1
|
Singh I, Rainusso N, Kurenbekova L, Nirala BK, Dou J, Muruganandham A, Yustein JT. Intrinsic Epigenetic State of Primary Osteosarcoma Drives Metastasis. Mol Cancer Res 2024; 22:864-878. [PMID: 38842581 DOI: 10.1158/1541-7786.mcr-23-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/03/2023] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Osteosarcoma is the most common primary malignant bone tumor affecting the pediatric population with a high potential to metastasize. However, insights into the molecular features enabling its metastatic potential are limited. We mapped the active chromatin landscapes of osteosarcoma tumors by integrating histone H3 lysine-acetylated chromatin state (n = 13), chromatin accessibility profiles (n = 11), and gene expression (n = 13) to understand the differences in their active chromatin profiles and their impact on molecular mechanisms driving the malignant phenotypes. Primary osteosarcoma tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared with those without metastasis (localized). This difference shapes the transcriptional profile of osteosarcoma. We identified novel candidate genes, including PPP1R1B, PREX1, and IGF2BP1, that exhibit increased chromatin activity in primary met. Loss of PREX1 in primary met osteosarcoma cells significantly diminishes osteosarcoma proliferation, invasion, migration, and colony formation capacity. Differential chromatin activity in primary met is associated with genes regulating cytoskeleton organization, cellular adhesion, and extracellular matrix, suggesting their role in facilitating osteosarcoma metastasis. Chromatin profiling of tumors from metastatic lung lesions shows increased chromatin activity in genes involved in cell migration and Wnt pathway. These data demonstrate that metastatic potential is intrinsically present in primary met tumors, with cellular chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal site. Implications: Our study demonstrates that metastatic potential is intrinsic to primary metastatic osteosarcoma tumors, with chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal metastatic site.
Collapse
Affiliation(s)
- Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, Texas
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas
| | - Nino Rainusso
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Lyazat Kurenbekova
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Bikesh K Nirala
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia
| | - Juan Dou
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia
| | - Abhinaya Muruganandham
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Jason T Yustein
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia
| |
Collapse
|
2
|
Song D, Wang Q, Yan Z, Su M, Zhang H, Shi L, Fan Y, Zhang Q, Yang H, Zhang D, Liu Q. METTL3 promotes the progression of osteosarcoma through the N6-methyladenosine modification of MCAM via IGF2BP1. Biol Direct 2024; 19:44. [PMID: 38849910 PMCID: PMC11157866 DOI: 10.1186/s13062-024-00486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The molecular mechanisms of osteosarcoma (OS) are complex. In this study, we focused on the functions of melanoma cell adhesion molecule (MCAM), methyltransferase 3 (METTL3) and insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) in OS development. METHODS qRT-PCR assay and western blot assay were performed to determine mRNA and protein expression of MCAM, METTL3, IGF2BP1 and YY1. MTT assay and colony formation assay were conducted to assess cell proliferation. Cell apoptosis, invasion and migration were evaluated by flow cytometry analysis, transwell assay and wound-healing assay, respectively. Methylated RNA Immunoprecipitation (MeRIP), dual-luciferase reporter, Co-IP, RIP and ChIP assays were performed to analyze the relationships of MCAM, METTL3, IGF2BP1 and YY1. The functions of METTL3 and MCAM in tumor growth were explored through in vivo experiments. RESULTS MCAM was upregulated in OS, and MCAM overexpression promoted OS cell growth, invasion and migration and inhibited apoptosis. METTL3 and IGF2BP1 were demonstrated to mediate the m6A methylation of MCAM. Functionally, METTL3 or IGF2BP1 silencing inhibited OS cell progression, while MCAM overexpression ameliorated the effects. Transcription factor YY1 promoted the transcription level of METTL3 and regulated METTL3 expression in OS cells. Additionally, METTL3 deficiency suppressed tumor growth in vivo, while MCAM overexpression abated the effect. CONCLUSION YY1/METTL3/IGF2BP1/MCAM axis aggravated OS development, which might provide novel therapy targets for OS.
