1
|
Xu X, Shen F, Lv G, Lin J. Immobilization of laccase on mesoporous metal organic frameworks for efficient cross-coupling of ethyl ferulate. World J Microbiol Biotechnol 2024; 40:321. [PMID: 39279003 DOI: 10.1007/s11274-024-04125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Laccases act as green catalysts for oxidative cross-coupling of phenolic antioxidnt compounds, but low stability and non-recyclability limit its application. To address that, metal-organic frameworks Cu-BTC and Cr-MOF were synthesized as supports to immobilize the efficient laccase from Cerrena sp. HYB07. The Brunauer-Emmett-Teller surface area of Cu-BTC and Cr-MOF were 1213.2 and 907.1 m2/g, respectively. The two carriers respectively presented pore diameters of 1.2-10 nm and 1.4-12 nm as octahedron, indicating nano-scale mesoporosity. These Cu-BTC and Cr-MOF carriers could adsorb laccase with enzyme loading of 1933.2 and 1564.4 U/g carrier, respectively. The stability and organic solvent tolerance of Cu-BTC-laccase and Cr-MOF-laccase were both obviously improved compared to free laccase. Thermal inactivation kinetics showed that both the two immobilized laccases displayed lower thermal inactivation rate constants. Importantly, the Cu-BTC-laccase and Cr-MOF-laccase both showed much higher activity for cross-coupling of ethyl ferulate than free laccase, which had 2.5-fold higher cross-coupling efficiency than that by free laccase. The ethyl ferulate coupling product was also analyzed by mass spectroscopy and the synthesis pathway of ethyl ferulate dimer was proposed. The cross coupling of ethyl ferulate required the formation of radical intermediates of ethyl ferulate generated by laccase mediated oxidation. This work paved the way for MOFs immobilized laccase for cross coupling of antioxidant phenols.
Collapse
Affiliation(s)
- Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Feng Shen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Gan Lv
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Kotwal N, Pathania D, Singh A, Din Sheikh ZU, Kothari R. Enzyme immobilization with nanomaterials for hydrolysis of lignocellulosic biomass: Challenges and future Perspectives. Carbohydr Res 2024; 543:109208. [PMID: 39013334 DOI: 10.1016/j.carres.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Enzyme immobilization has emerged as a prodigious strategy in the enzymatic hydrolysis of lignocellulosic biomass (LCB) promising enhanced efficacy and stability of the enzymes. Further, enzyme immobilization on magnetic nanoparticles (MNPs) facilitates the easy recovery and reuse of biocatalysts. This results in the development of a nanobiocatalytic system, that serves as an eco-friendly and inexpensive LCB deconstruction approach. This review provides an overview of nanomaterials used for immobilization with special emphasis on the nanomaterial-enzyme interactions and strategies of immobilization. After the succinct outline of the immobilization procedures and supporting materials, a comprehensive assessment of the catalysis enabled by nanomaterial-immobilized biocatalysts for the conversion and degradation of lignocellulosic biomasses is provided by gathering state-of-the-art examples. The challenges and future directions associated with this technique providing a potential solution in the present article. Insight on the recent advancements in the process of nanomaterial-based immobilization for the hydrolysis of lignocellulosic biomass has also been highlighted in the article.
Collapse
Affiliation(s)
- Neha Kotwal
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India.
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India; Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Zaheer Ud Din Sheikh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| |
Collapse
|
3
|
Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. Immobilization of Horseradish Peroxidase on Ca Alginate-Starch Hybrid Support: Biocatalytic Properties and Application in Biodegradation of Phenol Red Dye. Appl Biochem Biotechnol 2024; 196:4759-4792. [PMID: 37950796 DOI: 10.1007/s12010-023-04772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
In this study, horseradish peroxidase was extracted, purified, and immobilized on a calcium alginate-starch hybrid support by covalent bonding and entrapment. The immobilized HRP was used for the biodegradation of phenol red dye. A 3.74-fold purification was observed after precipitation with ammonium sulfate and dialysis. An immobilization yield of 88.33%, efficiency of 56.89%, and activity recovery of 50.26% were found. The optimum pH and temperature values for immobilized and free HRP were 5.0 and 50 °C and 6.5 and 60 °C, respectively. The immobilized HRP showed better thermal stability than its free form, resulting in a considerable increase in half-life time (t1/2) and deactivation energy (Ed). The immobilized HRP maintained 93.71% of its initial activity after 45 days of storage at 4 °C. Regarding the biodegradation of phenol red, immobilized HRP resulted in 63.57% degradation after 90 min. After 10 cycles of reuse, the immobilized HRP was able to maintain 43.06% of its initial biodegradative capacity and 42.36% of its enzymatic activity. At the end of 15 application cycles, a biodegradation rate of 8.34% was observed. In conclusion, the results demonstrate that the immobilized HRP is a promising option for use as an industrial biocatalyst in various biotechnological applications.
