2018.04.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/10/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
|
31
|
Tao Y, Ma C, Fan Q, Wang Y, Han T, Sun C. MicroRNA-1296 Facilitates Proliferation, Migration And Invasion Of Colorectal Cancer Cells By Targeting SFPQ. J Cancer 2018; 9:2317-2326. [PMID: 30026827 PMCID: PMC6036719 DOI: 10.7150/jca.25427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in cancer genesis and progression via acting as tumor suppressors or oncogenes. Previous studies report that miR-1296 shows upregulation in both colorectal cancer (CRC) tissues and plasma samples. However, the accurate clinical significance of miR-1296 and its role in CRC have not been well investigated. The aim of the present study was to disclose the aberrant expression, clinical significance, and the relevant biological function of miR-1296 in CRC. We found a marked upregulation of miR-1296 expression in CRC tissues compared to tumor-adjacent tissues. MiR-1296 overexpression was detected in five CRC cell lines (HCT116, Caco2, HT29, SW620 and SW480). High miR-1296 level was remarkably correlated with tumor size (>5cm), lymph node metastasis and TNM stage (III+IV). Notably. High miR-1296 expression was identified as a predictive factor for poor prognosis of CRC patients by survival analysis. MiR-1296 knockdown inhibited proliferation, migration, invasion capacities of HCT116 and SW480 cells in vitro. Moreover, miR-1296 silencing restrained the growth of CRC cells in vivo. Splicing factor proline and glutamine rich (SFPQ), a novel RNA binding protein, was identified as a direct target gene of miR-1296 in CRC. Downregulation of SFPQ expression was inversely associated with miR-1296 expression in CRC tissues. The Cancer Genome Atlas (TCGA) data revealed the prognostic value of dysregulated SFPQ in CRC patients. Interestingly, our findings established that the oncogenic role of miR-1296 was at least partially mediated by SFPQ in CRC cells. Collectively, these data indicate that miR-1296 accelerates CRC progression possibly by targeting SFPQ and may serve as a potential predictive factor and therapeutic target for CRC.
Collapse
Affiliation(s)
- Youmao Tao
- Department of Gastrointestinal Colorectal and Anal Surgery
| | - Chong Ma
- Department of Gastrointestinal Colorectal and Anal Surgery
| | - Qihao Fan
- Department of Gastrointestinal Colorectal and Anal Surgery
| | - Yannan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery
| | - Tao Han
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin Province 130033, China
| | - Caixia Sun
- Department of Gastrointestinal Colorectal and Anal Surgery
| |
Collapse
|
32
|
Hijmans JG, Diehl KJ, Bammert TD, Kavlich PJ, Lincenberg GM, Greiner JJ, Stauffer BL, DeSouza CA. Association between hypertension and circulating vascular-related microRNAs. J Hum Hypertens 2018; 32:440-447. [PMID: 29615793 PMCID: PMC6026553 DOI: 10.1038/s41371-018-0061-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 01/06/2023]
Abstract
microRNAs (miRNAs) have a key role in regulating inflammation, vascular health and in turn, cardiovascular disease. Specifically, altered circulating expression of miR-17, miR-21, miR-34a, miR-92a, miR-126, miR-145, miR-146a, and miR-150 has been linked with the pathogenesis and progression of cardiovascular disease. The aim of this study was to determine whether the circulating profile of these vascular-related miRNAs is disrupted with hypertension. Thirty sedentary, middle-aged adults were studied: 15 normotensive (10M/5F; age: 56 ± 1 year; BP: 113/71 ± 2/1 mmHg) and 15 hypertensive (10M/5F; 56 ± 2 year; 140/87 ± 2/2 mmHg). All subjects were non-obese and free of other cardiometabolic disorders. Circulating miRNAs were determined in plasma using standard RT-PCR techniques with miRNA primers of interest. Expression was normalized to exogenous C. elegans miR-39 and reported as relative expression in arbitrary units (AU). Circulating expression of miR-34a (9.18 ± 0.94 vs 5.33 ± 0.91 AU) was higher (~170%; P < 0.01) whereas the expression of miR-21 (1.32 ± 0.25 vs 2.50 ± 0.29 AU), miR-126 (0.85 ± 0.10 vs 1.74 ± 0.27 AU) and miR-146a (1.50 ± 0.20 vs 3.10 ± 0.50 AU) were markedly lower (~50%, ~55%, and ~55% respectively; P < 0.05) in the hypertensive vs normotensive groups. Moreover, circulating levels of miR-34a, miR-21, and miR-126 were significantly related to systolic blood pressure (r = 0.48, r = -0.38; r = -0.48); whereas, miR-146a was significantly related to both systolic (r = -0.58) and diastolic (r = -0.55) blood pressure. There were no significant group differences in circulating miR-17, miR-92a, miR-145, and miR-150. In summary, these results suggest that hypertension, independent of other cardiometabolic risk factors, adversely affects the circulating profile of a subset of vascular-related miRNAs that have been link to CVD risk and development.