Collapse
Affiliation(s)
- Dongjian Song
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
- Institute of Molecular Cancer Surgery, Henan Province Engineering Research Center, Zhengzhou University, Zhengzhou, 450052, China.
| | - Qi Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Zechen Yan
- Institute of Molecular Cancer Surgery, Henan Province Engineering Research Center, Zhengzhou University, Zhengzhou, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Meng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hui Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Longyan Shi
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yingzhong Fan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Qian Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Heying Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Qiuliang Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Duan M, Liu H, Xu S, Yang Z, Zhang F, Wang G, Wang Y, Zhao S, Jiang X. IGF2BPs as novel m 6A readers: Diverse roles in regulating cancer cell biological functions, hypoxia adaptation, metabolism, and immunosuppressive tumor microenvironment. Genes Dis 2024; 11:890-920. [PMID: 37692485 PMCID: PMC10491980 DOI: 10.1016/j.gendis.2023.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 09/12/2023] Open
Abstract
m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.
Collapse
Affiliation(s)
- Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110002, China
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| |
Collapse
|
4
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
5
|
Li C, Ding L, Wang X, Shu P, Shi X, Zheng Z, Liu J, Zhu J. A RBM47 and IGF2BP1 mediated circular FNDC3B-FNDC3B mRNA imbalance is involved in the malignant processes of osteosarcoma. Cancer Cell Int 2023; 23:334. [PMID: 38129874 PMCID: PMC10740216 DOI: 10.1186/s12935-023-03175-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of noncoding RNAs that are involved in the progression of many human cancers. The precise gene locus and the roles of circular RNA from Fibronectin type III domain containing 3B (FNDC3B) in OS and its mechanisms of action have not been fully explored. MATERIALS AND METHODS qRT-qPCR assay was used to determine gene expressions. CCK8 Assay, EdU assay, wound-healing assay, transwell invasion assay and in vivo xenograft assay were used to perform functional investigations. RNA-FISH, immunofluorescence, RIP assay, RNA stability analysis were applied in mechanistic studies. RESULTS We found that circFNDC3B downregulated and FNDC3B mRNA upregulated in OS, and might be potential biomarkers for indicating disease progression and prognosis of OS patients. CircFNDC3B acted as a tumor suppressor gene to restrain OS progression and FNDC3B functioned as an oncogene to promote OS progression in vitro and in vivo. RNA binding protein RNA binding motif protein 47 (RBM47) could bind to the flanking introns of circFNDC3B to facilitate the generation of circFNDC3B, resulting in the reduction of FNDC3B mRNA and the circFNDC3B-FNDC3B mRNA imbalance. CircFNDC3B also inhibited FNDC3B mRNA expression by reducing its stability via competitively binding to Insulin-like growth-factor-2 mRNA binding protein (IGF2BP1). CONCLUSION This study demonstrated that RBM47 and IGF2BP1 mediated circular FNDC3B/FNDC3B mRNA imbalance was involved in the malignant processes of OS.
Collapse
Affiliation(s)
- Congya Li
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315021, Zhejiang, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Road, Jinhua, 321000, Zhejiang, China
| | - Xuyao Wang
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China
| | - Peng Shu
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China
| | - Xuchao Shi
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Zhijian Zheng
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Jian Liu
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China.
| | - Junlan Zhu
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo, 315021, Zhejiang, China.
| |
Collapse
|
6
|
Singh I, Rainusso N, Kurenbekova L, Nirala BK, Dou J, Muruganandham A, Yustein JT. Intrinsic epigenetic state of primary osteosarcoma drives metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566446. [PMID: 38014160 PMCID: PMC10680799 DOI: 10.1101/2023.11.09.566446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor affecting the pediatric population with high potential to metastasize to distal sites, most commonly the lung. Insights into defining molecular features contributing to metastatic potential are lacking. We have mapped the active chromatin landscapes of OS tumors by integrating histone H3 lysine acetylated chromatin (H3K27ac) profiles (n=13), chromatin accessibility profiles (n=11) and gene expression (n=13) to understand the differences in their active chromatin profiles and its impact on molecular mechanisms driving the malignant phenotypes. Primary OS tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared to primary tumors from patients without metastatic disease (localized). The difference in chromatin activity shapes the transcriptional profile of OS. We identified novel candidate genes involved in OS pathogenesis and metastasis, including PPP1R1B, PREX1 and IGF2BP1, which exhibit increased chromatin activity in primary met along with higher transcript levels. Overall, differential chromatin activity in primary met occurs in proximity of genes regulating actin cytoskeleton organization, cellular adhesion, and extracellular matrix suggestive of their role in facilitating OS metastasis. Furthermore, chromatin profiling of tumors from metastatic lung lesions noted increases in chromatin activity in genes involved in cell migration and key intracellular signaling cascades, including the Wnt pathway. Thus, this data demonstrates that metastatic potential is intrinsically present in primary metastatic tumors and the cellular chromatin profiles further adapt to allow for successful dissemination, migration, and colonization at the distal metastatic site.