Collapse
Affiliation(s)
- Ani Caroline Weber
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruno Eduardo da Silva
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Sabrina Grando Cordeiro
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Guilherme Schwingel Henn
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruna Costa
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Jéssica Samara Herek Dos Santos
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Lucélia Hoehne
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil.
| |
Collapse
|
4
|
Cho CH, Kim JH, Padalkar NS, Reddy YVM, Park TJ, Park J, Park JP. Nanozyme-assisted molecularly imprinted polymer-based indirect competitive ELISA for the detection of marine biotoxin. Biosens Bioelectron 2024; 255:116269. [PMID: 38579624 DOI: 10.1016/j.bios.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Saxitoxin (STX), which is produced by certain dinoflagellate species, is a type of paralytic shellfish poisoning toxin that poses a serious threat to human health and the environment. Therefore, developing a technology for the convenient and cost-effective detection of STX is imperative. In this study, we developed an affinity peptide-imprinted polymer-based indirect competitive ELISA (ic-ELISA) without using enzyme-toxin conjugates. AuNP/Co3O4@Mg/Al cLDH was synthesized by calcining AuNP/ZIF-67@Mg/Al LDH, which was obtained by combining AuNPs, ZIF-67, and flower-like Mg/Al LDH. This synthesized nanozyme exhibited high catalytic activity (Km = 0.24 mM for TMB and 132.5 mM for H2O2). The affinity peptide-imprinted polymer (MIP) was imprinted with an STX-specific template peptide (STX MIP) on a multi-well microplate and then reacted with an STX-specific signal peptide (STX SP). The interaction between the STX SP and MIP was detected using a streptavidin-coated nanozyme (SA-AuNP/Co3O4@Mg/Al cLDH). The developed MIP-based ic-ELISA exhibited excellent selectivity and sensitivity, with a limit of detection of 3.17 ng/mL (equivalent: 0.317 μg/g). Furthermore, the system was validated using a commercial ELISA kit and mussel tissue samples, and it demonstrated a high STX recovery with a low coefficient of variation. These results imply that the developed ic-ELISA can be used to detect STX in real samples.
Collapse
Affiliation(s)
- Chae Hwan Cho
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ji Hong Kim
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Navnath S Padalkar
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Wang Z, Wang R, Geng Z, Luo X, Jia J, Pang S, Fan X, Bilal M, Cui J. Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts. Crit Rev Biotechnol 2024; 44:674-697. [PMID: 37032548 DOI: 10.1080/07388551.2023.2189548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/11/2023]
Abstract
Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.
Collapse
Affiliation(s)
- Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Ruirui Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Zixin Geng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Xiuyan Luo
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Jiahui Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Saizhao Pang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Xianwei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guang Xi University, Nanning, China
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| |
Collapse
|
6
|
Ren S, Wang F, Gao H, Han X, Zhang T, Yuan Y, Zhou Z. Recent Progress and Future Prospects of Laccase Immobilization on MOF Supports for Industrial Applications. Appl Biochem Biotechnol 2024; 196:1669-1684. [PMID: 37378720 DOI: 10.1007/s12010-023-04607-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Laccase is a multicopper oxidoreductase enzyme that can oxidize organics such as phenolic compounds. Laccases appear to be unstable at room temperature, and their conformation often changes in a strongly acidic or alkaline environment, making them less effective. Therefore, rationally linking enzymes with supports can effectively improve the stability and reusability of native enzymes and add important industrial value. However, in the process of immobilization, many factors may lead to a decrease in enzymatic activity. Therefore, the selection of a suitable support can ensure the activity and economic utilization of immobilized catalysts. Metal-organic frameworks (MOFs) are porous and simple hybrid support materials. Moreover, the characteristics of the metal ion ligand of MOFs can enable a potential synergistic effect with the metal ions of the active center of metalloenzymes, enhancing the catalytic activity of such enzymes. Therefore, in addition to summarizing the biological characteristics and enzymatic properties of laccase, this article reviews laccase immobilization using MOF supports, as well as the application prospects of immobilized laccase in many fields.
