1
|
Gonçalves A, Machado R, Gomes AC. Self-assembled nanoparticles of hybrid elastin-like and Oncostatin M polymers for improved wound healing. BIOMATERIALS ADVANCES 2025; 169:214150. [PMID: 39693870 DOI: 10.1016/j.bioadv.2024.214150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine that can significantly enhance wound healing. Here, we report on the use of nanoparticles (NPs) formulated from a genetically engineered A200_hOSM protein polymer, which combines an elastin-like recombinamer (A200) with human OSM (hOSM) in the same molecule, aiming at enhancing wound healing processes. A200_hOSM NPs were obtained by self-assembly and evaluated for their bioactivity in human keratinocytes and fibroblasts. The NPs demonstrated superior efficacy in promoting cell proliferation in a dose-dependent manner, exhibiting nearly threefold greater proliferation at 48 and 72 h, compared to cells treated with commercial hOSM. Moreover, the NPs stimulated cell migration and collagen production through activation of JAK/STAT3 signaling. They also promoted the production of IL-6 and IL-8, pro-inflammatory cytokines with a critical role for wound healing. Promotion of keratinocyte proliferation and differentiation were further validated in non-commercial 3D skin equivalents. The A200_hOSM NPs revealed potential in accelerating wound healing, evidenced by reduced wound size and a thicker epidermal layer. This system represents a significant advancement in the field of bioinspired biomaterials by improving cytokine bioavailability, allowing for localized therapy and offering a cost-effective strategy for employing hOSM in wound healing management.
Collapse
Affiliation(s)
- Anabela Gonçalves
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
2
|
Imran M, Moyle PM, Kamato D, Mohammed Y. Advances in, and prospects of, 3D preclinical models for skin drug discovery. Drug Discov Today 2024; 29:104208. [PMID: 39396673 DOI: 10.1016/j.drudis.2024.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The skin has an important role in regulating homeostasis and protecting the body from endogenous and exogenous microenvironments. Although 3D models for drug discovery have been extensively studied, there is a growing demand for more advanced 3D skin models to enhance skin research. The use of these advanced skin models holds promise across domains such as cosmetics, skin disease treatments, and toxicity testing of new therapeutics. Recent advances include the development of skin-on-a-chip, spheroids, reconstructed skin, organoids, and computational approaches, including quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) research. These innovations are bridging the gap between traditional 2D and advanced 3D models, moving progress from research to clinical applications. In this review, we highlight in vitro and computational skin models with advanced drug discovery for skin-related applications.
Collapse
Affiliation(s)
- Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter Michael Moyle
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; School of Environment and Science, Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
3
|
Lu EMC. Three-Dimensional Organotypic Systems for Modelling and Understanding Molecular Regulation of Oral Dentogingival Tissues. Int J Mol Sci 2024; 25:11552. [PMID: 39519105 PMCID: PMC11546252 DOI: 10.3390/ijms252111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Three-dimensional organotypic models benefit from the ability to mimic physiological cell-cell or cell-matrix interactions and therefore offer superior models for studying pathological or physiological conditions compared to 2D cultures. Organotypic models consisting of keratinocytes supported by fibroblasts embedded in collagen matrices have been utilised for the study of oral conditions. However, the provision of a suitable model for investigating the pathogenesis of periodontitis has been more challenging. Part of the complexity relates to the different regional epithelial specificities and connective tissue phenotypes. Recently, it was confirmed, using 3D organotypic models, that distinct fibroblast populations were implicated in the provision of specific inductive and directive influences on the overlying epithelia. This paper presents the organotypic model of the dentogingival junction (DGJ) constructed to demonstrate the differential fibroblast influences on the maintenance of regionally specific epithelial phenotypes. Therefore, the review aims are (1) to provide the biological basis underlying 3D organotypic cultures and (2) to comprehensively detail the experimental protocol for the construction of the organotypic cultures and the unique setup for the DGJ model. The latter is the first organotypic culture model used for the reconstruction of the DGJ and is recommended as a useful tool for future periodontal research.
Collapse
Affiliation(s)
- Emily Ming-Chieh Lu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
4
|
Gonçalves PP, da Silva CL, Bernardes N. Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy. Adv Cancer Res 2024; 163:137-185. [PMID: 39271262 DOI: 10.1016/bs.acr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.
Collapse
Affiliation(s)
- Pedro P Gonçalves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Bernardes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Aguiar-Martins K, Tomley FM, Blake DP, Marugan-Hernandez V. Comparative study of Eimeria tenella development in different cell culture systems. PLoS One 2024; 19:e0307291. [PMID: 39024284 PMCID: PMC11257319 DOI: 10.1371/journal.pone.0307291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Cell culture systems have long been recognised as great resources to mitigate the use of animals in research, offering effective solutions for replacement or reduction with benefits commonly including lower costs, shorter duration and improved reproducibility. The use of in vitro culture methods has been extensively explored for many apicomplexan parasites, supporting significant research advances, but studies with Eimeria are often limited since they still depend on the animal host. In this study we have used 2.5D and 3D culture systems for the first time to evaluate the growth of Eimeria tenella parasites using a panel of cell lines (MDBK, HD11, COLO-680N and HCC4006). Results were compared to growth in 2D monolayers following established protocols. Observations using the fluorescent transgenic strain Et-dYFP showed invasion and development of parasites inside cells suspended in a collagen matrix (2.5D or 3D), supporting the development of asexual stages with the release of first-generation merozoites. Similar findings were observed when Scaffold-free 3D cell spheroids of HD11 cells were infected with sporozoites. No subsequent developmental stages were identified while evaluating these cell lines and further work will be required to improve in vitro culture systems to a point where reduction and replacement of animal use becomes routine.
Collapse
Affiliation(s)
- Kelsilandia Aguiar-Martins
- The Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawkshead Lane, University of London, London, United Kingdom
| | - Fiona M. Tomley
- The Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawkshead Lane, University of London, London, United Kingdom
| | - Damer P. Blake
- The Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawkshead Lane, University of London, London, United Kingdom
| | - Virginia Marugan-Hernandez
- The Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawkshead Lane, University of London, London, United Kingdom
| |
Collapse
|
6
|
Fiocchetti M, Raimondi S, Bastari G, Bartoloni S, Marino M, Acconcia F. Characterization of ERα Signaling to Cell Proliferation Induced by Chronic and Pulsatile E2 Stimulation in 2D and 3D Cell Cultures. J Cell Biochem 2024; 125:e30610. [PMID: 38860517 DOI: 10.1002/jcb.30610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
17β-estradiol is a hormone that plays a vital role in human physiology. It acts through estrogen receptors, specifically estrogen receptor α and estrogen receptor β, and its action is determined by the pulsatile secretion in the bloodstream. 17β-estradiol affects cell proliferation, and dysregulation of 17β-estradiol:estrogen receptor α signaling contribute to the development of breast cancer. Previous research on 17β-estradiol:estrogen receptor α signaling has primarily used two-dimensional cell cultures, which do not fully recapitulate the complexity of tumors that exist in a three-dimensional environment and do not consider the pulsatile nature of this hormone. To address these limitations, we studied 17β-estradiol:estrogen receptor α signaling in cell proliferation using both two-dimensional and three-dimensional breast cancer cell culture models under continuous and pulsatile stimulation conditions. Results revealed that breast cancer cells grown in an alginate-based three-dimensional matrix exhibited similar responsiveness to 17β-estradiol compared with cells grown in conventional two-dimensional culture plates. 17β-estradiol induced the expression of proteins containing estrogen response element in the three-dimensional model. The efficacy of the antiestrogen drugs fulvestrant (ICI182,280) and 4OH-tamoxifen was also demonstrated in the three-dimensional model. These results support the use of the three-dimensional culture model for studying tumor response to drugs and provide a more realistic microenvironment for such studies. Furthermore, the study revealed that a brief 5-min exposure to 17β-estradiol triggered a physiological response comparable with continuous hormone exposure, suggesting that the cellular response to 17β-estradiol is more important than the continuous presence of the hormone. In conclusion, the study demonstrates that the alginate-based three-dimensional culture model is suitable for studying the effects of 17β-estradiol and antiestrogen drugs on breast cancer cells, offering a more realistic representation of tumor-microenvironment interactions. The results also highlight the importance of considering the physiological importance of the temporal dynamics in studying 17β-estradiol signaling and cellular responses.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Serena Raimondi
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Giovanna Bastari
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Stefania Bartoloni
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| |
Collapse
|
7
|
Kwon SH, Lee J, Yoo J, Jung Y. Artificial keloid skin models: understanding the pathophysiological mechanisms and application in therapeutic studies. Biomater Sci 2024; 12:3321-3334. [PMID: 38812375 DOI: 10.1039/d4bm00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Keloid is a type of scar formed by the overexpression of extracellular matrix substances from fibroblasts following inflammation after trauma. The existing keloid treatment methods include drug injection, surgical intervention, light exposure, cryotherapy, etc. However, these methods have limitations such as recurrence, low treatment efficacy, and side effects. Consequently, studies are being conducted on the treatment of keloids from the perspective of inflammatory mechanisms. In this study, keloid models are created to understand inflammatory mechanisms and explore treatment methods to address them. While previous studies have used animal models with gene mutations, chemical treatments, and keloid tissue transplantation, there are limitations in fully reproducing the characteristics of keloids unique to humans, and ethical issues related to animal welfare pose additional challenges. Consequently, studies are underway to create in vitro artificial skin models to simulate keloid disease and apply them to the development of treatments for skin diseases. In particular, herein, scaffold technologies that implement three-dimensional (3D) full-thickness keloid models are introduced to enhance mechanical properties as well as biological properties of tissues, such as cell proliferation, differentiation, and cellular interactions. It is anticipated that applying these technologies to the production of artificial skin for keloid simulation could contribute to the development of inflammatory keloid treatment techniques in the future.