Collapse
Affiliation(s)
- Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77840, USA
| | - Nino Rainusso
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lyazat Kurenbekova
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Bikesh K. Nirala
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA
| | - Juan Dou
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA
| | - Abhinaya Muruganandham
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jason T. Yustein
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Que Z, Yang K, Wang N, Li S, Li T. Functional Role of RBP in Osteosarcoma: Regulatory Mechanism and Clinical Therapy. Anal Cell Pathol (Amst) 2023; 2023:9849719. [PMID: 37426488 PMCID: PMC10328736 DOI: 10.1155/2023/9849719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.
Collapse
Affiliation(s)
- Ziyuan Que
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Kang Yang
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Nan Wang
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Shuying Li
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Tao Li
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
8
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
9
|
Siqueira IR, Batabyal RA, Freishtat R, Cechinel LR. Potential involvement of circulating extracellular vesicles and particles on exercise effects in malignancies. Front Endocrinol (Lausanne) 2023; 14:1121390. [PMID: 36936170 PMCID: PMC10020195 DOI: 10.3389/fendo.2023.1121390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Physical activity and exercise have been widely related to prevention, treatment, and control for several non-communicable diseases. In this context, there are innumerous pre-clinical and clinical evidence indicating the potential role of exercise, beyond cancer prevention and survival, improved quality of life, including on psychological components, bone health and cachexia, from cancer survivors is described as well. This mini-review raises the potential role of circulating extracellular and particles vesicles (EVPs) cargo, as exerkines, conducting several positive effects on adjacent and/or distant tissues such as tumor, immune, bone and muscle cells. We highlighted new perspectives about microRNAs into EVPs changes induced by exercise and its benefits on malignancies, since microRNAs can be implicated with intricated physiopathological processes. Potential microRNAs into EVPs were pointed out here as players spreading beneficial effects of exercise, such as miR-150-5p, miR-124, miR-486, and miRNA-320a, which have previous findings on involvement with clinical outcomes and as well as tumor microenvironment, regulating intercellular communication and tumor growth. For example, high-intensity interval aerobic exercise program seems to increase miR-150 contents in circulating EVPs obtained from women with normal weight or overweight. In accordance circulating EVPs miR-150-5p content is correlated with prognosis colorectal cancer, and ectopic expression of miR-150 may reduce cell proliferation, invasion and metastasis. Beyond the involvement of bioactive miRNAs into circulating EVPs and their pathways related to clinical and preclinical findings, this mini review intends to support further studies on EVPs cargo and exercise effects in oncology.
Collapse
Affiliation(s)
- Ionara Rodrigues Siqueira
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Ionara Rodrigues Siqueira,
| | - Rachael A. Batabyal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Division of Emergency Medicine, Children’s National Hospital, Washington, DC, United States
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Robert Freishtat
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
| | - Laura Reck Cechinel
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
| |
Collapse
|
10
|
Bourgery M, Ekholm E, Hiltunen A, Heino TJ, Pursiheimo JP, Bendre A, Yatkin E, Laitala T, Määttä J, Säämänen AM. Signature of circulating small non-coding RNAs during early fracture healing in mice. Bone Rep 2022; 17:101627. [PMID: 36304905 PMCID: PMC9593857 DOI: 10.1016/j.bonr.2022.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Fracture healing is a complex process with multiple overlapping metabolic and differentiation phases. Small non-coding RNAs are involved in the regulation of fracture healing and their presence in circulation is under current interest due to their obvious value as potential biomarkers. Circulating microRNAs (miRNAs) have been characterized to some extent but the current knowledge on tRNA-derived small RNA fragments (tsRNAs) is relatively scarce, especially in circulation. In this study, the spectrum of circulating miRNAs and tsRNAs was analysed by next generation sequencing to show their differential expression during fracture healing in vivo. Analysed tsRNA fragments included stress-induced translation interfering tRNA fragments (tiRNAs or tRNA halves) and internal tRNA fragments (i-tRF), within the size range of 28–36 bp. To unveil the expression of these non-coding RNAs, genome-wide analysis was performed on two months old C57BL/6 mice on days 1, 5, 7, 10, and 14 (D1, D5, D7, D10, and D14) after a closed tibial fracture. Valine isoacceptor tRNA-derived Val-AAC 5′end and Val-CAC 5′end fragments were the major types of 5′end tiRNAs in circulation, comprising about 65 % of the total counts. Their expression was not affected by fracture. After a fracture, the levels of two 5′end tiRNAs Lys-TTT 5′ and Lys-CTT 5′ were decreased and His-GTG 5′ was increased through D1-D14. The level of miR-451a was decreased on the first post-fracture day (D1), whereas miR-328-3p, miR-133a-3p, miR-375-3p, miR-423-5p, and miR-150-5p were increased post-fracture. These data provide evidence on how fracture healing could provoke systemic metabolic effects and further pinpoint the potential of small non-coding RNAs as biomarkers for tissue regeneration.