Collapse
Affiliation(s)
- Jamie G Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Kyle J Diehl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Tyler D Bammert
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Philip J Kavlich
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Grace M Lincenberg
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Brian L Stauffer
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
- Department of Medicine, Anschutz Medical Center, University of Colorado, Denver, CO, 80262, USA
- Denver Health Medical Center, Denver, CO, 80204, USA
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA.
- Department of Medicine, Anschutz Medical Center, University of Colorado, Denver, CO, 80262, USA.
| |
Collapse
|
33
|
eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis 2018; 21:711-724. [PMID: 29737439 PMCID: PMC6208887 DOI: 10.1007/s10456-018-9620-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The nitric oxide (NO) secreted by vascular endothelium is required for the maintenance of cardiovascular homeostasis. Diminished release of NO generated by endothelial NO synthase contributes to endothelial dysfunction. Hypoxia and ischemia reduce endothelial eNOS expression via posttranscriptional mechanisms that result in NOS3 transcript destabilization. Here, we examine whether microRNAs contribute to this mechanism. We followed the kinetics of hypoxia-induced changes in NOS3 mRNA and eNOS protein levels in primary human umbilical vein endothelial cells (HUVECs). Utilizing in silico predictive protocols to identify potential miRNAs that regulate eNOS expression, we identified miR-200b as a candidate. We established the functional miR-200b target sequence within the NOS3 3′UTR, and demonstrated that manipulation of the miRNA levels during hypoxia using miR-200b mimics and antagomirs regulates eNOS levels, and established that miR-200b physiologically limits eNOS expression during hypoxia. Furthermore, we demonstrated that the specific ablation of the hypoxic induction of miR-200b in HUVECs restored eNOS-driven hypoxic NO release to the normoxic levels. To determine whether miR-200b might be the only miRNA that had this effect, we utilized Next Generation Sequencing (NGS) to follow hypoxia-induced changes in the miRNA levels in HUVECS and found 83 novel hypoxamiRs, with two candidate miRNAs besides miR-200b that could potentially influence eNOS levels. Taken together, the data establish miR-200b-eNOS regulation as a first hypoxamiR-based mechanism that limits NO bioavailability during hypoxia in endothelial cells, and show that hypoxamiRs could become useful therapeutic targets for cardiovascular diseases and other hypoxic-related diseases including various types of cancer.
Collapse
|
34
|
The SNPs in pre-miRNA are related to the response of capecitabine-based therapy in advanced colon cancer patients. Oncotarget 2018; 9:6793-6799. [PMID: 29467929 PMCID: PMC5805515 DOI: 10.18632/oncotarget.23190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
The single nucleotide polymorphisms (SNPs) in the microRNA precursor (pre-miRNA) may modulate the posttranscriptional regulation of gene expression and explain individual sensitivity to chemotherapy. Here we investigated the correlation between 23 SNPs in the pre-miRNA and the efficacy of capecitabine-based chemotherapy in 274 advanced colon cancer patients. Statistical analysis indicated that much more patients with rs744591 A/C(48.03%), C/C (53.45%) or C allele (49.73%) responded to the chemotherapy than those with the A/A genotype (33.71%). The response rates of rs745666 G/C heterozygous patients (35.25%) and C allele carriers (39.69%) were apparently less than that of the G/G homozygous patients (56.25%). Moreover, three SNPs rs2114358, rs35770269, and rs73239138 were significantly associated with the occurrence of side effects of chemotherapy. The patients with rs2114358 C allele (OR = 2.016) or rs35770269 T allele (OR = 2.299) were much more prone to endure adverse events. However, the incidence of side effect was lower in the patients carrying rs73239138 A allele than those with G/G genotype (OR = 0.500). Our findings demonstrate that genetic variations in pre-miRNA may influence the efficacy of capecitabine-based chemotherapy in advanced colon cancer patients.
Collapse
|