1
|
Zhang Y, Wang X, Zhu W, Zhao Y, Wang N, Gao M, Wang Q. Anaerobic fermentation of organic solid waste: Recent updates in substrates, products, and the process with multiple products co-production. ENVIRONMENTAL RESEARCH 2023; 233:116444. [PMID: 37331552 DOI: 10.1016/j.envres.2023.116444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/27/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
The effective conversion and recycling of organic solid waste contribute to the resolution of widespread issues such as global environmental pollution, energy scarcity and resource depletion. The anaerobic fermentation technology provides for the effective treatment of organic solid waste and the generation of various products. The analysis, which is based on bibliometrics, concentrates on the valorisation of affordable and easily accessible raw materials with high organic matter content as well as the production of clean energy substances and high value-added platform products. The processing and application status of fermentation raw materials such as waste activated sludge, food waste, microalgae and crude glycerol are investigated. To analyse the status of the preparation and engineering applications of the products, the fermentation products biohydrogen, VFAs, biogas, ethanol, succinic acid, lactic acid, and butanol are employed as representatives. Simultaneously, the anaerobic biorefinery process with multiple product co-production is sorted out. Product co-production can reduce waste discharge, enhance resource recovery efficiency, and serve as a model for improving anaerobic fermentation economics.
Collapse
Affiliation(s)
- Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingbo Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, 100083, China
| |
Collapse
|
2
|
Zhou S, Ding N, Han R, Deng Y. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories. BIORESOURCE TECHNOLOGY 2023; 379:128986. [PMID: 37001700 DOI: 10.1016/j.biortech.2023.128986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The organic acids of the tricarboxylic acid (TCA) pathway are important platform compounds and are widely used in many areas. The high-productivity strains and high-efficient and low-cost fermentation are required to satisfy a huge market size. The high metabolic flux of the TCA pathway endows microorganisms potential to produce high titers of these organic acids. Coupled with metabolic engineering and fermentation optimization, the titer of the organic acids has been significantly improved in recent years. Herein, we discuss and compare the recent advances in synthetic pathway engineering, cofactor engineering, transporter engineering, and fermentation optimization strategies to maximize the biosynthesis of organic acids. Such engineering strategies were mainly based on the TCA pathway and glyoxylate pathway. Furthermore, organic-acid-secretion enhancement and renewable-substrate-based fermentation are often performed to assist the biosynthesis of organic acids. Further strategies are also discussed to construct high-productivity and acid-resistant strains for industrial large-scale production.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Nana Ding
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Khandelwal R, Srivastava P, Bisaria VS. Recent advances in the production of malic acid by native fungi and engineered microbes. World J Microbiol Biotechnol 2023; 39:217. [PMID: 37269376 DOI: 10.1007/s11274-023-03666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Malic acid is mainly produced by chemical methods which lead to various environmental sustainability concerns associated with CO2 emissions and resulting global warming. Since malic acid is naturally synthesized, microorganisms offer an eco-friendly and cost-effective alternative for its production. An additional advantage of microbial production is the synthesis of pure L-form of malic acid. Due to its numerous applications, biotechnologically- produced L-malic acid is a much sought-after platform chemical. Malic acid can be produced by microbial fermentation via oxidative/reductive TCA and glyoxylate pathways. This article elaborates the potential and limitations of high malic acid producing native fungi belonging to Aspergillus, Penicillium, Ustilago and Aureobasidium spp. The utilization of industrial side streams and low value renewable substrates such as crude glycerol and lignocellulosic biomass is also discussed with a view to develop a competitive bio-based production process. The major impediments present in the form of toxic compounds from lignocellulosic residues or synthesized during fermentation along with their remedial measures are also described. The article also focuses on production of polymalic acid from renewable substrates which opens up a cost-cutting dimension in production of this biodegradable polymer. Finally, the recent strategies being employed for its production in recombinant organisms have also been covered.
Collapse
Affiliation(s)
- Rohit Khandelwal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
- Corporate Research & Development Centre, Bharat Petroleum Corporation Limited, Udyog Kendra, P. O. Surajpur, Greater Noida, 201306, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Virendra Swarup Bisaria
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
4
|
Gopaliya D, Zaidi S, Srivastava N, Rani B, Kumar V, Kumar Khare S. Integrated fermentative production and downstream processing of L-malic acid by Aspergillus wentii using cassava peel waste. BIORESOURCE TECHNOLOGY 2023; 377:128946. [PMID: 36958684 DOI: 10.1016/j.biortech.2023.128946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
L-malic acid (L-MA) is an industrially significant chemical with enormous potential. The fungal cell factories could be exploited to harvest it on large scales. In our study, Aspergillus wentii strain (MTCC 1901 T) was explored for L-MA production. Initially, the L-MA production was carried out using glucose with optimization of parameters influencing product accumulation (pH and CaCO3). The fermentation resulted in L-MA titer of 37.9 g/L with 0.39 g/g yield. Then, cassava peel waste (CPW) was used for L-MA production by separate hydrolysis and fermentation. Optimized acidic and enzymatic hydrolysis resulted in glucose release of 0.53 and 0.66 g/g CPW, respectively. The strain accumulated 20.9 g/L and 33.1 g/L L-MA with corresponding yields of 0.25 g/g and 0.34 g/g during batch cultivation using acid and enzyme hydrolysate, respectively. Finally, the produced L-MA was separated using an inexpensive solvent extraction method. Among various solvents used, n-butanol exhibited maximum L-MA extraction efficiency (31%).