Collapse
Affiliation(s)
- Matthieu Bourgery
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Erika Ekholm
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | | | - Terhi J. Heino
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Juha-Pekka Pursiheimo
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Genomill Health, Turku, Finland
| | - Ameya Bendre
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Tiina Laitala
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Jorma Määttä
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Turku Center for Disease Modeling (TCDM), Turku, Finland
| | - Anna-Marja Säämänen
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Corresponding author at: Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
11
|
He Q, Hao P, He G, Mai H, Liu W, Zhang W, Zhang K, Zhong G, Guo R, Yu C, Li Y, Wong C, Chen Q, Chen Y. IGF2BP1-regulated expression of ERRα is involved in metabolic reprogramming of chemotherapy resistant osteosarcoma cells. Lab Invest 2022; 20:348. [PMID: 35918761 PMCID: PMC9344706 DOI: 10.1186/s12967-022-03549-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
Doxorubicin (Dox) is the standard treatment approach for osteosarcoma (OS), while acquired drug resistance seriously attenuates its treatment efficiency. The present study aimed to investigate the potential roles of metabolic reprogramming and the related regulatory mechanism in Dox-resistant OS cells. The results showed that the ATP levels, lactate generation, glucose consumption and oxygen consumption rate were significantly increased in Dox-resistant OS cells compared with parental cells. Furthermore, the results revealed that the increased expression of estrogen-related receptor alpha (ERRα) was involved in metabolic reprogramming in chemotherapy resistant OS cells, since targeted inhibition of ERRα restored the shifting of metabolic profiles. Mechanistic analysis indicated that the mRNA stability, rather than ERRα transcription was markedly increased in chemoresistant OS cells. Therefore, it was hypothesized that the 3ʹ-untranslated region of ERRα mRNA was methylated by N6-methyladenine, which could further recruit insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to suppress mRNA decay and increase mRNA stability. IGF2BP1 knockdown downregulated ERRα and reversed the metabolic alteration of resistant OS cells. Additionally, the oncogenic effect of the IGF2BP1/ERRα axis on Dox-resistant OS cells was verified by in vitro and in vivo experiments. Clinical analysis also revealed that the expression levels of IGF2BP1 and ERRα were associated with the clinical progression of OS. Collectively, the current study suggested that the IGF2BP1/ERRα axis could regulate metabolic reprogramming to contribute to the chemoresistance of OS cells.
Collapse
Affiliation(s)
- Qing He
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Hao
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang He
- Department of Orthopedics, Guangzhou Zengcheng District People's Hospital, Guangzhou, China
| | - Hantao Mai
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenzhou Liu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, Yanjiang West Road, Yuexiu, Guangzhou, 510120, China
| | - Weiqiong Zhang
- Department of Orthopedics, Guangzhou Zengcheng District People's Hospital, Guangzhou, China
| | - Kelin Zhang
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guifang Zhong
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruilian Guo
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changzhi Yu
- Department of Chinese Traditional Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Li
- Pediatric Hematology & Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chipiu Wong
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, Yanjiang West Road, Yuexiu, Guangzhou, 510120, China
| | - Qian Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, Yanjiang West Road, Yuexiu, Guangzhou, 510120, China
| | - Yantao Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, Yanjiang West Road, Yuexiu, Guangzhou, 510120, China.