Collapse
Affiliation(s)
- Sizhu Ren
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China
| | - Fangfang Wang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Hui Gao
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Xiaoling Han
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Tong Zhang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Yanlin Yuan
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
| | - Zhiguo Zhou
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China.
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China.
| |
Collapse
|
7
|
Huang W, Zhang W, Chen G, Chen Y, Ma J, Huang D, Zhao Q, Wu B. Visible light-driven oxidation of non-native substrate by laccase attached on Ru-based metal-organic frameworks. J Environ Sci (China) 2024; 137:741-753. [PMID: 37980056 DOI: 10.1016/j.jes.2023.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 11/20/2023]
Abstract
Light-induced electron transfer can broaden the substrate range of metalloenzyme. However, the efficiency of photo-enzyme coupling is limited by the poor combination of photosensitizer or photocatalyst with enzyme. Herein, we prepared the nano-photocatalyst MIL-125-NH2@Ru(bpy) by in site embedding ruthenium pyridine-diimine complex [Ru(bpy)3]2+ into metal organic frameworks MIL-125-NH2 and associated it with multicopper oxidase (MCO) laccase. Compared to [Ru(bpy)3]2+, the coupling efficiency of MIL-125-NH2@Ru(bpy)3 for enzymatic oxygen reduction increased by 35.7%. A series of characterizations confirmed that the amino group of laccase formed chemical bonds with the surface defects or hydrophobic groups of MIL-125-NH2@Ru(bpy)3. Consequently, the tight binding accelerated the quenching process and electron transfer between laccase and the immobilized ruthenium pyridine-diimine complex. This work would open an avenue for the synthesis of MOFs photocatalyst towards photo-enzyme coupling.
Collapse
Affiliation(s)
- Wenguang Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guantongyi Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Jun Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Dawei Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Qinzheng Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| |
Collapse
|
8
|
Zeyadi M, Almulaiky YQ. Chitosan-Based metal-organic framework for Stabilization of β-glucosidase: Reusability and storage stability. Heliyon 2023; 9:e21169. [PMID: 37920506 PMCID: PMC10618774 DOI: 10.1016/j.heliyon.2023.e21169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Enzyme immobilization is a powerful tool for protecting enzymes from harsh reaction conditions and improving enzyme activity, stability, and reusability. In this study, metal organic frameworks (MIL-Fe composites) were synthesized via solvothermal reactions and then modified with chitosan (CS). β-Glucosidase was immobilized on the chitosan-metal organic framework (CS-MIL-Fe), and the resulting composites were characterized with various analytical techniques. The β-glucosidase immobilized on a CS-MIL-Fe composite had an immobilization yield of 85 % and a recovered activity of 74 %. The immobilized enzyme retained 81 % of its initial activity after ten successive cycles and preserved 69 % of its original activity after 30 days of storage at 4 °C. In contrast, the free enzyme had only preserved 32 % of its original activity after 30 days. Under various temperature and pH conditions, the immobilized enzyme showed greater stability than the free enzyme, and the optimal temperature and pH were 60 °C and 6.0 for the immobilized enzyme and 50 °C and 5.0 for the free enzyme. The kinetic parameters were also determined, with the Km values of 13.4 and 6.98 mM for the immobilized and free β-glucosidase, respectively, and Vmax values of 3.96 and 1.72 U/mL, respectively. Overall, these results demonstrate that the CS-MIL-Fe@β-glucosidase is a promising matrix showing high catalytic efficiency and enhanced stability.