Collapse
Affiliation(s)
- Deeksha Gopaliya
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Saniya Zaidi
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhumika Rani
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
5
|
Ding Q, Ye C. Recent advances in producing food additive L-malate: Chassis, substrate, pathway, fermentation regulation and application. Microb Biotechnol 2023; 16:709-725. [PMID: 36604311 PMCID: PMC10034640 DOI: 10.1111/1751-7915.14206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
In addition to being an important intermediate in the TCA cycle, L-malate is also widely used in the chemical and beverage industries. Due to the resulting high demand, numerous studies investigated chemical methods to synthesize L-malate from petrochemical resources, but such approaches are hampered by complex downstream processing and environmental pollution. Accordingly, there is an urgent need to develop microbial methods for environmentally-friendly and economical L-malate biosynthesis. The rapid progress and understanding of DNA manipulation, cell physiology, and cell metabolism can improve industrial L-malate biosynthesis by applying intelligent biochemical strategies and advanced synthetic biology tools. In this paper, we mainly focused on biotechnological approaches for enhancing L-malate synthesis, encompassing the microbial chassis, substrate utilization, synthesis pathway, fermentation regulation, and industrial application. This review emphasizes the application of novel metabolic engineering strategies and synthetic biology tools combined with a deep understanding of microbial physiology to improve industrial L-malate biosynthesis in the future.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life SciencesAnhui UniversityHefeiChina
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education InstitutesAnhui UniversityHefeiChina
- Anhui Key Laboratory of Modern BiomanufacturingHefeiChina
| | - Chao Ye
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingChina
| |
Collapse
|
6
|
Ding Q, Ye C. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Microb Cell Fact 2023; 22:20. [PMID: 36717860 PMCID: PMC9885587 DOI: 10.1186/s12934-023-02025-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. RESULTS As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. CONCLUSIONS In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.
Collapse
Affiliation(s)
- Qiang Ding
- grid.252245.60000 0001 0085 4987School of Life Sciences, Anhui University, Hefei, 230601 China ,grid.252245.60000 0001 0085 4987Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601 Anhui China ,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
| | - Chao Ye
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
7
|
Lee JA, Ahn JH, Kim GB, Choi S, Kim JY, Lee SY. Metabolic engineering of Mannheimia succiniciproducens for malic acid production using dimethylsulfoxide as an electron acceptor. Biotechnol Bioeng 2023; 120:203-215. [PMID: 36128631 DOI: 10.1002/bit.28242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Microbial production of various TCA intermediates and related chemicals through the reductive TCA cycle has been of great interest. However, rumen bacteria that naturally possess strong reductive TCA cycle have been rarely studied to produce these chemicals, except for succinic acid, due to their dependence on fumarate reduction to transport electrons for ATP synthesis. In this study, malic acid (MA), a dicarboxylic acid of industrial importance, was selected as a target chemical for mass production using Mannheimia succiniciproducens, a rumen bacterium possessing a strong reductive branch of the TCA cycle. The metabolic pathway was reconstructed by eliminating fumarase to prevent MA conversion to fumarate. The respiration system of M. succiniciproducens was reconstructed by introducing the Actinobacillus succinogenes dimethylsulfoxide (DMSO) reductase to improve cell growth using DMSO as an electron acceptor. Also, the cell membrane was engineered by employing Pseudomonas aeruginosa cis-trans isomerase to enhance MA tolerance. High inoculum fed-batch fermentation of the final engineered strain produced 61 g/L of MA with an overall productivity of 2.27 g/L/h, which is the highest MA productivity reported to date. The systems metabolic engineering strategies reported in this study will be useful for developing anaerobic bioprocesses for the production of various industrially important chemicals.