| |
Collapse
|
12
|
Gul Mohammad A, Li D, He R, Lei X, Mao L, Zhang B, Zhong X, Yin Z, Cao W, Zhang W, Hei R, Zheng Q, Zhang Y. Integrated analyses of an RNA binding protein-based signature related to tumor immune microenvironment and candidate drugs in osteosarcoma. Am J Transl Res 2022; 14:2501-2526. [PMID: 35559393 PMCID: PMC9091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Osteosarcoma is the most frequent primary bone malignancy, associated with frequent recurrence and lung metastasis. RNA-binding proteins (RBPs) are pivotal in regulating several aspects of cancer biology. Nonetheless, interaction between RBPs and the osteosarcoma immune microenvironment is poorly understood. We investigated whether RBPs can predict prognosis and immunotherapy response in osteosarcoma patients. METHODS We constructed an RBP-related prognostic signature (RRPS) by univariate coupled with multivariate analyses and verified the independent prognostic efficacy of the signature. Single-sample Gene Set Enrichment Analysis (ssGSEA) along with ESTIMATE analysis were carried out to investigate the variations in immune characteristics between subgroups with various RRPS-scores. Furthermore, we investigatedpossible small molecule drugs using the connectivity map database and validated the expression of hub RBPs by qRT-PCR. RESULTS The RRPS, consisting of seven hub RBPs, was an independent prognostic factor compared to traditional clinical features. The RRPS could distinguish immune functions, immune score, stromal score, tumor purity and tumor infiltration by immune cells in different osteosarcoma subjects. Additionally, patients with high RRPS-scores had lower expression of immune checkpoint genes than patients with low RRPS-scores. We finally identified six small molecule drugs that may improve prognosis in osteosarcoma patients and substantiated notable differences in the contents of these RBPs. CONCLUSION We evaluated the prognostic value and clinical application of an RBPs-based prognostic signature and identified promising biomarkers to predict immune cell infiltration and immunotherapy response in osteosarcoma.
Collapse
Affiliation(s)
- Abdulraheem Gul Mohammad
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Dapeng Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Rong He
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu UniversityZhenjiang 212000, Jiangsu, China
| | - Xuan Lei
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Bing Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Xinyu Zhong
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Zhengyu Yin
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Wenbing Cao
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Wenchao Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Ruoxuan Hei
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212000, Jiangsu, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212000, Jiangsu, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
| | - Yiming Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| |
Collapse
|
13
|
Yao P, Lu Y, Cai Z, Yu T, Kang Y, Zhang Y, Wang X. Research Progress of Exosome-Loaded miRNA in Osteosarcoma. Cancer Control 2022; 29:10732748221076683. [PMID: 35179996 PMCID: PMC8859673 DOI: 10.1177/10732748221076683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Currently, although the improvement of surgical techniques and the development of chemotherapy drugs have brought a certain degree of development to the treatment of osteosarcoma, the treatment of osteosarcoma has many shortcomings, and its treatment is limited. MiRNAs and exosomes can be used as diagnostic tools, and they play an important role in the occurrence and chemotherapy resistance of osteosarcoma. Therefore, providing a new method for the treatment of osteosarcoma is the key to solving this problem. To systematically summarize the research status of exoskeleton drug-loaded miRNA in osteosarcoma, we identified and evaluated 208 studies and found that exosome-carrying miRNA can be used as an index for the diagnosis and prognosis of osteosarcoma and share a certain relationship with chemosensitivity. In addition, exosomes can also be used as a carrier of genetic drugs able to regulate the progression of osteosarcoma. Based on the above findings, we propose suggestions for the future development of this field, aiming to bring new ideas for the early diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peng Yao
- Joint Surgery Department, The Second People’s Hospital of Zhangye City, Zhangye, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongyan Cai
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Tianci Yu
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yuchen Kang
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yu Zhang
- Joint Surgery Department, The Second People’s Hospital of Zhangye City, Zhangye, China
| | - Xulong Wang
- Joint Surgery Department, The Second People’s Hospital of Zhangye City, Zhangye, China
| |
Collapse
|
14
|