Collapse
Affiliation(s)
- Soo Hyun Kwon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jongmin Lee
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Liu T, Gu J, Fu C, Su L. Three-Dimensional Scaffolds for Intestinal Cell Culture: Fabrication, Utilization, and Prospects. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:158-175. [PMID: 37646409 DOI: 10.1089/ten.teb.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The intestine is a visceral organ that integrates absorption, metabolism, and immunity, which is vulnerable to external stimulus. Researchers in the fields such as food science, immunology, and pharmacology have committed to developing appropriate in vitro intestinal cell models to study the intestinal absorption and metabolism mechanisms of various nutrients and drugs, or pathogenesis of intestinal diseases. In the past three decades, the intestinal cell models have undergone a significant transformation from conventional two-dimensional cultures to three-dimensional (3D) systems, and the achievements of 3D cell culture have been greatly contributed by the fabrication of different scaffolds. In this review, we first introduce the developing trend of existing intestinal models. Then, four types of scaffolds, including Transwell, hydrogel, tubular scaffolds, and intestine-on-a-chip, are discussed for their 3D structure, composition, advantages, and limitations in the establishment of intestinal cell models. Excitingly, some of the in vitro intestinal cell models based on these scaffolds could successfully mimic the 3D structure, microenvironment, mechanical peristalsis, fluid system, signaling gradients, or other important aspects of the original human intestine. Furthermore, we discuss the potential applications of the intestinal cell models in drug screening, disease modeling, and even regenerative repair of intestinal tissues. This review presents an overview of state-of-the-art scaffold-based cell models within the context of intestines, and highlights their major advances and applications contributing to a better knowledge of intestinal diseases. Impact statement The intestine tract is crucial in the absorption and metabolism of nutrients and drugs, as well as immune responses against external pathogens or antigens in a complex microenvironment. The appropriate experimental cell model in vitro is needed for in-depth studies of intestines, due to the limitation of animal models in dynamic control and real-time assessment of key intestinal physiological and pathological processes, as well as the "R" principles in laboratory animal experiments. Three-dimensional (3D) scaffold-based cell cultivation has become a developing tendency because of the superior cell proliferation and differentiation and more physiologically relevant environment supported by the customized 3D scaffolds. In this review, we summarize four types of up-to-date 3D cell culture scaffolds fabricated by various materials and techniques for a better recapitulation of some essential physiological and functional characteristics of original intestines compared to conventional cell models. These emerging 3D intestinal models have shown promising results in not only evaluating the pharmacokinetic characteristics, security, and effectiveness of drugs, but also studying the pathological mechanisms of intestinal diseases at cellular and molecular levels. Importantly, the weakness of the representative 3D models for intestines is also discussed.
Collapse
Affiliation(s)
- Tiange Liu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Jia Gu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Lingshan Su
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
10
|
Wang H, Lu F, Tian Y, Zhang S, Han S, Fu Y, Li J, Feng P, Shi Z, Chen H, Hou H. Evaluation of toxicity of heated tobacco products aerosol and cigarette smoke to BEAS-2B cells based on 3D biomimetic chip model. Toxicol In Vitro 2024; 94:105708. [PMID: 37806364 DOI: 10.1016/j.tiv.2023.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
It is still a controversial topic about evaluating whether heated tobacco products (HTP) really reduce harm, which involves the choice of an experimental model. Here, a three-dimensional (3D) biomimetic chip model was used to evaluate the toxicity of aerosols came from HTP and smoke produced by cigarettes (Cig). Based on cell-related experiments, we found that the toxicity of Cig smoke extract diluted four times was also much higher than that of undiluted HTP, showing higher oxidative stress response and cause mitochondrial dysfunction. Meanwhile, both tobacco products all affect the tricarboxylic acid cycle (TCA), which is manifested by a significant decrease in the mRNA expression of TCA key rate-limiting enzymes. Summarily, 3D Biomimetic chip technology can be used as an ideal model to evaluate HTP. It can provide important data for tobacco risk assessment when 3D chip model was used. Our experimental results showed that HTP may be less harmful than tobacco cigarettes, but it does show significant cytotoxicity with the increase of dose. Therefore, the potential clinical effects of HTP on targeted organs such as lung should be further studied.
Collapse
Affiliation(s)
- Hongjuan Wang
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Fengjun Lu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yushan Tian
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Sen Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Shulei Han
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Yaning Fu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Jun Li
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Pengxia Feng
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Zhihao Shi
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| |
Collapse
|
11
|
Miranda RG, Guarache GC, Leão AHFF, Pereira GJ, Dorta DJ. BDE-47-mediated cytotoxicity via autophagy blockade in 3D HepaRG spheroids cultured in alginate microcapsules. Chem Biol Interact 2024; 388:110831. [PMID: 38101597 DOI: 10.1016/j.cbi.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Polybrominated Diphenyl Ethers (PBDEs) are a major class of brominated flame retardants, and their widespread use has led them to be considered contaminants with emerging concern. PBDEs have been detected in the indoor air, house dust, food, and all environmental compartments. The congener BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) is the most prevalent, and hepatotoxicity, neurotoxicity, immunological changes, endocrine disruption, and genotoxic potential have been related to its exposure. Although the BDE-47 molecular toxicity pathway is directly related to intrinsic apoptotic cell death, the role of autophagy in BDE-47 toxicity remains unclear. In this context, three-dimensional cell culture has emerged as a good strategy for the replacement of animals in toxicological testing. Here, we used HepaRG spheroids cultured in alginate microcapsules to investigate the role of autophagy in BDE-47-mediated hepatotoxicity. We developed mature and functional HepaRG spheroids by culturing them in alginate microcapsules. Histological analysis revealed that HepaRG spheroids formed an extracellular matrix and stored glycogen. No apoptotic and/or necrotic cores were observed. BDE-47 showed concentration- and time-dependent cytotoxicity in HepaRG spheroids. In the early exposure period, BDE-47 initially disrupted mitochondrial activity and increased the formation of acid compartments that promoted the increase in autophagic activity; however, this autophagy was blocked, and long-term exposure to BDE-47 promoted efficient apoptotic cell death through autophagy blockade, as evidenced by an increased number of fragmented/condensed nuclei. Therefore, for the first time, we demonstrated BDE-47 toxicity and its cell pathway induces cell death using a three-dimensional liver cell culture, the HepaRG cell line.