Collapse
Affiliation(s)
- Jong An Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jung Ho Ahn
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Gi Bae Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sol Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ji Yeon Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,BioInformatics Research Center and BioProcess Engineering Research Center, KAIST, Daejeon, Korea
| |
Collapse
|
8
|
Wu N, Zhang J, Chen Y, Xu Q, Song P, Li Y, Li K, Liu H. Recent advances in microbial production of L-malic acid. Appl Microbiol Biotechnol 2022; 106:7973-7992. [PMID: 36370160 DOI: 10.1007/s00253-022-12260-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022]
Abstract
Over the last few decades, increasing concerns regarding fossil fuel depletion and excessive CO2 emissions have led to extensive fundamental studies and industrial trials regarding microbial chemical production. As an additive or precursor, L-malic acid has been shown to exhibit distinctive properties in the food, pharmaceutical, and daily chemical industries. L-malic acid is currently mainly fabricated through a fumarate hydratase-based biocatalytic conversion route, wherein petroleum-derived fumaric acid serves as a substrate. In this review, for the first time, we comprehensively describe the methods of malic acid strain transformation, raw material utilization, malic acid separation, etc., especially recent progress and remaining challenges for industrial applications. First, we summarize the various pathways involved in L-malic acid biosynthesis using different microorganisms. We also discuss several strain engineering strategies for improving the titer, yield, and productivity of L-malic acid. We illustrate the currently available alternatives for reducing production costs and the existing strategies for optimizing the fermentation process. Finally, we summarize the present challenges and future perspectives regarding the development of microbial L-malic acid production. KEY POINTS: • A range of wild-type, mutant, laboratory-evolved, and metabolically engineered strains which could produce L-malic acid were comprehensively described. • Alternative raw materials for reducing production costs and the existing strategies for optimizing the fermentation were sufficiently summarized. • The present challenges and future perspectives regarding the development of microbial L-malic acid production were elaboratively discussed.
Collapse
Affiliation(s)
- Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiahui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yaru Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
9
|
Kövilein A, Aschmann V, Zadravec L, Ochsenreither K. Optimization of l-malic acid production from acetate with Aspergillus oryzae DSM 1863 using a pH-coupled feeding strategy. Microb Cell Fact 2022; 21:242. [DOI: 10.1186/s12934-022-01961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Malic acid, a dicarboxylic acid mainly used in the food industry, is currently produced from fossil resources. The utilization of low-cost substrates derived from biomass could render microbial processes economic. Such feedstocks, like lignocellulosic hydrolysates or condensates of fast pyrolysis, can contain high concentrations of acetic acid. Acetate is a suitable substrate for l-malic acid production with the filamentous fungus Aspergillus oryzae DSM 1863, but concentrations obtained so far are low. An advantage of this carbon source is that it can be used for pH control and simultaneous substrate supply in the form of acetic acid. In this study, we therefore aimed to enhance l-malate production from acetate with A. oryzae by applying a pH-coupled feeding strategy.
Results
In 2.5-L bioreactor fermentations, several feeding strategies were evaluated. Using a pH-coupled feed consisting of 10 M acetic acid, the malic acid concentration was increased about 5.3-fold compared to the batch process without pH control, resulting in a maximum titer of 29.53 ± 1.82 g/L after 264 h. However, it was not possible to keep both the pH and the substrate concentration constant during this fermentation. By using 10 M acetic acid set to a pH of 4.5, or with the repeated addition of NaOH, the substrate concentration could be maintained within a constant range, but these strategies did not prove beneficial as lower maximum titers and yields were obtained. Since cessation of malic acid production was observed in later fermentation stages despite carbon availability, a possible product inhibition was evaluated in shake flask cultivations. In these experiments, malate and succinate, which is a major by-product during malic acid production, were added at concentrations of up to 50 g/L, and it was found that A. oryzae is capable of organic acid production even at high product concentrations.
Conclusions
This study demonstrates that a suitable feeding strategy is necessary for efficient malic acid production from acetate. It illustrates the potential of acetate as carbon source for microbial production of the organic acid and provides useful insights which can serve as basis for further optimization.
Collapse
|
10
|
Yadav M, Sehrawat N, Kumar S, Sharma AK, Singh M, Kumar A. Malic acid: fermentative production and applications. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Microbial metabolites have gained lot of industrial interest. These are currently employed in various industries including pharmaceuticals, chemical, textiles, food etc. Organic acids are among the important microbial products. Production of microbial organic acids present numerous advantages like agro-industrial waste may be utilized as substrate, low production cost, natural in origin and production is environment friendly. Malic acid is an organic acid (C4 dicarboxylic acid) that can be produced by microbes. It is also useful in industrial sectors as food, chemicals, and pharmaceuticals etc. Production/extraction of malic acid has been reported from fruits, egg shells, microbes, via chemical synthesis, bio-transformation and from renewable sources. Microbial production of malic acid seems very promising due to various advantages and the approach is environment-friendly. In recent years, researchers have focused on fermentative microbial production of malic acid and possibility of using agro-industrial waste as raw substrates. In current article, malic acid production along with applications has been discussed with recent advances in the area.