Wu X, Liu Y, Ji Y. Carboxymethylated chitosan alleviated oxidative stress injury in retinal ganglion cells via IncRNA-THOR/IGF2BP1 axis. Genes Genomics 2021; 43:643-651. [PMID: 33811613 DOI: 10.1007/s13258-021-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Glaucoma is an advanced nerve disorder described by the deterioration of axon and RGCs. CMCS has been previously used as an anti-apoptotic and anti-oxidant agent. OBJECTIVE The current study aimed to explore the protective impact of CMCS against H2O2-induced injury in glaucoma in vitro. METHODS The relative expression of lncRNA THOR and the protein expression of IGF2BP1 in H2O2-induced RGC-5 cells were detected by RT-PCR and western blot methods respectively. The cell viability was measured using MTT assay while apoptosis rate was measured by flow cytometry. Moreover, ROS level was measured using ROS assay kit. Furthermore, the relations between THOR and IGF2BP1 were determined by using RNA pull-down. RESULTS The expression of THOR was reduced in H2O2-induced RGCs. Also, RGCs viability was inhibited while the level of ROS and cell apoptosis were enhanced. CMCS treatment considerably enhanced the expression of THOR and IGF2BP1 protein and cell viability but reduced ROS level and cell apoptosis. Moreover, IGF2BP1 protein was positively regulated by lncRNA THOR. CMCS protected the RGCs from oxidative stress via regulating lncRNA THOR/IGF2BP1. CONCLUSION CMCS enhanced the cell viability and reduced the cell apoptosis and ROS level and protected RGCs from oxidative stress via lncRNATHOR/IGF2BP1 pathway, potentially suggesting a new therapeutic strategy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Xiaoli Wu
- Ophthalmology Department, Shandong Rongjun General Hospital, Jinan, Shandong Province, China
| | - Yingying Liu
- Neurology Department, Shandong Rongjun General Hospital, Jinan, Shandong Province, China
| | - Yun Ji
- Yantai Laiyang Central Hospital, Yantai, Shandong, China.
| |
Collapse
|
15
|
Lin LL, Liu ZZ, Tian JZ, Zhang X, Zhang Y, Yang M, Zhong HC, Fang W, Wei RX, Hu C. Integrated Analysis of Nine Prognostic RNA-Binding Proteins in Soft Tissue Sarcoma. Front Oncol 2021; 11:633024. [PMID: 34026613 PMCID: PMC8138553 DOI: 10.3389/fonc.2021.633024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
RNA-binding proteins (RBPs) have been shown to be dysregulated in cancer transcription and translation, but few studies have investigated their mechanism of action in soft tissue sarcoma (STS). Here, The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to identify differentially expressed RBPs in STS and normal tissues. Through a series of biological information analyses, 329 differentially expressed RBPs were identified. Functional enrichment analysis showed that differentially expressed RBPs were mainly involved in RNA transport, RNA splicing, mRNA monitoring pathways, ribosome biogenesis and translation regulation. Through Cox regression analyses, 9 RBPs (BYSL, IGF2BP3, DNMT3B, TERT, CD3EAP, SRSF12, TLR7, TRIM21 and MEX3A) were all up-regulated in STS as prognosis-related genes, and a prognostic model was established. The model calculated a risk score based on the expression of 9 hub RBPs. The risk score could be used for risk stratification of patients and had a high prognostic value based on the receiver operating characteristic (ROC) curve. We also established a nomogram containing risk scores and 9 key RBPs to predict the 1-year, 3-year, and 5-year survival rates of patients in STS. Afterwards, methylation analysis showed significant changes in the methylation degree of BYSL, CD3EAP and MEX2A. Furthermore, the expression of 9 hub RBPs was closely related to immune infiltration rather than tumor purity. Based on the above studies, these findings may provide new insights into the pathogenesis of STS and will provide candidate biomarkers for the prognosis of STS.
Collapse
Affiliation(s)
- Lu-Lu Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Zi-Zhen Liu
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jing-Zhuo Tian
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Xiao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Min Yang
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hou-Cheng Zhong
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fang
- Hubei University of Medicine, Shiyan, China
| | - Ren-Xiong Wei
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Hu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Li B, Fang L, Wang B, Yang Z, Zhao T. Identification of Prognostic RBPs in Osteosarcoma. Technol Cancer Res Treat 2021; 20:15330338211004918. [PMID: 33754909 PMCID: PMC8120427 DOI: 10.1177/15330338211004918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma often occurs in children and adolescents and causes poor prognosis. The role of RNA-binding proteins (RBPs) in malignant tumors has been elucidated in recent years. Our study aims to identify key RBPs in osteosarcoma that could be prognostic factors and treatment targets. GSE33382 dataset was downloaded from Gene Expression Omnibus (GEO) database. RBPs extraction and differential expression analysis was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to explore the biological function of differential expression RBPs. Moreover, we constructed Protein-protein interaction (PPI) network and obtained key modules. Key RBPs were identified by univariate Cox regression analysis and multiple stepwise Cox regression analysis combined with the clinical information from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Risk score model was generated and validated by GSE16091 dataset. A total of 38 differential expression RBPs was identified. Go and KEGG results indicated these RBPs were significantly involved in ribosome biogenesis and mRNA surveillance pathway. COX regression analysis showed DDX24, DDX21, WARS and IGF2BP2 could be prognostic factors in osteosarcoma. Spearman's correlation analysis suggested that WARS might be important in osteosarcoma immune infiltration. In conclusion, DDX24, DDX21, WARS and IGF2BP2 might play key role in osteosarcoma, which could be therapuetic targets for osteosarcoma treatment.