Collapse
Affiliation(s)
- Raul Ghiraldelli Miranda
- Univesity of São Paulo (USP), School of Phamaceutical Science of Ribeirão Preto, Ribeirão Preto, SP, 14040-903, Brazil; Department of Life Science of the University of Coimbra, 3000, Coimbra, Portugal.
| | - Gabriel Cicolin Guarache
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Anderson Henrique F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Gustavo José Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Daniel Junqueira Dorta
- Universidade de São Paulo (USP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Ribeirão Preto, SP, 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute os Chemistry, Araraquara, SP, 14800-060, Brazil.
| |
Collapse
|
12
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Farouk SM, Khafaga AF, Abdellatif AM. Bladder cancer: therapeutic challenges and role of 3D cell culture systems in the screening of novel cancer therapeutics. Cancer Cell Int 2023; 23:251. [PMID: 37880676 PMCID: PMC10601189 DOI: 10.1186/s12935-023-03069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/17/2023] [Indexed: 10/27/2023] Open
Abstract
Bladder cancer (BC) is the sixth most common worldwide urologic malignancy associated with elevated morbidity and mortality rates if not well treated. The muscle-invasive form of BC develops in about 25% of patients. Moreover, according to estimates, 50% of patients with invasive BC experience fatal metastatic relapses. Currently, resistance to drug-based therapy is the major tumble to BC treatment. The three-dimensional (3D) cell cultures are clearly more relevant not only as a novel evolving gadget in drug screening but also as a bearable therapeutic for different diseases. In this review, various subtypes of BC and mechanisms of drug resistance to the commonly used anticancer therapies are discussed. We also summarize the key lineaments of the latest cell-based assays utilizing 3D cell culture systems and their impact on understanding the pathophysiology of BC. Such knowledge could ultimately help to address the most efficient BC treatment.
Collapse
Affiliation(s)
- Sameh M Farouk
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
14
|
Reyes-Aldasoro CC. Modelling the Tumour Microenvironment, but What Exactly Do We Mean by "Model"? Cancers (Basel) 2023; 15:3796. [PMID: 37568612 PMCID: PMC10416922 DOI: 10.3390/cancers15153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The Oxford English Dictionary includes 17 definitions for the word "model" as a noun and another 11 as a verb. Therefore, context is necessary to understand the meaning of the word model. For instance, "model railways" refer to replicas of railways and trains at a smaller scale and a "model student" refers to an exemplary individual. In some cases, a specific context, like cancer research, may not be sufficient to provide one specific meaning for model. Even if the context is narrowed, specifically, to research related to the tumour microenvironment, "model" can be understood in a wide variety of ways, from an animal model to a mathematical expression. This paper presents a review of different "models" of the tumour microenvironment, as grouped by different definitions of the word into four categories: model organisms, in vitro models, mathematical models and computational models. Then, the frequencies of different meanings of the word "model" related to the tumour microenvironment are measured from numbers of entries in the MEDLINE database of the United States National Library of Medicine at the National Institutes of Health. The frequencies of the main components of the microenvironment and the organ-related cancers modelled are also assessed quantitatively with specific keywords. Whilst animal models, particularly xenografts and mouse models, are the most commonly used "models", the number of these entries has been slowly decreasing. Mathematical models, as well as prognostic and risk models, follow in frequency, and these have been growing in use.
Collapse
|
15
|
İpek S, Üstündağ A, Can Eke B. Three-dimensional (3D) cell culture studies: a review of the field of toxicology. Drug Chem Toxicol 2023; 46:523-533. [PMID: 35450503 DOI: 10.1080/01480545.2022.2066114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traditional two-dimensional (2D) cell culture employed for centuries is extensively used in toxicological studies. There is no doubt that 2D cell culture has made significant contributions to toxicology. However, in today's world, it is necessary to develop more physiologically relevant models. Three-dimensional (3D) cell culture, which can recapitulate the cell's microenvironment, is, therefore, a more realistic model compared to traditional cell culture. In toxicology, 3D cell culture models are a powerful tool for studying different tissues and organs in similar environments and behave as if they are in in vivo conditions. In this review, we aimed to present 3D cell culture models that have been used in different organ toxicity studies. We reported the results and interpretations obtained from these studies. We aimed to highlight 3D models as the future of cell culture by reviewing 3D models used in different organ toxicity studies.
Collapse
Affiliation(s)
- Seda İpek
- Department of Pharmaceutical Toxicology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Aylin Üstündağ
- Department of Pharmaceutical Toxicology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Benay Can Eke
- Department of Pharmaceutical Toxicology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
16
|
Gunatilaka A, Zhang S, Tan WSD, G Stewart A. Anti-fibrotic strategies and pulmonary fibrosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:179-224. [PMID: 37524487 DOI: 10.1016/bs.apha.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) results from the dysregulated process of injury and repair, which promotes scarring of the lung tissue and deposition of collagen-rich extracellular matrix (ECM) components, that make the lung unphysiologically stiff. IPF presents a serious concern as its pathogenesis remains elusive, and current anti-fibrotic treatments are only effective in slowing rather than halting disease progression. The IPF disease pathogenesis is incompletely defined, complex and incorporates interplay between different fibrogenesis signaling pathways. Preclinical IPF experimental models used to validate drug candidates present significant limitations in modeling IPF pathobiology, with their limited time frame, simplicity and inaccurate representation of the disease and the mechanical influences of IPF. Potentially more accurate mimetic disease models that capture the cell-cell and cell-matrix interaction, such as 3D cultures, organoids and precision-cut lung slices (PCLS), may yield more meaningful clinical predictions for drug candidates. Recent advances in developing anti-fibrotic compounds have positioned drug towards targeting components of the fibrogenesis signaling pathway of IPF or the extracellular microenvironment. The major goals in this area of research focus on finding ways to reverse or halt the disease progression by utilizing more disease-relevant experimental models to improve the qualification of potential drug targets for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Avanka Gunatilaka
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Zhang
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Wan Shun Daniel Tan
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Alastair G Stewart
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
17
|
Melo-Fonseca F, Carvalho O, Gasik M, Miranda G, Silva FS. Mechanical stimulation devices for mechanobiology studies: a market, literature, and patents review. Biodes Manuf 2023. [DOI: 10.1007/s42242-023-00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractSignificant advancements in various research and technological fields have contributed to remarkable findings on the physiological dynamics of the human body. To more closely mimic the complex physiological environment, research has moved from two-dimensional (2D) culture systems to more sophisticated three-dimensional (3D) dynamic cultures. Unlike bioreactors or microfluidic-based culture models, cells are typically seeded on polymeric substrates or incorporated into 3D constructs which are mechanically stimulated to investigate cell response to mechanical stresses, such as tensile or compressive. This review focuses on the working principles of mechanical stimulation devices currently available on the market or custom-built by research groups or protected by patents and highlights the main features still open to improvement. These are the features which could be focused on to perform, in the future, more reliable and accurate mechanobiology studies.