Collapse
Affiliation(s)
- Mukesh Yadav
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , India
| | - Nirmala Sehrawat
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , India
| | - Sunil Kumar
- Department of Microbiology, Faculty of Bio-Medical Sciences , Kampala International University , Kampala , Uganda
| | - Anil Kumar Sharma
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , India
| | - Manoj Singh
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , U.P. , India
| |
Collapse
|
11
|
Valorization of a Pyrolytic Aqueous Condensate and Its Main Components for L-Malic Acid Production with Aspergillus oryzae DSM 1863. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pyrolytic aqueous condensate (PAC) might serve as a cost-effective substrate for microbial malic acid production, as it is an unused side stream of the fast pyrolysis of lignocellulosic biomass that contains acetol and acetate as potential carbon sources. In the present study, shake flask cultures were performed to evaluate the suitability of acetol and its combination with acetate as substrates for growth and L-malate production with the filamentous fungus Aspergillus oryzae. Acetol concentrations of up to 40 g/L were shown to be utilized for fungal growth. In combination with acetate, co-metabolization of both substrates for biomass and malate formation was observed, although the maximum tolerated acetol concentration decreased to 20 g/L. Furthermore, malate production on PAC detoxified by a combination of rotary evaporation, overliming and activated carbon treatment was studied. In shake flasks, cultivation using 100% PAC resulted in the production of 3.37 ± 0.61 g/L malate, which was considerably improved by pH adjustment up to 9.77 ± 0.55 g/L. A successful scale-up to 0.5-L bioreactors was conducted, achieving comparable yields and productivities to the shake flask cultures. Accordingly, fungal malate production using PAC was successfully demonstrated, paving the way for a bio-based production of the acid.
Collapse
|
12
|
Wei Z, Xu Y, Xu Q, Cao W, Huang H, Liu H. Microbial Biosynthesis of L-Malic Acid and Related Metabolic Engineering Strategies: Advances and Prospects. Front Bioeng Biotechnol 2021; 9:765685. [PMID: 34660563 PMCID: PMC8511312 DOI: 10.3389/fbioe.2021.765685] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Malic acid, a four-carbon dicarboxylic acid, is widely used in the food, chemical and medical industries. As an intermediate of the TCA cycle, malic acid is one of the most promising building block chemicals that can be produced from renewable sources. To date, chemical synthesis or enzymatic conversion of petrochemical feedstocks are still the dominant mode for malic acid production. However, with increasing concerns surrounding environmental issues in recent years, microbial fermentation for the production of L-malic acid was extensively explored as an eco-friendly production process. The rapid development of genetic engineering has resulted in some promising strains suitable for large-scale bio-based production of malic acid. This review offers a comprehensive overview of the most recent developments, including a spectrum of wild-type, mutant, laboratory-evolved and metabolically engineered microorganisms for malic acid production. The technological progress in the fermentative production of malic acid is presented. Metabolic engineering strategies for malic acid production in various microorganisms are particularly reviewed. Biosynthetic pathways, transport of malic acid, elimination of byproducts and enhancement of metabolic fluxes are discussed and compared as strategies for improving malic acid production, thus providing insights into the current state of malic acid production, as well as further research directions for more efficient and economical microbial malic acid production.
Collapse
Affiliation(s)
- Zhen Wei
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yongxue Xu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
13
|
Duong TBH, Ketbot P, Phitsuwan P, Waeonukul R, Tachaapaikoon C, Kosugi A, Ratanakhanokchai K, Pason P. Bioconversion of Untreated Corn Hull into L-Malic Acid by Trifunctional Xylanolytic Enzyme from Paenibacillus curdlanolyticus B-6 and Acetobacter tropicalis H-1. J Microbiol Biotechnol 2021; 31:1262-1271. [PMID: 34261852 PMCID: PMC9705945 DOI: 10.4014/jmb.2105.05044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
L-Malic acid (L-MA) is widely used in food and non-food products. However, few microorganisms have been able to efficiently produce L-MA from xylose derived from lignocellulosic biomass (LB). The objective of this work is to convert LB into L-MA with the concept of a bioeconomy and environmentally friendly process. The unique trifunctional xylanolytic enzyme, PcAxy43A from Paenibacillus curdlanolyticus B-6, effectively hydrolyzed xylan in untreated LB, especially corn hull to xylose, in one step. Furthermore, the newly isolated, Acetobacter tropicalis strain H1 was able to convert high concentrations of xylose derived from corn hull into L-MA as the main product, which can be easily purified. The strain H1 successfully produced a high L-MA titer of 77.09 g/l, with a yield of 0.77 g/g and a productivity of 0.64 g/l/h from the xylose derived from corn hull. The process presented in this research is an efficient, low-cost and environmentally friendly biological process for the green production of L-MA from LB.