Collapse
Affiliation(s)
- Mustafa Zeyadi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|
9
|
Kalhor HR, Piraman Z, Fathali Y. Hen egg white lysozyme encapsulated in ZIF-8 for performing promiscuous enzymatic Mannich reaction. iScience 2023; 26:107807. [PMID: 37744039 PMCID: PMC10514465 DOI: 10.1016/j.isci.2023.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Hen egg white lysozyme (HEWL) was exploited for the synthesis of β-amino carbonyl compounds through a direct and three-component Mannich reaction in aqueous, confirming high chemoselectivity toward imine. In order to further extend the applications of the enzyme, HEWL was encapsulated using a metal-organic framework (MOF). The reactivity, stereoselectivity, and reusability of the encapsulated enzyme were investigated. The reaction was significantly enhanced as compared to the non-encapsulated enzyme. A mutated version of the enzyme, containing Asp52Ala (D52A), lacking important catalytical residue, has lost the bacterial site activity against Micrococcus luteus (M. luteus) while the D52A variant displayed an increased rate of the Mannich reaction, indicating a different catalytical residue involved in the promiscuous reaction. Based on site-directed mutagenesis, molecular docking, and molecular dynamic studies, it was proposed that π-stacking, H-bond interactions, and the presence of water in the active site may play crucial roles in the mechanism of the reaction.
Collapse
Affiliation(s)
- Hamid R. Kalhor
- Biochemistry and Chemical Biology Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Zeinab Piraman
- Biochemistry and Chemical Biology Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yasaman Fathali
- Biochemistry and Chemical Biology Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Yang P, Yang W, Zhang H, Zhao R. Metal-Organic Framework for the Immobilization of Oxidoreductase Enzymes: Scopes and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6572. [PMID: 37834709 PMCID: PMC10574266 DOI: 10.3390/ma16196572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Oxidoreductases are a wide class of enzymes that can catalyze biological oxidation and reduction reactions. Nowadays, oxidoreductases play a vital part in most bioenergetic metabolic pathways, which have important applications in biodegradation, bioremediation, environmental applications, as well as biosensors. However, free oxidoreductases are not stable and hard to be recycled. In addition, cofactors are needed in most oxidoreductases catalyze reactions, which are so expensive and unstable that it hinders their industrial applications. Enzyme immobilization is a feasible strategy that can overcome these problems. Recently, metal-organic frameworks (MOFs) have shown great potential as support materials for immobilizing enzymes due to their unique properties, such as high surface-area-to-volume ratio, chemical stability, functional designability, and tunable pore size. This review discussed the application of MOFs and their composites as immobilized carriers of oxidoreductase, as well as the application of MOFs as catalysts and immobilized carriers in redox reactions in the perspective of the function of MOFs materials. The paper also focuses on the potential of MOF carrier-based oxidoreductase immobilization for designing an enzyme cascade reaction system.
Collapse
Affiliation(s)
- Pengyan Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenhui Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Zhao
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
11
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
12
|
Feng J, Huang QY, Zhang C, Ramakrishna S, Dong YB. Review of covalent organic frameworks for enzyme immobilization: Strategies, applications, and prospects. Int J Biol Macromol 2023; 248:125729. [PMID: 37422245 DOI: 10.1016/j.ijbiomac.2023.125729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Efficient enzyme immobilization systems offer a promising approach for improving enzyme stability and recyclability, reducing enzyme contamination in products, and expanding the applications of enzymes in the biomedical field. Covalent organic frameworks (COFs) possess high surface areas, ordered channels, optional building blocks, highly tunable porosity, stable mechanical properties, and abundant functional groups, making them ideal candidates for enzyme immobilization. Various COF-enzyme composites have been successfully synthesized, with performances that surpass those of free enzymes in numerous ways. This review aims to provide an overview of current enzyme immobilization strategies using COFs, highlighting the characteristics of each method and recent research applications. The future opportunities and challenges of enzyme immobilization technology using COFs are also discussed.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China; Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, 117574 Singapore, Singapore