Graphic abstract
Collapse
|
18
|
Mohandas S, Gayatri V, Kumaran K, Gopinath V, Paulmurugan R, Ramkumar KM. New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research. Pharmaceutics 2023; 15:pharmaceutics15030725. [PMID: 36986591 PMCID: PMC10056755 DOI: 10.3390/pharmaceutics15030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is associated with defects in islet β-cell functioning and consequent hyperglycemia resulting in multi-organ damage. Physiologically relevant models that mimic human diabetic progression are urgently needed to identify new drug targets. Three-dimensional (3D) cell-culture systems are gaining a considerable interest in diabetic disease modelling and are being utilized as platforms for diabetic drug discovery and pancreatic tissue engineering. Three-dimensional models offer a marked advantage in obtaining physiologically relevant information and improve drug selectivity over conventional 2D (two-dimensional) cultures and rodent models. Indeed, recent evidence persuasively supports the adoption of appropriate 3D cell technology in β-cell cultivation. This review article provides a considerably updated view of the benefits of employing 3D models in the experimental workflow compared to conventional animal and 2D models. We compile the latest innovations in this field and discuss the various strategies used to generate 3D culture models in diabetic research. We also critically review the advantages and the limitations of each 3D technology, with particular attention to the maintenance of β-cell morphology, functionality, and intercellular crosstalk. Furthermore, we emphasize the scope of improvement needed in the 3D culture systems employed in diabetes research and the promises they hold as excellent research platforms in managing diabetes.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vipin Gopinath
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Oncology Division, Malabar Cancer Centre, Moozhikkara P.O, Thalassery 670103, Kerala, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| |
Collapse
|
19
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
20
|
Braham MV, van Binnendijk RS, Buisman AMM, Mebius RE, de Wit J, van Els CA. A synthetic human 3D in vitro lymphoid model enhancing B-cell survival and functional differentiation. iScience 2022; 26:105741. [PMID: 36590159 PMCID: PMC9794978 DOI: 10.1016/j.isci.2022.105741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
To investigate B-cell differentiation and maturation occurring in the germinal center (GC) using in vitro culture systems, key factors and interactions of the GC reaction need to be accurately simulated. This study aims at improving in vitro GC simulation using 3D culture techniques. Human B-cells were incorporated into PEG-4MAL hydrogels, to create a synthetic extracellular matrix, supported by CD40L cells, human tonsil-derived lymphoid stromal cells, and cytokines. The differentiation and antibody production of CD19+B-cells was best supported in a 5.0%-PEG-4MAL, 2.0 mM-RGD-peptide composition. The 3D culture significantly increased plasmablast and plasma cell numbers as well as antibody production, with less B-cell death compared to 2D cultures. Class switching of naive CD19+IgD+B-cells toward IgG+ and IgA+B-cells was observed. The formation of large B-cell clusters indicates the formation of GC-like structures. In conclusion, a well-characterized and controllable hydrogel-based human 3D lymphoid model is presented that supports enhanced B-cell survival, proliferation, differentiation, and antibody production.
Collapse
Affiliation(s)
- Maaike V.J. Braham
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rob S. van Binnendijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Anne-Marie M. Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Reina E. Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands,Corresponding author
| | - Cécile A.C.M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands,Corresponding author
| |
Collapse
|
21
|
Vitamin D 3 and Salinomycin synergy in MCF-7 cells cause cell death via endoplasmic reticulum stress in monolayer and 3D cell culture. Toxicol Appl Pharmacol 2022; 452:116178. [PMID: 35914560 DOI: 10.1016/j.taap.2022.116178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/21/2022]
Abstract
1α, 25, dihydroxyvitamin D3 (1,25D), the active form of vitamin D3, has antitumor properties in several cancer cell lines in vitro. Salinomycin (Sal) has anticancer activity against cancer cell lines. This study aims to examine the cytotoxic and antiproliferative effect of Sal associated with 1,25D on MCF-7 breast carcinoma cell line cultured in monolayer (2D) and three-dimensional models (mammospheres). We also aim to evaluate the molecular mechanism of Sal and 1,25D-mediated effects. We report that Sal and 1,25D act synergistically in MCF-7 mammospheres and monolayer causing G1 cell cycle arrest, reduction of mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) overproduction with a long-lasting cytotoxic response represented by clonogenic and mammosphere assay. We observed the induction of cell death by apoptosis with upregulation in mRNA levels of apoptosis-related genes (CASP7, CASP9, and BBC3). Extensive cytoplasmic vacuolization, a morphological characteristic found in paraptosis, was also seen and could be triggered by endoplasmic reticulum stress (ER) as we found transcriptional upregulation of genes related to ER stress (ATF6, GADD153, GADD45G, EIF2AK3, and HSPA5). Overall, Sal and 1,25D act synergistically, inhibiting cell proliferation by activating simultaneously multiple death pathways and may be a novel and promising luminal A breast cancer therapy strategy.
Collapse
|
22
|
Iman H, Benjamin A, Peyton K, Habbit NL, Ahmed B, Heslin MJ, Mobley JA, Greene MW, Lipke EA. Engineered colorectal cancer tissue recapitulates key attributes of a patient-derived xenograft tumor line. Biofabrication 2022; 14:10.1088/1758-5090/ac73b6. [PMID: 35617932 PMCID: PMC9822569 DOI: 10.1088/1758-5090/ac73b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/26/2022] [Indexed: 01/11/2023]
Abstract
The development of physiologically relevantin vitrocolorectal cancer (CRC) models is vital for advancing understanding of tumor biology. Although CRC patient-derived xenografts (PDXs) recapitulate key patient tumor characteristics and demonstrate high concordance with clinical outcomes, the use of thisin vivomodel is costly and low-throughput. Here we report the establishment and in-depth characterization of anin vitrotissue-engineered CRC model using PDX cells. To form the 3D engineered CRC-PDX (3D-eCRC-PDX) tissues, CRC PDX tumors were expandedin vivo, dissociated, and the isolated cells encapsulated within PEG-fibrinogen hydrogels. Following PEG-fibrinogen encapsulation, cells remain viable and proliferate within 3D-eCRC-PDX tissues. Tumor cell subpopulations, including human cancer and mouse stromal cells, are maintained in long-term culture (29 days); cellular subpopulations increase ratiometrically over time. The 3D-eCRC-PDX tissues mimic the mechanical stiffness of originating tumors. Extracellular matrix protein production by cells in the 3D-eCRC-PDX tissues resulted in approximately 57% of proteins observed in the CRC-PDX tumors also being present in the 3D-eCRC-PDX tissues on day 22. Furthermore, we show congruence in enriched gene ontology molecular functions and Hallmark gene sets in 3D-eCRC-PDX tissues and CRC-PDX tumors compared to normal colon tissue, while prognostic Kaplan-Meier plots for overall and relapse free survival did not reveal significant differences between CRC-PDX tumors and 3D-eCRC-PDX tissues. Our results demonstrate high batch-to-batch consistency and strong correlation between ourin vitrotissue-engineered PDX-CRC model and the originatingin vivoPDX tumors, providing a foundation for future studies of disease progression and tumorigenic mechanisms.
Collapse
Affiliation(s)
- Hassani Iman
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Anbiah Benjamin
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Kuhlers Peyton
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Nicole L. Habbit
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Bulbul Ahmed
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Martin J. Heslin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA
- Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA
| | - Michael W. Greene
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Elizabeth A. Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
23
|
Fabricating a Novel Three-Dimensional Skin Model Using Silica Nonwoven Fabrics (SNF). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silica nonwoven fabrics (SNF) prepared using electrospinning have high biocompatibility, thermal stability, and porosity that allows growing three-dimensional culture of cells. In this study, we used SNF to construct a three-dimensional artificial skin model consisting of epidermal and dermal layers with immortalized and primary human cell lines, creating a novel model that minimizes tissue shrinkage. As a result, SNF dermal/epidermal models have enhanced functions in the basement membrane, whereas Collagen dermal/epidermal models have advantages in keratinization and barrier functions. The SNF dermal/epidermal model with mechanical strength formed a basement membrane mimicking structure, suggesting the construction of a stable skin model. Next, we constructed three-dimensional skin models consisting of SNF and collagen. In the combination models, the expression of genes in the basement membrane was significantly increased compared with that in the Collagen dermal/epidermal model, and the gene for keratinization was increased compared with that in the SNF dermal/epidermal model. We believe that the combination model can be a biomimetic model that takes advantage of both SNF and collagen and can be applied to various basic research. Our new skin model is expected to be an alternative method for skin testing to improve the shrinkage of the collagen matrix gel.
Collapse
|
24
|
van Tongeren TC, Carmichael PL, Rietjens IM, Li H. Next Generation Risk Assessment of the Anti-Androgen Flutamide Including the Contribution of Its Active Metabolite Hydroxyflutamide. FRONTIERS IN TOXICOLOGY 2022; 4:881235. [PMID: 35722059 PMCID: PMC9201820 DOI: 10.3389/ftox.2022.881235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
In next generation risk assessment (NGRA), non-animal approaches are used to quantify the chemical concentrations required to trigger bioactivity responses, in order to assure safe levels of human exposure. A limitation of many in vitro bioactivity assays, which are used in an NGRA context as new approach methodologies (NAMs), is that toxicokinetics, including biotransformation, are not adequately captured. The present study aimed to include, as a proof of principle, the bioactivity of the metabolite hydroxyflutamide (HF) in an NGRA approach to evaluate the safety of the anti-androgen flutamide (FLU), using the AR-CALUX assay to derive the NAM point of departure (PoD). The NGRA approach applied also included PBK modelling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE). The PBK model describing FLU and HF kinetics in humans was developed using GastroPlus™ and validated against human pharmacokinetic data. PBK model-facilitated QIVIVE was performed to translate the in vitro AR-CALUX derived concentration-response data to a corresponding in vivo dose-response curve for the anti-androgenicity of FLU, excluding and including the activity of HF (-HF and +HF, respectively). The in vivo benchmark dose 5% lower confidence limits (BMDL05) derived from the predicted in vivo dose-response curves for FLU, revealed a 440-fold lower BMDL05 when taking the bioactivity of HF into account. Subsequent comparison of the predicted BMDL05 values to the human therapeutic doses and historical animal derived PoDs, revealed that PBK modelling-facilitated QIVIVE that includes the bioactivity of the active metabolite is protective and provides a more appropriate PoD to assure human safety via NGRA, whereas excluding this would potentially result in an underestimation of the risk of FLU exposure in humans.