Collapse
Affiliation(s)
- Thi Bich Huong Duong
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Prattana Ketbot
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Paripok Phitsuwan
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Patthra Pason
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Corresponding author Phone: +662-470-7765 Fax: +662-470-7760 E-mail:
| |
Collapse
|
14
|
Ji L, Wang J, Luo Q, Ding Q, Tang W, Chen X, Liu L. Enhancing L-malate production of Aspergillus oryzae by nitrogen regulation strategy. Appl Microbiol Biotechnol 2021; 105:3101-3113. [PMID: 33818672 DOI: 10.1007/s00253-021-11149-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/01/2022]
Abstract
Regulating morphology engineering and fermentation of Aspergillus oryzae makes it possible to increase the titer of L-malate. However, the existing L-malate-producing strain has limited L-malate production capacity and the fermentation process is insufficiently mature, which cannot meet the needs of industrial L-malate production. To further increase the L-malate production capacity of A. oryzae, we screened out a mutant strain (FMME-S-38) that produced 79.8 g/L L-malate in 250-mL shake flasks, using a newly developed screening system based on colony morphology on the plate. We further compared the extracellular nitrogen (N1) and intracellular nitrogen (N2) contents of the control and mutant strain (FMME-S-38) to determine the relationship between the curve of nitrogen content (N1 and N2) and the L-malate titer. This correlation was then used to optimize the conditions for developing a novel nitrogen supply strategy (initial tryptone concentration of 6.5 g/L and feeding with 3 g/L tryptone at 24 h). Fermentation in a 7.5-L fermentor under the optimized conditions further increased the titer and productivity of L-malate to 143.3 g/L and 1.19 g/L/h, respectively, corresponding to 164.9 g/L and 1.14 g/L/h in a 30-L fermentor. This nitrogen regulation-based strategy cannot only enhance industrial-scale L-malate production but also has generalizability and the potential to increase the production of similar metabolites.Key Points• Construction of a new screening system based on colony morphology on the plate.• A novel nitrogen regulation strategy used to regulate the production of L-malate.• A nitrogen supply strategy used to maximize the production of L-malate.
Collapse
Affiliation(s)
- Lihao Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ju Wang
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenxiu Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
15
|
|
16
|
Wu H, Yang M, Tsui TH, Yin Z, Yin C. Comparative evaluation on the utilization of applied electrical potential in a conductive granule packed biotrickling filter for continuous abatement of xylene: Performance, limitation, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111145. [PMID: 32801108 DOI: 10.1016/j.jenvman.2020.111145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the use of electrically conductive granules as packing material in biotrickling filter (BTF) systems as to provide insights on the specific microbial abundance and functions during the treatment of xylene-containing waste gas. In addition, the effect of applied potential on attached biofilm on conductive granules during xylene degradation was briefly investigated. During stable operation period, the conductive granules packed BTF achieved reactor performance of no less than 80% with a maximum EC of 137.7 g/m3 h. Under applied potential of 1V, the BTF system showed deterioration of xylene removal by ranging from 21 to 76%, which also affected the distribution and relative abundance of the major microorganisms such as Xanthobacter, Acidovorax, Rhodococcus, Hydrogenophaga, Arthrobacter, Brevundimonas, Pseudoxanthomonas, Devosia, Shinella, Sphingobium, Dokdonella, Pseudomonas and Bosea. The acclimation of applied potential led to the enrichment of autotrophic bacteria and strains, which are correlated to improved nitrogen cycling. In general, applying electrical potential is feasible to shape the microbiological structure of biofilms to selectively adjust their biochemical functions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Chemistry, Yanbian University, Yanji, 133002, China; Department of Environmental Engineering, Yanshan University, Qinhuangdao, 066000, China
| | - Mengxin Yang
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - To-Hung Tsui
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenxing Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| | - Chengri Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
17
|
Xu Y, Zhou Y, Cao W, Liu H. Improved Production of Malic Acid in Aspergillus niger by Abolishing Citric Acid Accumulation and Enhancing Glycolytic Flux. ACS Synth Biol 2020; 9:1418-1425. [PMID: 32379964 DOI: 10.1021/acssynbio.0c00096] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbial fermentation was widely explored to produce malic acid. Previously, Aspergillus niger has been successfully engineered, and a high titer of malic acid was achieved with strain S575, but it also produced a high level of byproduct citric acid. Here, the capability of A. niger in malic acid biosynthesis was further improved by eliminating the accumulation of citric acid and enhancing glycolytic flux. Characterization of variant mutants suggested that disruption of cexA, a gene encoding citric acid transporter located on cell membrane, abolished citric acid accumulation. However, cexA-deficient strain S895 showed significantly decreased malic acid production. Further analysis of S895 indicated that the transcription level of genes involved in glucose transportation and glycolytic pathway was significantly reduced, and the corresponding enzyme activity was also lower than those of S575. Individual overexpression of genes encoding glucose transporter MstC and key enzymes (hexokinase HxkA, 6-phosphofructo-2-kinase PfkA, and pyruvate kinase PkiA) involved in irreversible reactions of glycolic pathway increased malic acid production. Accordingly, genes of mstC, hxkA, pfkA, and pkiA were overexpressed altogether in S895, and the resultant strain S1149 was constructed. The titer of malic acid in fed-batch fermentation with S1149 reached 201.13 g/L. Compared with S575, the byproduct of citric acid was completely abolished in S1149, and the ratio of malic acid/glucose was increased from 1.27 to 1.64 mol/mol, the highest yield reported so far, and the fermentation period was shortened from 9 to 8 days. Thus, a strain with great industrial application potential was developed by engineering nine genes in A. niger, and a pilot fermentation technology was exploited.