Collapse
Affiliation(s)
- Bei Li
- Department of Orthopedic Oncology Surgery, Shandong Cancer Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Long Fang
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baolong Wang
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengkun Yang
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tingbao Zhao
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Liu X, Wang P, Teng X, Zhang Z, Song S. Comprehensive Analysis of Expression Regulation for RNA m6A Regulators With Clinical Significance in Human Cancers. Front Oncol 2021; 11:624395. [PMID: 33718187 PMCID: PMC7946859 DOI: 10.3389/fonc.2021.624395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background N6-methyladenosine (m6A), the most abundant chemical modification on eukaryotic messenger RNA (mRNA), is modulated by three class of regulators namely "writers," "erasers," and "readers." Increasing studies have shown that aberrant expression of m6A regulators plays broad roles in tumorigenesis and progression. However, it is largely unknown regarding the expression regulation for RNA m6A regulators in human cancers. Results Here we characterized the expression profiles of RNA m6A regulators in 13 cancer types with The Cancer Genome Atlas (TCGA) data. We showed that METTL14, FTO, and ALKBH5 were down-regulated in most cancers, whereas YTHDF1 and IGF2BP3 were up-regulated in 12 cancer types except for thyroid carcinoma (THCA). Survival analysis further revealed that low expression of several m6A regulators displayed longer overall survival times. Then, we analyzed microRNA (miRNA)-regulated and DNA methylation-regulated expression changes of m6A regulators in pan-cancer. In total, we identified 158 miRNAs and 58 DNA methylation probes (DMPs) involved in expression regulation for RNA m6A regulators. Furthermore, we assessed the survival significance of those regulatory pairs. Among them, 10 miRNAs and 7 DMPs may promote cancer initiation and progression; conversely, 3 miRNA/mRNA pairs in kidney renal clear cell carcinoma (KIRC) may exert tumor-suppressor function. These findings are indicative of their potential prognostic values. Finally, we validated two of those miRNA/mRNA pairs (hsa-miR-1307-3p/METTL14 and hsa-miR-204-5p/IGF2BP3) that could serve a critical role for potential clinical application in KIRC patients. Conclusions Our findings highlighted the importance of upstream regulation (miRNA and DNA methylation) governing m6A regulators' expression in pan-cancer. As a result, we identified several informative regulatory pairs for prognostic stratification. Thus, our study provides new insights into molecular mechanisms of m6A modification in human cancers.
Collapse
Affiliation(s)
- Xiaonan Liu
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xufei Teng
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhang
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shuhui Song
- National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Rong Z, Wang Z, Wang X, Qin C, Geng W. Molecular interplay between linc01134 and YY1 dictates hepatocellular carcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:61. [PMID: 32272940 PMCID: PMC7146959 DOI: 10.1186/s13046-020-01551-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Background Revealing the mechanical role of long non-coding RNAs (lncRNAs) in tumorigenesis can contribute to novel therapeutic target for cancers. The regulatory role of linc01134 in hepatocellular carcinoma (HCC) has not been studied yet. Materials and methods qRT-PCR and western blot were conducted to measure relevant RNA and protein expressions. CCK-8, colony formation, EdU, flow cytometry, wound-healing, transwell assays and xenograft experiments were performed to determine the role of linc01134 in HCC. ChIP and luciferase reporter assays were performed to analyze the effects of Yin Yang-1 (YY1) on linc01134 transcription activity. Relevant mechanical experiments were performed to verify interaction between relative genes. Results YY1 enhanced linc01134 transcription by interacting with linc01134 promoter. Knockdown of linc01134 inhibited proliferation, migration and epithelial-mesenchymal transition (EMT), yet promoting apoptosis in HCC cells. Mechanically, linc01134 acted as miR-324-5p sponge and interacted with insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to increase the stability of YY1 mRNA expression. Up-regulated YY1 continuously stimulated linc01134 expression by enhancing linc01134 promoter activity, forming a positive feedback loop. Conclusion Linc01134/miR-324-5p/IGF2BP1/YY1 feedback loop mediates HCC progression, which possibly provide prognosis and treatment target of HCC.