Collapse
Affiliation(s)
| | - Paul L. Carmichael
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, United Kingdom
| | | | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, United Kingdom
| |
Collapse
|
25
|
Caipa Garcia AL, Arlt VM, Phillips DH. Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis. Mutagenesis 2022; 37:143-154. [PMID: 34147034 PMCID: PMC9071088 DOI: 10.1093/mutage/geab023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Advances in three-dimensional (3D) cell culture technology have led to the development of more biologically and physiologically relevant models to study organ development, disease, toxicology and drug screening. Organoids have been derived from many mammalian tissues, both normal and tumour, from adult stem cells and from pluripotent stem cells. Tissue organoids can retain many of the cell types and much of the structure and function of the organ of origin. Organoids derived from pluripotent stem cells display increased complexity compared with organoids derived from adult stem cells. It has been shown that organoids express many functional xenobiotic-metabolising enzymes including cytochrome P450s (CYPs). This has benefitted the drug development field in facilitating pre-clinical testing of more personalised treatments and in developing large toxicity and efficacy screens for a range of compounds. In the field of environmental and genetic toxicology, treatment of organoids with various compounds has generated responses that are close to those obtained in primary tissues and in vivo models, demonstrating the biological relevance of these in vitro multicellular 3D systems. Toxicological investigations of compounds in different tissue organoids have produced promising results indicating that organoids will refine future studies on the effects of environmental exposures and carcinogenic risk to humans. With further development and standardised procedures, advancing our understanding on the metabolic capabilities of organoids will help to validate their use to investigate the modes of action of environmental carcinogens.
Collapse
Affiliation(s)
- Angela L Caipa Garcia
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| |
Collapse
|
26
|
Foster NC, Hall NM, El Haj AJ. Two-Dimensional and Three-Dimensional Cartilage Model Platforms for Drug Evaluation and High-Throughput Screening Assays. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:421-436. [PMID: 34010074 PMCID: PMC7612674 DOI: 10.1089/ten.teb.2020.0354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a severely painful and debilitating disease of the joint, which brings about degradation of the articular cartilage and currently has few therapeutic solutions. Two-dimensional (2D) high-throughput screening (HTS) assays have been widely used to identify candidate drugs with therapeutic potential for the treatment of OA. A number of small molecules which improve the chondrogenic differentiation of progenitor cells for tissue engineering applications have also been discovered in this way. However, due to the failure of these models to accurately represent the native joint environment, the efficacy of these drugs has been limited in vivo. Screening systems utilizing three-dimensional (3D) models, which more closely reflect the tissue and its complex cell and molecular interactions, have also been described. However, the vast majority of these systems fail to recapitulate the complex, zonal structure of articular cartilage and its unique cell population. This review summarizes current 2D HTS techniques and addresses the question of how to use existing 3D models of tissue-engineered cartilage to create 3D drug screening platforms with improved outcomes. Impact statement Currently, the use of two-dimensional (2D) screening platforms in drug discovery is common practice. However, these systems often fail to predict efficacy in vivo, as they do not accurately represent the complexity of the native three-dimensional (3D) environment. This article describes existing 2D and 3D high-throughput systems used to identify small molecules for osteoarthritis treatment or in vitro chondrogenic differentiation, and suggests ways to improve the efficacy of these systems based on the most recent research.
Collapse
Affiliation(s)
| | - Nicole M Hall
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, University of Birmingham, Edgbaston, B15 2TH
| |
Collapse
|
27
|
Hosseinpour S, Gaudin A, Peters OA. A critical analysis of research methods and experimental models to study biocompatibility of endodontic materials. Int Endod J 2022; 55 Suppl 2:346-369. [PMID: 35124840 PMCID: PMC9315036 DOI: 10.1111/iej.13701] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/04/2022] [Indexed: 12/03/2022]
Abstract
Materials used for endodontics and with direct contact to tissues have a wide range of indications, from vital pulpal treatments to root filling materials and those used in endodontic surgery. In principle, interaction with dental materials may result in damage to tissues locally or systemically. Thus, a great variety of test methods are applied to evaluate a materials' potential risk of adverse biological effects to ensure their biocompatibility before commercialization. However, the results of biocompatibility evaluations are dependent on not only the tested materials but also the test methods due to the diversity of these effects and numerous variables involved. In addition, diverse biological effects require equally diverse assessments on a structured and planned approach. Such a structured assessment of the materials consists of four phases: general toxicity, local tissue irritation, pre‐clinical tests and clinical evaluations. Various types of screening assays are available; it is imperative to understand their advantages and limitations to recognize their appropriateness and for an accurate interpretation of their results. Recent scientific advances are rapidly introducing new materials to endodontics including nanomaterials, gene therapy and tissue engineering biomaterials. These new modalities open a new era to restore and regenerate dental tissues; however, all these new technologies can also present new hazards to patients. Before any clinical usage, new materials must be proven to be safe and not hazardous to health. Certain international standards exist for safety evaluation of dental materials (ISO 10993 series, ISO 7405 and ISO 14155‐1), but researchers often fail to follow these standards due to lack of access to standards, limitation of the guidelines and complexity of new experimental methods, which may cause technical errors. Moreover, many laboratories have developed their testing strategy for biocompatibility, which makes any comparison between findings more difficult. The purpose of this review was to discuss the concept of biocompatibility, structured test programmes and international standards for testing the biocompatibility of endodontic material biocompatibility. The text will further detail current test methods for evaluating the biocompatibility of endodontic materials, and their advantages and limitations.
Collapse
Affiliation(s)
- S Hosseinpour
- School of Dentistry The University of Queensland Herston QLD Australia
| | - A Gaudin
- Inserm UMR 1229 RMeS, Regenerative Medicine and Skeleton Université de Nantes ONIRIS Nantes France
- Université de Nantes UFR Odontologie Nantes France
| | - O A Peters
- School of Dentistry The University of Queensland Herston QLD Australia
| |
Collapse
|
28
|
Bioengineered Cystinotic Kidney Tubules Recapitulate a Nephropathic Phenotype. Cells 2022; 11:cells11010177. [PMID: 35011739 PMCID: PMC8750898 DOI: 10.3390/cells11010177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the nephrons, leading to renal Fanconi syndrome and kidney failure early in life. Current in vitro cystinotic models cannot recapitulate all clinical features of the disease which limits their translational value. Therefore, the development of novel, complex in vitro models that better mimic the disease and exhibit characteristics not compatible with 2-dimensional cell culture is of crucial importance for novel therapies development. In this study, we developed a 3-dimensional bioengineered model of nephropathic cystinosis by culturing conditionally immortalized proximal tubule epithelial cells (ciPTECs) on hollow fiber membranes (HFM). Cystinotic kidney tubules showed lysosomal cystine accumulation, increased autophagy and vesicle trafficking deterioration, the impairment of several metabolic pathways, and the disruption of the epithelial monolayer tightness as compared to control kidney tubules. In particular, the loss of monolayer organization and leakage could be mimicked with the use of the cystinotic kidney tubules, which has not been possible before, using the standard 2-dimensional cell culture. Overall, bioengineered cystinotic kidney tubules recapitulate better the nephropathic phenotype at a molecular, structural, and functional proximal tubule level compared to 2-dimensional cell cultures.