Collapse
Affiliation(s)
- Yongxue Xu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Yutao Zhou
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, 300457 Tianjin, China
| |
Collapse
|
18
|
Bharathiraja B, Selvakumari IAE, Jayamuthunagai J, Kumar RP, Varjani S, Pandey A, Gnansounou E. Biochemical conversion of biodiesel by-product into malic acid: A way towards sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136206. [PMID: 31905567 DOI: 10.1016/j.scitotenv.2019.136206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Crude glycerol, one of the ever-growing by-product of biodiesel industry and is receiving the closest review in recent times because direct disposal of crude glycerol may emerge ecological issues. The renewability, bioavailability and typical structure of glycerol, therefore, discover conceivable application in serving the role of carbon and energy source for microbial biosynthesis of high value products. This conceivable arrangement could find exploitation of crude glycerol as a renewable building block for bio-refineries as it is economically as well as environmentally profitable. In this review, we summarize the uptake and catabolism of crude glycerol by different wild and recombinant microorganism. The chemical and biochemical transformation of crude glycerol into high esteem malic acid by various microbial pathways is also additionally discussed. An extensive investigation in the synthesis of high-value malic acid production from various feed stock which finds applications in cosmeceutical and chemical industries, food and beverages, and to some extent in the field of medical science is also likewise studied. Finally, the open doors for unrefined crude glycerol in serving as a promising abundant energy source for malic acid production in near future have been highlighted.
Collapse
Affiliation(s)
- B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600 062, India
| | | | - J Jayamuthunagai
- Centre for Biotechnology, Anna University, Chennai 600 025, India
| | - R Praveen Kumar
- Department of Biotechnology, Arunai Engineering College, Thiruvannaamalai 606 603, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Frontier Research Lab, Yonsei University, Sinchon-dong, Seodaemun-gu, Seoul, South Korea.
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Chen X, Zhou J, Ding Q, Luo Q, Liu L. Morphology engineering ofAspergillus oryzaeforl‐malate production. Biotechnol Bioeng 2019; 116:2662-2673. [DOI: 10.1002/bit.27089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| | - Jie Zhou
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| | - Qiang Ding
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| | - Qiuling Luo
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| | - Liming Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| |
Collapse
|
20
|
Iyyappan J, Bharathiraja B, Baskar G, Kamalanaban E. Process optimization and kinetic analysis of malic acid production from crude glycerol using Aspergillus niger. BIORESOURCE TECHNOLOGY 2019; 281:18-25. [PMID: 30784998 DOI: 10.1016/j.biortech.2019.02.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
In the present work, optimization of crude glycerol fermentation to produce malic acid by using Aspergillus niger was investigated using response surface methodology and artificial neural network. Kinetic investigation of bioconversion of crude glycerol into malic acid using Aspergillus niger was studied using Monod, Mosser, and Haldane-Andrew models. Crude glycerol concentration, initial pH and yeast extract concentration were found to be significant compounds affecting malic acid production by Aspergillus niger. Both dry cell weight and malic acid titre were found decreased with increase in crude glycerol concentration. Haldane-Andrew model gave the best fit for the production of malic acid from crude glycerol with µmax of 0.1542 h-1. The maximum malic acid production obtained under optimum conditions was 92.64 + 1.54 g/L after 192 h from crude glycerol using Aspergillus niger.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India.