| | - Qing-Yun Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Ce Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, 117574 Singapore, Singapore.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
13
|
Gao J, Liu H, Tong C. Controllable Synthesis of Hemoglobin-Metal Phosphate Organic-Inorganic Hybrid Nanoflowers and Their Applications in Biocatalysis. Inorg Chem 2023; 62:13812-13823. [PMID: 37584534 DOI: 10.1021/acs.inorgchem.3c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In recent years, organic-inorganic hybrid nanoflower technology has become an effective method for enzyme immobilization. Here, seven hierarchical flower-like hemoglobin-phosphate organic-inorganic hybrid nanomaterials (Hb-M3(PO4)2·nH2O HNFs) were synthesized through an improved universal one-pot wet-chemical method, with Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ as inorganic components. In this synthesis process, the metal cations are successively involved in the coordination reaction with Hb and the metathesis reaction to generate phosphate precipitation. The coordination ability of metal cations and the generation rate of phosphate precipitations were evaluated, then the progress of the two chemical reactions was controlled synchronously by adjusting the phosphate buffer (PB) concentration, and finally a flower-like structure conducive to substrate diffusion and transport was obtained. Due to the conformational transformation of hemoglobin and the abundant Cu2+/Fe3+ active sites, the hemoglobin-Cu3(PO4)2·3H2O nanoflowers have extremely high catalytic activity, which is ∼14 times that of Hb. Importantly, this method is suitable for the monometallic-ionic, polymetallic-ionic and polyvalent metal-ion nanoflowers, which broadens the chemical composition and structural diversity of nanoflowers.
Collapse
Affiliation(s)
- Jiaojiao Gao
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Cheng Tong
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
14
|
Ozyilmaz E, Kocer MB, Caglar O, Yildirim A, Yilmaz M. Surfactant-based metal-organic frameworks (MOFs) in the preparation of an active biocatalysis. J Biotechnol 2023:S0168-1656(23)00116-5. [PMID: 37301292 DOI: 10.1016/j.jbiotec.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) are used as ideal support materials thanks to their unique properties and have become the focus of interest in enzyme immobilization studies, especially in recent years. In order to increase the catalytic activity and stability of Candida rugosa lipase (CRL), a new fluorescence-based MOF (UiO-66-Nap) derived from UiO-66 was synthesized. The structures of the materials were confirmed by spectroscopic techniques such as FTIR, 1H NMR, SEM, and PXRD. CRL was immobilized on UiO-66-NH2 and UiO-66-Nap by adsorption technique and immobilization and stability parameters of UiO-66-Nap@CRL were examined. Immobilized lipases UiO-66-Nap@CRL exhibited higher catalytic activity (204 U/g) than UiO-66-NH2@CRL (168 U/g), which indicates that the immobilized lipase (UiO-66-Nap@CRL) carries sulfonate groups, this is due to strong ionic interactions between the surfactant's polar groups and certain charged locations on the protein surface. The Free CRL lost its catalytic activity completely at 60 °C after 100min, while UiO-66-NH2@CRL and UiO-66-Nap@CRL retained 45% and 56% of their catalytic activity at the end of 120min, respectively. After 5 cycles, the activity of UiO-66-Nap@CRL remained 50%, while the activity of UiO-66-NH2@CRL was about 40%. This difference is due to the surfactant groups (Nap) in UiO-66-Nap@CRL. These results show that the newly synthesized fluorescence-based MOF derivative (UiO-66-Nap) can be an ideal support material for enzyme immobilization and can be used successfully to protect and increase the activities of enzymes.
Collapse
Affiliation(s)
- Elif Ozyilmaz
- Selcuk University, Faculty of Science, Department of Biochemistry, Konya, Turkey.