Collapse
|
29
|
Caleffi JT, Aal MCE, Gallindo HDOM, Caxali GH, Crulhas BP, Ribeiro AO, Souza GR, Delella FK. Magnetic 3D cell culture: State of the art and current advances. Life Sci 2021; 286:120028. [PMID: 34627776 DOI: 10.1016/j.lfs.2021.120028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023]
Abstract
Cell culture is an important tool for the understanding of cell biology and behavior. In vitro cultivation has been increasingly indispensable for biomedical, pharmaceutical, and biotechnology research. Nevertheless, with the demand for in vitro experimentation strategies more representative of in vivo conditions, tridimensional (3D) cell culture models have been successfully developed. Although these 3D models are efficient and address critical questions from different research areas, there are considerable differences between the existing techniques regarding both elaboration and cost. In light of this, this review describes the construction of 3D spheroids using magnetization while bringing the most recent updates in this field. Magnetic 3D cell culture consists of magnetizing cells using an assembly of gold and iron oxide nanoparticles cross-linked with poly-l-lysine nanoparticles. Then, 3D culture formation in special plates with the assistance of magnets for levitation or bioprinting. Here, we discuss magnetic 3D cell culture advancements, including tumor microenvironment, tissue reconstruction, blood vessel engineering, toxicology, cytotoxicity, and 3D culture of cardiomyocytes, bronchial and pancreatic cells.
Collapse
Affiliation(s)
- Juliana Trindade Caleffi
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | - Mirian Carolini Esgoti Aal
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | | | - Gabriel Henrique Caxali
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | | | - Amanda Oliveira Ribeiro
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | - Glauco R Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Flávia Karina Delella
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil.
| |
Collapse
|
30
|
Varga-Medveczky Z, Kocsis D, Naszlady MB, Fónagy K, Erdő F. Skin-on-a-Chip Technology for Testing Transdermal Drug Delivery-Starting Points and Recent Developments. Pharmaceutics 2021; 13:1852. [PMID: 34834264 PMCID: PMC8619496 DOI: 10.3390/pharmaceutics13111852] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
During the last decades, several technologies were developed for testing drug delivery through the dermal barrier. Investigation of drug penetration across the skin can be important in topical pharmaceutical formulations and also in cosmeto-science. The state-of- the-art in the field of skin diffusion measurements, different devices, and diffusion platforms used, are summarized in the introductory part of this review. Then the methodologies applied at Pázmány Péter Catholic University are shown in detail. The main testing platforms (Franz diffusion cells, skin-on-a-chip devices) and the major scientific projects (P-glycoprotein interaction in the skin; new skin equivalents for diffusion purposes) are also presented in one section. The main achievements of our research are briefly summarized: (1) new skin-on-a-chip microfluidic devices were validated as tools for drug penetration studies for the skin; (2) P-glycoprotein transport has an absorptive orientation in the skin; (3) skin samples cannot be used for transporter interaction studies after freezing and thawing; (4) penetration of hydrophilic model drugs is lower in aged than in young skin; (5) mechanical sensitization is needed for excised rodent and pig skins for drug absorption measurements. Our validated skin-on-a-chip platform is available for other research groups to use for testing and for utilizing it for different purposes.
Collapse
Affiliation(s)
| | | | | | | | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary; (Z.V.-M.); (D.K.); (M.B.N.); (K.F.)
| |
Collapse
|
31
|
Zingales V, Torriero N, Zanella L, Fernández-Franzón M, Ruiz MJ, Esposito MR, Cimetta E. Development of an in vitro neuroblastoma 3D model and its application for sterigmatocystin-induced cytotoxicity testing. Food Chem Toxicol 2021; 157:112605. [PMID: 34634377 DOI: 10.1016/j.fct.2021.112605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Given the increasing importance of establishing better risk assessments for mycotoxins, novel in vitro tools for the evaluation of their toxicity are mandatory. In this study, an in vitro 3D spheroid model from SH-SY5Y cells, a human neuroblastoma cell line, was developed, optimized and characterized to test the cytotoxic effects caused by the mycotoxin sterigmatocystin (STE). STE induced a concentration- and time-dependent cell viability decrease in spheroids. Spheroids displayed cell disaggregation after STE exposure, increasing in a dose-dependent manner and over time. STE also induced apoptosis as confirmed by immunofluorescence staining and Western blot. Following the decreased proliferation and increased apoptosis, STE cytostasis effects were observed by migration assays both in 2D and 3D cell culture. Increased ROS generation, as well as DNA damage were also observed. Taken together, these data highlight the cytotoxic properties of STE and suggest that cell culture models play a pivotal role in the toxicological risk assessment of mycotoxins. The evaluation of cytotoxicity in spheroids (3D) rather than monolayer cultures (2D) is expected to more accurately reflect in vivo-like cell behaviour.
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain.
| | - Noemi Torriero
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Lab NBTECH, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Luca Zanella
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain
| | - Maria-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Lab NBTECH, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Lab NBTECH, Corso Stati Uniti 4, 35127, Padova, Italy; Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative (CRIBI) - Viale G. Colombo 3, 35131, Padova, Italy
| |
Collapse
|
32
|
Ryu B, Son MY, Jung KB, Kim U, Kim J, Kwon O, Son YS, Jung CR, Park JH, Kim CY. Next-Generation Intestinal Toxicity Model of Human Embryonic Stem Cell-Derived Enterocyte-Like Cells. Front Vet Sci 2021; 8:587659. [PMID: 34604364 PMCID: PMC8481684 DOI: 10.3389/fvets.2021.587659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is the most common exposure route of xenobiotics, and intestinal toxicity can result in systemic toxicity in most cases. It is important to develop intestinal toxicity assays mimicking the human system; thus, stem cells are rapidly being developed as new paradigms of toxicity assessment. In this study, we established human embryonic stem cell (hESC)-derived enterocyte-like cells (ELCs) and compared them to existing in vivo and in vitro models. We found that hESC-ELCs and the in vivo model showed transcriptomically similar expression patterns of a total of 10,020 genes than the commercialized cell lines. Besides, we treated the hESC-ELCs, in vivo rats, Caco-2 cells, and Hutu-80 cells with quarter log units of lethal dose 50 or lethal concentration 50 of eight drugs—chloramphenicol, cycloheximide, cytarabine, diclofenac, fluorouracil, indomethacin, methotrexate, and oxytetracycline—and then subsequently analyzed the biomolecular markers and morphological changes. While the four models showed similar tendencies in general toxicological reaction, hESC-ELCs showed a stronger correlation with the in vivo model than the immortalized cell lines. These results indicate that hESC-ELCs can serve as a next-generation intestinal toxicity model.
Collapse
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Kwang Bo Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ohman Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Ye Seul Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - C-Yoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
33
|
Abstract
Over the past decade, 3D culture models of human and animal cells have found their way into tissue differentiation, drug development, personalized medicine and tumour behaviour studies. Embryoid bodies (EBs) are in vitro 3D cultures established from murine pluripotential stem cells, whereas tumoroids are patient-derived in vitro 3D cultures. This thesis aims to describe a new implication of an embryoid body model and to characterize the patient-specific microenvironment of the parental tumour in relation to tumoroid growth rate. In this thesis, we described a high-throughput monitoring method, where EBs are used as a dynamic angiogenesis model. In this model, digital image analysis (DIA) is implemented on immunohistochemistry (IHC) stained sections of the cultures over time. Furthermore, we have investigated the correlation between the genetic profile and inflammatory microenvironment of parental tumours on the in vitro growth rate of tumoroids. The EBs were cultured in spinner flasks. The samples were collected at days 4, 6, 9, 14, 18 and 21, dehydrated and embedded in paraffin. The histological sections were IHC stained for the endothelial marker CD31 and digitally scanned. The virtual whole-image slides were digitally analysed by Visiopharm® software. Histological evaluation showed vascular-like structures over time. The quantitative DIA was plausible to monitor significant increase in the total area of the EBs and an increase in endothelial differentiation. The tumoroids were established from 32 colorectal adenocarcinomas. The in vitro growth rate of the tumoroids was followed by automated microscopy over an 11-day period. The parental tumours were analysed by next-generation sequencing for KRAS, TP53, PIK3CA, SMAD4, MAP2K1, BRAF, FGFR3 and FBXW7 status. The tumoroids established from KRAS-mutated parental tumours showed a significantly higher growth rate compared to their wild-type counterparts. The density of CD3+ T lymphocytes and CD68+ macrophages was calculated in the centre of the tumours and at the invasive margin of the tumours. The high density of CD3+ cells and the low density of CD68+ cells showed a significant correlation with a higher growth rate of the tumoroids. In conclusion, a novel approach for histological monitoring of endothelial differentiation is presented in the stem cell-derived EBs. Furthermore, the KRAS status and density of CD3+ T cells and macrophages in the parental tumour influence the growth rate of the tumoroids. Our results indicate that these parameters should be included when tumoroids are to be implemented in personalized medicine.