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - E Kamalanaban
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| |
Collapse
|
21
|
Iyyappan J, Baskar G, Bharathiraja B, Saravanathamizhan R. Malic acid production from biodiesel derived crude glycerol using morphologically controlled Aspergillus niger in batch fermentation. BIORESOURCE TECHNOLOGY 2018; 269:393-399. [PMID: 30205264 DOI: 10.1016/j.biortech.2018.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
In the present investigation, the effects of crude glycerol concentration, spore inoculum concentration, yeast extract concentration and shaking frequency on seed morphology of Aspergillus niger PJR1 on malic acid production were investigated and dispersed fungal mycelium with higher biomass (20.25 ± 0.91 g/L) was obtained when A. niger PJR1 grow on crude glycerol. Dry cell weight under dispersed fermentation was 21.28% higher than usual pellet fermentation. The optimal crude glycerol, nitrogen source and nitrogen source concentration were found to be 160 g/L, yeast extract and 1.5 g/L, respectively. Batch fermentation in a shake flask culture containing 160 g/L crude glycerol resulted in the yield of malic acid 83.23 ± 1.86 g/L, after 192 h at 25 °C. Results revealed that morphological control of A. niger is an efficient method for increased malic acid production when crude glycerol derived from biodiesel production is used as feedstock.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - R Saravanathamizhan
- Department of Chemical Engineering, A. C. Tech Campus, Anna University, Chennai 600025, India
| |
Collapse
|
22
|
Liu J, Li J, Liu Y, Shin HD, Ledesma-Amaro R, Du G, Chen J, Liu L. Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of Aspergillus oryzae for Increased l-Malate Production. ACS Synth Biol 2018; 7:2139-2147. [PMID: 30092627 DOI: 10.1021/acssynbio.8b00130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
l-Malate is an important platform chemical that has extensive applications in the food, feed, and wine industries. Here, we synergistically engineered the carbon metabolism and redox metabolism in the cytosol and mitochondria of a previously engineered Aspergillus oryzae to further improve the l-malate titer and decrease the byproduct succinate concentration. First, the accumulation of the intermediate pyruvate was eliminated by overexpressing a pyruvate carboxylase from Rhizopus oryzae in the cytosol and mitochondria of A. oryzae, and consequently, the l-malate titer increased 7.5%. Then, malate synthesis via glyoxylate bypass in the mitochondria was enhanced, and citrate synthase in the oxidative TCA cycle was downregulated by RNAi, enhancing the l-malate titer by 10.7%. Next, the exchange of byproducts (succinate and fumarate) between the cytosol and mitochondria was regulated by the expression of a dicarboxylate carrier Sfc1p from Saccharomyces cerevisiae in the mitochondria, which increased l-malate titer 3.5% and decreased succinate concentration 36.8%. Finally, an NADH oxidase from Lactococcus lactis was overexpressed to decrease the NADH/NAD+ ratio, and the engineered A. oryzae strain produced 117.2 g/L l-malate and 3.8 g/L succinate, with an l-malate yield of 0.9 g/g corn starch and a productivity of 1.17 g/L/h. Our results showed that synergistic engineering of the carbon and redox metabolisms in the cytosol and mitochondria of A. oryzae effectively increased the l-malate titer, while simultaneously decreasing the concentration of the byproduct succinate. The strategies used in our work may be useful for the metabolic engineering of fungi to produce other industrially important chemicals.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Dai Z, Zhou H, Zhang S, Gu H, Yang Q, Zhang W, Dong W, Ma J, Fang Y, Jiang M, Xin F. Current advance in biological production of malic acid using wild type and metabolic engineered strains. BIORESOURCE TECHNOLOGY 2018; 258:345-353. [PMID: 29550171 DOI: 10.1016/j.biortech.2018.03.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Malic acid (2-hydroxybutanedioic acid) is a four-carbon dicarboxylic acid, which has attracted great interest due to its wide usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Several mature routes for malic acid production have been developed, such as chemical synthesis, enzymatic conversion and biological fermentation. With depletion of fossil fuels and concerns regarding environmental issues, biological production of malic acid has attracted more attention, which mainly consists of three pathways, namely non-oxidative pathway, oxidative pathway and glyoxylate cycle. In recent decades, metabolic engineering of model strains, and process optimization for malic acid production have been rapidly developed. Hence, this review comprehensively introduces an overview of malic acid producers and highlight some of the successful metabolic engineering approaches.
Collapse
Affiliation(s)
- Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Huiyuan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Honglian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Qiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Yan Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
24
|
Wu X, Yao H, Liu Q, Zheng Z, Cao L, Mu D, Wang H, Jiang S, Li X. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis. Appl Biochem Biotechnol 2018; 186:217-232. [PMID: 29552715 DOI: 10.1007/s12010-018-2732-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/28/2018] [Indexed: 02/07/2023]
Abstract
The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Hongli Yao
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
| | - Qing Liu
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Lili Cao
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Dongdong Mu
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
| | - Hualin Wang
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China.
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China.
| |
Collapse
|
25
|
Iyyappan J, Bharathiraja B, Baskar G, Jayamuthunagai J, Barathkumar S, Anna Shiny R. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. BIORESOURCE TECHNOLOGY 2018; 251:264-267. [PMID: 29288953 DOI: 10.1016/j.biortech.2017.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India.
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - J Jayamuthunagai
- Centre for Biotechnology, Anna University, Chennai 600025, India
| | - S Barathkumar
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - R Anna Shiny
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| |
Collapse
|
26
|
Biological production of L-malate: recent advances and future prospects. World J Microbiol Biotechnol 2017; 34:6. [PMID: 29214355 DOI: 10.1007/s11274-017-2349-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
As intermediates in the TCA cycle, L-malate and its derivatives have been widely applied in the food, pharmaceutical, agriculture, and bio-based material industries. In recent years, biological routes have been regarded as very promising approaches as cost-effective ways to L-malate production from low-priced raw materials. In this mini-review, we provide a comprehensive overview of current developments of L-malate production using both biocatalysis and microbial fermentation. Biocatalysis is enzymatic transformation of fumarate to L-malate, here, the source of enzymes, catalytic conditions, and enzymatic molecular modification may be concluded. For microbial fermentation, the types of microorganisms, genetic characteristics, biosynthetic pathways, metabolic engineering strategies, fermentation substrates, and optimization of cultivation conditions have been discussed and compared. Furthermore, the combination of enzyme and metabolic engineering has also been summarized. In future, we also expect that novel biological approaches using industrially relevant strains and renewable raw materials can overcome the technical challenges involved in cost-efficient L-malate production.