| | - Mustafa Baris Kocer
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Ozge Caglar
- Selcuk University, Faculty of Science, Department of Biochemistry, Konya, Turkey; Selcuk University, Institute of Sciences, Konya, Turkey
| | - Ayse Yildirim
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey; Selcuk University, Institute of Sciences, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| |
Collapse
|
15
|
Tang R, Ren Y, Zhang Y, Yin M, Ren X, Zhu Q, Gao C, Zhang W, Liu G, Liu B. Glucose-driven transformable complex eliminates biofilm and alleviates inflamm-aging for diabetic periodontitis therapy. Mater Today Bio 2023; 20:100678. [PMID: 37293313 PMCID: PMC10244695 DOI: 10.1016/j.mtbio.2023.100678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Abstract
Diabetic periodontitis is a major complication of diabetes, which has a deep involvement in teeth loss and more serious systematic diseases, including Alzheimer's disease, atherosclerosis and cancers. Diabetic periodontitis is difficult to treat because of recalcitrant infection and hyperglycemia-induced tissue dysfunction. Current treatments fail to completely eliminate infection due to the diffusion-reaction inhibition of biofilm, and ignore the tissue dysfunction. Here, we design a glucose-driven transformable complex, composed of calcium alginate (CaAlg) hydrogel shell and Zeolitic imidazolate framework-8 (ZIF-8) core encapsulating Glucose oxidase (GOx)/Catalase (CAT) and Minocycline (MINO), named as CaAlg@MINO/GOx/CAT/ZIF-8 (CMGCZ). The reaction product of glucose-scavenging, gluconic acid, could dissolve ZIF-8 core and transform CMGCZ from inflexible to flexible, facilitating the complex to overcome the diffusion-reaction inhibition of biofilm. Meanwhile, reduced glucose concentration could ameliorate the pyroptosis of macrophages to decrease the secretion of pro-inflammatory factors, thereby reducing inflamm-aging to alleviate periodontal dysfunction.
Collapse
|
16
|
Abdelhameed RM, Hasanin MS, Hashem AH. Carboxymethyl cellulose/sulfur-functionalized Ti-based MOF composite: synthesis, characterization, antimicrobial, antiviral and anticancer potentiality. DISCOVER NANO 2023; 18:75. [PMID: 37382711 DOI: 10.1186/s11671-023-03852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Microbial resistance is the first morbidity and mortality cause for patients as usually a secondary infection. Additionally, the MOF is a promising material that shows a nice activity in this field. However, these materials need a good formulation to enhance biocompatibility and sustainability. Cellulose and its derivatives are well as filers for this gap. In this presented work, a novel green active system based on carboxymethyl cellulose and Ti-MOF (MIL-125-NH2@CMC) modified with thiophene (Thio@MIL-125-NH2@CMC) was prepared by a post-synthetic modification (PSM) route based. FTIR, SEM and PXRD were utilized to characterize nanocomposites. In addition, transmission electron microscopy (TEM) was used to corroborate the nanocomposites' particle size and diffraction pattern as well as the DLS affirmed the size as 50 and 35 nm for MIL-125-NH2@CMC and Thio@MIL-125-NH2@CMC, respectively. The formulation of the nanocomposites was validated by physicochemical characterization techniques, while morphological analysis confirmed the nanoform of the prepared composites. The antimicrobial, antiviral and antitumor properties of MIL-125-NH2@CMC and Thio@MIL-125-NH2@CMC were assessed. Antimicrobial testing revealed that Thio@MIL-125-NH2@CMC possesses greater antimicrobial activity than MIL-125-NH2@CMC. Additionally, Thio@MIL-125-NH2@CMC demonstrated promising antifungal activity against C. albicans and A. niger where MICs were 31.25 and 0.97 µg/mL, respectively. Also, Thio@MIL-125-NH2@CMC exhibited antibacterial activity against E. coli and S. aureus where MICs were 1000 and 250 µg/mL, respectively. In addition, the results demonstrated that Thio@MIL-125-NH2@CMC displayed promising antiviral activity against both HSV1 and COX B4, with antiviral activities of 68.89% and 39.60%, respectively. Furthermore, Thio@MIL-125-NH2@CMC exhibited potential anticancer activity against MCF7 and PC3 cancerous cell lines, where IC50 was 93.16 and 88.45%, respectively. In conclusion, carboxymethyl cellulose/sulfur-functionalized Ti-based MOF composite was successfully synthesized which had antimicrobial, antiviral and anticancer activities.
Collapse
Affiliation(s)
- Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, 12622, Giza, Egypt
| | - Mohamed S Hasanin
- Cellulose and Paper Department, Chemical Industries Research Institute, National Research Centre, 12622, Dokki, Cairo, Egypt.