Collapse
Affiliation(s)
- Nabi Mousavi
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses 2021; 13:v13081590. [PMID: 34452455 PMCID: PMC8402746 DOI: 10.3390/v13081590] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) continuously causes epidemics and claims numerous lives every year. The available treatment options are insufficient and the limited pertinence of animal models for human IAV infections is hampering the development of new therapeutics. Bioprinted tissue models support studying pathogenic mechanisms and pathogen-host interactions in a human micro tissue environment. Here, we describe a human lung model, which consisted of a bioprinted base of primary human lung fibroblasts together with monocytic THP-1 cells, on top of which alveolar epithelial A549 cells were printed. Cells were embedded in a hydrogel consisting of alginate, gelatin and collagen. These constructs were kept in long-term culture for 35 days and their viability, expression of specific cell markers and general rheological parameters were analyzed. When the models were challenged with a combination of the bacterial toxins LPS and ATP, a release of the proinflammatory cytokines IL-1β and IL-8 was observed, confirming that the model can generate an immune response. In virus inhibition assays with the bioprinted lung model, the replication of a seasonal IAV strain was restricted by treatment with an antiviral agent in a dose-dependent manner. The printed lung construct provides an alveolar model to investigate pulmonary pathogenic biology and to support development of new therapeutics not only for IAV, but also for other viruses.
Collapse
|
35
|
Jung O, Song MJ, Ferrer M. Operationalizing the Use of Biofabricated Tissue Models as Preclinical Screening Platforms for Drug Discovery and Development. SLAS DISCOVERY 2021; 26:1164-1176. [PMID: 34269079 DOI: 10.1177/24725552211030903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A wide range of complex in vitro models (CIVMs) are being developed for scientific research and preclinical drug efficacy and safety testing. The hope is that these CIVMs will mimic human physiology and pathology and predict clinical responses more accurately than the current cellular models. The integration of these CIVMs into the drug discovery and development pipeline requires rigorous scientific validation, including cellular, morphological, and functional characterization; benchmarking of clinical biomarkers; and operationalization as robust and reproducible screening platforms. It will be critical to establish the degree of physiological complexity that is needed in each CIVM to accurately reproduce native-like homeostasis and disease phenotypes, as well as clinical pharmacological responses. Choosing which CIVM to use at each stage of the drug discovery and development pipeline will be driven by a fit-for-purpose approach, based on the specific disease pathomechanism to model and screening throughput needed. Among the different CIVMs, biofabricated tissue equivalents are emerging as robust and versatile cellular assay platforms. Biofabrication technologies, including bioprinting approaches with hydrogels and biomaterials, have enabled the production of tissues with a range of physiological complexity and controlled spatial arrangements in multiwell plate platforms, which make them amenable for medium-throughput screening. However, operationalization of such 3D biofabricated models using existing automation screening platforms comes with a unique set of challenges. These challenges will be discussed in this perspective, including examples and thoughts coming from a laboratory dedicated to designing and developing assays for automated screening.
Collapse
Affiliation(s)
- Olive Jung
- 3D Tissue Bioprinting Laboratory (3DTBL), Division of Pre-clinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, USA.,Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory (3DTBL), Division of Pre-clinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory (3DTBL), Division of Pre-clinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, USA
| |
Collapse
|
36
|
Biunno I, Paiola E, De Blasio P. The Application of the Tissue Microarray (TMA) Technology to Analyze Cerebral Organoids. J Histochem Cytochem 2021; 69:451-460. [PMID: 34142588 PMCID: PMC8246530 DOI: 10.1369/00221554211025327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
"Multi-Omics" technologies have contributed greatly to the understanding of various diseases by enabling researchers to accurately and rapidly investigate the molecular circuitry that connects cellular systems. The tissue-engineered, three-dimensional (3D), in vitro disease model "organoid" integrates the "omics" results in a model system, elucidating the complex links between genotype and phenotype. These 3D structures have been used to model cancer, infectious disease, toxicity, and neurological disorders. Here, we describe the advantage of using the tissue microarray (TMA) technology to analyze human-induced pluripotent stem cell-derived cerebral organoids. Compared with the conventional processing of individual samples, sectioning and staining of TMA slides are faster and can be automated, decreasing labor and reagent costs. The TMA technology faithfully captures cell morphology variations and detects specific biomarkers. The use of this technology can scale up organoid research results in at least two ways: (1) in the number of specimens that can be analyzed simultaneously and (2) in the number of consecutive sections that can be produced for analysis with different probes and antibodies.
Collapse
Affiliation(s)
- Ida Biunno
- Integrated Systems Engineering, Milano, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Emanuela Paiola
- Division of Anatomy Pathology, IRCCS MultiMedica, Milano, Italy
| | | |
Collapse
|
37
|
Kronemberger GS, Miranda GASC, Tavares RSN, Montenegro B, Kopke ÚDA, Baptista LS. Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Front Bioeng Biotechnol 2021; 9:682498. [PMID: 34239860 PMCID: PMC8258101 DOI: 10.3389/fbioe.2021.682498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.
Collapse
Affiliation(s)
- Gabriela S. Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Guilherme A. S. C. Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Renata S. N. Tavares
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Bianca Montenegro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Úrsula de A. Kopke
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leandra S. Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
38
|
Varone A, Nguyen JK, Leng L, Barrile R, Sliz J, Lucchesi C, Wen N, Gravanis A, Hamilton GA, Karalis K, Hinojosa CD. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it. Biomaterials 2021; 275:120957. [PMID: 34130145 DOI: 10.1016/j.biomaterials.2021.120957] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 12/22/2022]
Abstract
Successful translation of in vivo experimental data to human patients is an unmet need and a bottleneck in the development of effective therapeutics. Organ-on-Chip technology aims to address this need by leveraging recent significant advancements in microfabrication and biomaterials, which enable modeling of organs and their functionality. These microengineered chips offer researchers the possibility to recreate critical elements of native tissue architecture such as in vivo relevant tissue-tissue interface, air-liquid interface, and mechanical forces, including mechanical stretch and fluidic shear stress, which are crucial to recapitulate tissue level functions. Here, we present the development of a new, comprehensive 3D cell-culture system, where we combined our proprietary Organ-Chip technology with the advantages offered by three-dimensional organotypic culture. Leveraging microfabrication techniques, we engineered a flexible chip that consists of a chamber containing an organotypic epithelium, surrounded by two vacuum channels that can be actuated to stretch the hydrogel throughout its thickness. Furthermore, the ceiling of this chamber is a removable lid with a built-in microchannel that can be perfused with liquid or air and removed as needed for direct access to the tissue. The bottom part of this chamber is made from a porous flexible membrane which allows diffusive mass transport to and from the microfluidic channel positioned below the membrane. This additional microfluidic channel can be coated with endothelial cells to emulate a blood vessel and recapitulate endothelial interactions. Our results show that the Open-Top Chip design successfully addresses common challenges associated with the Organs-on-Chip technology, including the capability to incorporate a tissue-specific extracellular matrix gel seeded with primary stromal cells, to reproduce the architectural complexity of tissues by micropatterning the gel, and to extract the gel for H&E staining. We also provide proof-of-concept data on the feasibility of using the system with primary human skin and alveolar epithelial cells.