Collapse
|
27
|
Kawaguchi H, Ogino C, Kondo A. Microbial conversion of biomass into bio-based polymers. BIORESOURCE TECHNOLOGY 2017; 245:1664-1673. [PMID: 28688739 DOI: 10.1016/j.biortech.2017.06.135] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 05/19/2023]
Abstract
The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
28
|
Liu J, Li J, Shin HD, Du G, Chen J, Liu L. Metabolic engineering of Aspergillus oryzae for efficient production of l -malate directly from corn starch. J Biotechnol 2017; 262:40-46. [DOI: 10.1016/j.jbiotec.2017.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/04/2017] [Accepted: 09/28/2017] [Indexed: 11/25/2022]
|
29
|
Wu X, Liu Q, Deng Y, Li J, Chen X, Gu Y, Lv X, Zheng Z, Jiang S, Li X. Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. BIORESOURCE TECHNOLOGY 2017; 241:25-34. [PMID: 28550772 DOI: 10.1016/j.biortech.2017.05.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 05/28/2023]
Abstract
The replacement of the carbon source in the microbial production of itaconic acid (IA) with economic alternatives has attracted significant attention. In this study, an Aspergillus terreus CICC40205 mutant was used to increase the IA titer and decrease the citric acid titer in the wheat bran hydrolysate compared with the parental strain. The results showed that the IA titer was increased by 33.4%, whereas the citric acid titer was decreased by 75.8%, and were in accordance with those of the improved pathway of co-metabolism of glucose and xylose according to the metabolic flux analysis. Additionally, the maximum IA titer obtained in a 7-L stirred tank was 49.65gL-1±0.38gL-1. Overall, A. terreus CICC40205 showed a great potential for the industrial production of IA through the biotransformation of the wheat bran hydrolysate.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Qing Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yongdong Deng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Jinghong Li
- China Rural Technology Development Center, Beijing 100045, PR China
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui Province 238000, PR China
| | - Yongzhong Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xijun Lv
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China.
| |
Collapse
|
30
|
Wu X, Yao H, Cao L, Zheng Z, Chen X, Zhang M, Wei Z, Cheng J, Jiang S, Pan L, Li X. Improving Acetic Acid Production by Over-Expressing PQQ-ADH in Acetobacter pasteurianus. Front Microbiol 2017; 8:1713. [PMID: 28932219 PMCID: PMC5592214 DOI: 10.3389/fmicb.2017.01713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/24/2017] [Indexed: 11/24/2022] Open
Abstract
Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) is a key enzyme in the ethanol oxidase respiratory chain of acetic acid bacteria (AAB). To investigate the effect of PQQ-ADH on acetic acid production by Acetobacter pasteurianus JST-S, subunits I (adhA) and II (adhB) of PQQ-ADH were over-expressed, the fermentation parameters and the metabolic flux analysis were compared in the engineered strain and the original one. The acetic acid production was improved by the engineered strain (61.42 g L−1) while the residual ethanol content (4.18 g L−1) was decreased. Analysis of 2D maps indicated that 19 proteins were differently expressed between the two strains; of these, 17 were identified and analyzed by mass spectrometry and two-dimensional gel electrophoresis. With further investigation of metabolic flux analysis (MFA) of the pathway from ethanol and glucose, the results reveal that over-expression of PQQ-ADH is an effective way to improve the ethanol oxidation respiratory chain pathway and these can offer theoretical references for potential mechanism of metabolic regulation in AAB and researches with its acetic acid resistance.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Hongli Yao
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Lili Cao
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Xiaoju Chen
- School of Chemical Engineering and Life Sciences, Chaohu UniversityHefei, China
| | - Min Zhang
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Zhaojun Wei
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Jieshun Cheng
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Lijun Pan
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| |
Collapse
|
31
|
Wu X, Liu Q, Deng Y, Chen X, Zheng Z, Jiang S, Li X. Production of Fumaric Acid by Bioconversion of Corncob Hydrolytes Using an Improved Rhizopus oryzae Strain. Appl Biochem Biotechnol 2017; 184:553-569. [DOI: 10.1007/s12010-017-2554-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
|
32
|
|
33
|
|
34
|
Yin X, Li J, Shin HD, Du G, Liu L, Chen J. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Biotechnol Adv 2015; 33:830-41. [DOI: 10.1016/j.biotechadv.2015.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 01/15/2023]
|