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
17
|
Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, Kamyab H, Pham CQ, Vo DVN, Chelliapan S. Recent Advances in the Biocatalytic Mitigation of Emerging Pollutants: A Comprehensive Review. J Biotechnol 2023; 369:14-34. [PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood. Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
Collapse
Affiliation(s)
- Bernard Chukwuemeka Ekeoma
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Leonard Nnamdi Ekeoma
- Department of Pharmacy, Nnamdi Azikiwe University, Agulu Campus, Anambra State, Nigeria
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Department of Chemistry, Ahmadu Bello University Zaria-Nigeria
| | | | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Dai-Viet N Vo
- Centre of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Enhanced Stability of β-Agarase Immobilized on Streptavidin-Coated Fe 3O 4 Nanoparticles: Effect of Biotin Linker Length. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| |
Collapse
|
19
|
Hua T, Li D, Li X, Lin J, Niu J, Cheng J, Zhou X, Hu Y. Synthesis of mesoporous-structured MIL-68(Al)/MCM-41-NH 2 for methyl orange adsorption: Optimization and Selectivity. ENVIRONMENTAL RESEARCH 2022; 215:114433. [PMID: 36167114 DOI: 10.1016/j.envres.2022.114433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Here, we report a novel amino-modified mesoporous-structured aluminum-based metal-organic framework adsorbent, MIL-68(Al)/MCM-41-NH2, for dye sewage treatment. The introduction of molecular sieves overcomes the inherent defects of microporous MOFs in contaminant transfer and provides more active sites to enhance adsorption efficiency. Compared with using organic amino ligands directly, this strategy is ten times cheaper. The composite was well characterized and analyzed in terms of morphology, structure and chemical composition. Batch experiments were carried out to study the influences of essential factors on the process, such as pH and temperature. In addition, their interactions and the optimum conditions were examined using response surface methodology (RSM). The adsorption kinetics, isotherms and thermodynamics were systematically elucidated. In detail, the adsorption process conforms to pseudo-second-order kinetics and follows the Sips and Freundlich isothermal models. Moreover, the maximum adsorption capacity Qs of methyl orange (MO) was 477 mg g-1. It could be concluded that the process was spontaneous, exothermic, and entropy-reducing. Several binary dye systems have been designed for selective adsorption research. Our material has an affinity for anionic pigments. The adsorption mechanisms were discussed in depth. The electrostatic interaction might be the dominant effect. Meanwhile, hydrogen bonding, π-π stacking, and pore filling might be important driving forces. The excellent thermal stability and recyclability of the adsorbent are readily noticed. After five reuse cycles, the composite still possesses a removal efficiency of 90% for MO. Overall, the efficient and low-cost composite can be regarded as a promising adsorbent for the selective adsorption of anionic dyes from wastewater.
Collapse
Affiliation(s)
- Tao Hua
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Dongmei Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoman Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jialiang Lin
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jiliang Niu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Xinhui Zhou
- South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Yongyou Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
20
|
Zhou W, Zhou X, Rao Y, Lin R, Ge L, Yang P, Zhang H, Zhu C, Ying H, Zhuang W. Stabilizing bienzymatic cascade catalysis via immobilization in ZIF-8/GO composites obtained by GO assisted co-growth. Colloids Surf B Biointerfaces 2022; 217:112585. [PMID: 35667201 DOI: 10.1016/j.colsurfb.2022.112585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Enzyme catalysis has clear advantages in the process of oxidizing glucose to produce gluconic acid. In the enzyme cascade, the improvement of the cascade efficiency is desired but challenging. Graphene oxide (GO) and ZIF-8 composites as enzyme support offer the promising opportunity that not only the cascade efficiency can be improved by control the distance between two enzymes, but also the stability can be improved. Here, a new strategy of GO assisted co-growth of ZIF-8 and enzyme was carried in a one-pot synthesis. Glucose oxidase&catalase immobilized in the ZIF-8/GO composites can obtain 98% residual activity after 15 days of storage with almost no enzyme shedding. The residual activity is still higher than 75% after 5 repeated uses. The presented method of controllable growth of metal organic frameworks on 2D nanosheet can also be extended for renewable energy devices, gas storage and separation of small molecules.
Collapse
Affiliation(s)
- Wenfeng Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Xiaohong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Yuan Rao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lei Ge
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hongman Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|