Collapse
Affiliation(s)
- Zhonghou Rong
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhiyi Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xinxing Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Wenmao Geng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
19
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
20
|
Ling Z, Fan G, Yao D, Zhao J, Zhou Y, Feng J, Zhou G, Chen Y. MicroRNA-150 functions as a tumor suppressor and sensitizes osteosarcoma to doxorubicin-induced apoptosis by targeting RUNX2. Exp Ther Med 2019; 19:481-488. [PMID: 31897096 PMCID: PMC6923746 DOI: 10.3892/etm.2019.8231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of bone malignancy in children and adolescents. MicroRNAs (miRNAs) have been associated with the development and progression of OS. In the present study, reverse transcription-quantitative PCR, western blotting, Cell Counting Kit-8, luciferase and Transwell assays were performed to investigate the biological function of microRNA-150 (miR-150) in OS. The results revealed that miR-150 was significantly downregulated in OS cell lines (HOS, SAOS2, MG-63 and U2OS) in comparison with the normal osteoblast cells (hFOB1.19). Overexpression of miR-150 significantly inhibited cell proliferation in OS cells. miR-150 could sensitize OS cells to chemotherapy treatment of doxorubicin. Runt-related transcription factor 2 (RUNX2) was identified as a target gene of miR-150. RUNX2 knockdown exhibited similar inhibitory effects on both OS cell proliferation and chemotherapy sensitivity. Restoration of RUNX2 reversed the biological function of miR-150. Finally, miR-150 overexpression and RUNX2 knockdown enhanced caspase-3 cleavage. Taken together, the present study established a novel molecular mechanism, in that miR-150 plays tumor suppressor and chemoprotective roles by targeting RUNX2 in OS, indicating that miR-150 may be a potential therapeutic target for OS therapy in the future.
Collapse
Affiliation(s)
- Zhonghua Ling
- Department of Orthopedics, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Gentao Fan
- Department of Orthopedics, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Danhua Yao
- Department of Orthopedics, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Yinhua Zhou
- Department of Orthopedics, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Jinzhu Feng
- Department of Orthopedics, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Guangxin Zhou
- Department of Orthopedics, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Yong Chen
- Department of Orthopedics, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
21
|
Perut F, Roncuzzi L, Zini N, Massa A, Baldini N. Extracellular Nanovesicles Secreted by Human Osteosarcoma Cells Promote Angiogenesis. Cancers (Basel) 2019; 11:cancers11060779. [PMID: 31195680 PMCID: PMC6627280 DOI: 10.3390/cancers11060779] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis involves a number of different players among which extracellular nanovesicles (EVs) have recently been proposed as an efficient cargo of pro-angiogenic mediators. Angiogenesis plays a key role in osteosarcoma (OS) development and progression. Acidity is a hallmark of malignancy in a variety of cancers, including sarcomas, as a result of an increased energetic metabolism. The aim of this study was to investigate the role of EVs derived from osteosarcoma cells on angiogenesis and whether extracellular acidity, generated by tumor metabolism, could influence EVs activity. For this purpose, we purified and characterized EVs from OS cells maintained at either acidic or neutral pH. The ability of EVs to induce angiogenesis was assessed in vitro by endothelial cell tube formation and in vivo using chicken chorioallantoic membrane. Our findings demonstrated that EVs derived from osteosarcoma cells maintained either in acidic or neutral conditions induced angiogenesis. The results showed that miRNA and protein content of EVs cargo are correlated with pro-angiogenic activity and this activity is increased by the acidity of tumor microenvironment. This study provides evidence that EVs released by human osteosarcoma cells act as carriers of active angiogenic stimuli that are able to promote endothelial cell functions relevant to angiogenesis.
Collapse
Affiliation(s)
- Francesca Perut
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Laura Roncuzzi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics, 40136 Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Annamaria Massa
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Nicola Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy.
| |
Collapse
|