Collapse
Affiliation(s)
- Antonio Varone
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA; University of Crete Medical School, Department of Pharmacology, Heraklion, 71110, Greece.
| | - Justin Ke Nguyen
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - Lian Leng
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - Riccardo Barrile
- University of Cincinnati, Department of Biomedical Engineering, Cincinnati, OH, 45221, USA
| | - Josiah Sliz
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | | | - Norman Wen
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - Achille Gravanis
- University of Crete Medical School, Department of Pharmacology, Heraklion, 71110, Greece
| | | | - Katia Karalis
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | | |
Collapse
|
39
|
Xia Y, Chen H, Li J, Hu H, Qian Q, He RX, Ding Z, Guo SS. Acoustic Droplet-Assisted Superhydrophilic-Superhydrophobic Microarray Platform for High-Throughput Screening of Patient-Derived Tumor Spheroids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23489-23501. [PMID: 33983701 DOI: 10.1021/acsami.1c06655] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cell-based high-throughput screening is a key step in the current disease-based research, drug development, and precision medicine. However, it is challenging to establish a rapid culture and screening platform for rare cells (patient-derived) due to the obvious differences between the traditional 2D cell model and the tumor microenvironment, as well as the lack of a low-consumption screening platform for low numbers of cells. Here, we developed an acoustic drop-assisted superhydrophilic-superhydrophobic microarray platform for the rapid culture and screening of a few cells. By employing hydrophilic and hydrophobic microarrays, we can automatically distribute the cell suspension into uniform droplets, and these cells can spontaneously form compact 3D cell spheroids within 36 h (similar to the microenvironment of tumors in vivo). By using the acoustic droplet ejection device, we can accurately inject a drug solution with a volume of ∼pL to ∼nL into the droplet, and the whole process can be completed within 20 ms (one print). By using three different cell lines (Caco-2, MCF-7, and HeLa) to optimize the platform, the culture and screening of five patients' colon cancer were subsequently realized. Using three conventional chemotherapeutics (5-fluorouracil, cetuximab, and panitumumab) of various concentrations, the best treatment was screened out and compared with the actual treatment effect of the patients, and the results were extremely similar. As a proof-of-concept application, we have proved that our platform can quickly cultivate patient samples and effectively screen the best treatment methods, highlighting its wide application in precision medicine, basic tumor research, and drug development.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hui Chen
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Juan Li
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hang Hu
- Department of Colorectal and Anal Surgery, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Rong-Xiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Mechanical and Immunological Regulation in Wound Healing and Skin Reconstruction. Int J Mol Sci 2021; 22:ijms22115474. [PMID: 34067386 PMCID: PMC8197020 DOI: 10.3390/ijms22115474] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, a new frontier in scarless wound healing has arisen because of significant advances in the field of wound healing realised by incorporating emerging concepts from mechanobiology and immunology. The complete integumentary organ system (IOS) regeneration and scarless wound healing mechanism, which occurs in specific species, body sites and developmental stages, clearly shows that mechanical stress signals and immune responses play important roles in determining the wound healing mode. Advances in tissue engineering technology have led to the production of novel human skin equivalents and organoids that reproduce cell–cell interactions with tissue-scale tensional homeostasis, and enable us to evaluate skin tissue morphology, functionality, drug response and wound healing. This breakthrough in tissue engineering has the potential to accelerate the understanding of wound healing control mechanisms through complex mechanobiological and immunological interactions. In this review, we present an overview of recent studies of biomechanical and immunological wound healing and tissue remodelling mechanisms through comparisons of species- and developmental stage-dependent wound healing mechanisms. We also discuss the possibility of elucidating the control mechanism of wound healing involving mechanobiological and immunological interaction by using next-generation human skin equivalents.
Collapse
|
41
|
Kohl Y, Biehl M, Spring S, Hesler M, Ogourtsov V, Todorovic M, Owen J, Elje E, Kopecka K, Moriones OH, Bastús NG, Simon P, Dubaj T, Rundén-Pran E, Puntes V, William N, von Briesen H, Wagner S, Kapur N, Mariussen E, Nelson A, Gabelova A, Dusinska M, Velten T, Knoll T. Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006012. [PMID: 33458959 DOI: 10.1002/smll.202006012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal-free risk assessment of new chemicals and drugs. Microfluidic cell-based devices allow high-throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal-free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo-like in vitro cell cultivation. It is equipped with a wafer-based silicon chip including integrated electrodes and a microcavity. A proof-of-concept using different relevant cell models shows its suitability for label-free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label-free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole-body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Margit Biehl
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Sarah Spring
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Vladimir Ogourtsov
- Tyndall National Institute, University College Cork, Dyke Parade, Cork, T12 R5CP, Ireland
| | - Miomir Todorovic
- Tyndall National Institute, University College Cork, Dyke Parade, Cork, T12 R5CP, Ireland
| | - Joshua Owen
- Institute of Thermofluids, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Elisabeth Elje
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
- Faculty of Medicine, Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo, 0372, Norway
| | - Kristina Kopecka
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 84505, Slovakia
| | - Oscar Hernando Moriones
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Neus G Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Peter Simon
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology SUT, Radlinskeho 9, Bratislava, 812 37, Slovakia
| | - Tibor Dubaj
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology SUT, Radlinskeho 9, Bratislava, 812 37, Slovakia
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08193, Spain
| | - Nicola William
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Nikil Kapur
- Institute of Thermofluids, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
| | - Andrew Nelson
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 84505, Slovakia
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
| | - Thomas Velten
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Thorsten Knoll
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| |
Collapse
|
42
|
Miranda RG, Ferraz ERA, Pereira LC, Dorta DJ. Immunocytochemistry Analysis of HepG2 Cell 3D Culture Encapsulated as Spheroids in Alginate Beads. Methods Mol Biol 2021; 2240:197-206. [PMID: 33423235 DOI: 10.1007/978-1-0716-1091-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
3D Cell culture is an alternative to animal use in many drug development and toxicity studies. The 3D cell culture can mimic and reproduce the original tissue microenvironment, morphology, and mechanical and physiological characteristics, to provide a more realistic and reliable response as compared to two-dimensional cultures. 3D cell culture encapsulated in alginate beads is a very simple and relatively inexpensive tool that is easy to handle and to maintain. The alginate beads function as a scaffold that imprisons cells and allows 3D cell growth, to generate spheroids that can have greater genic expression and cell-cell communication as a nano or microtissue. The HepG2 cell line is a human hepatocellular carcinoma cell derivative. HepG2 cells preserve several of the characteristics of hepatocytes and are therefore often used in toxicity studies. Here, we describe HepG2 cell encapsulation in alginate beads and analyze the resulting spheroids formed within the alginate beads by immunocytochemistry, by staining a certain structure with a specific antibody coupled with a fluorophore. This method preserves the beads and enables cell analysis by confocal microscopy.
Collapse
Affiliation(s)
- Raul Ghiraldelli Miranda
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Lilian Cristina Pereira
- Department of Bioprocesses and Biotechnology, Faculty of Agronomic Sciences of Botucatu, São Paulo State University, Botucatu, SP, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, São Paulo, Brazil
| | - Daniel Junqueira Dorta
- FFCLRP-USP, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
- Instituto Nacional de Tecnologias Alternativas de Detecção, Avaliação Toxicologicae Remoção de Micropututantes e Radioativos (INCT-DATREM), Unesp, Instituto de Química, Araraquara, SP, Brazil.
| |
Collapse
|
43
|
Jayal P, Behera P, Mullick R, Ramachandra SG, Das S, Kumar A, Karande A. Responsive polymer-assisted 3D cryogel supports Huh7.5 as in vitro hepatitis C virus model and ectopic human hepatic tissue in athymic mice. Biotechnol Bioeng 2020; 118:1286-1304. [PMID: 33295646 DOI: 10.1002/bit.27651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/07/2022]
Abstract
The three-dimensional (3D) cell culture models serve as the interface between conventional two-dimensional (2D) monolayer culture and animal models. 3D culture offers the best possible model system to understand the pathophysiology of human pathogens such as hepatitis C virus (HCV), which lacks a small animal model, due to narrow host tropism and non-permissiveness of murine hepatocytes. In this study, functionally robust spheroids of HCV permissive Huh7.5 cells were generated, assisted by the temperature or pH-responsive polymers PNIPAAm and Eudragit respectively, followed by the long-term growth of the multilayered 3D aggregates in poly(ethylene glycol) (PEG)-alginate-gelatin (PAG) cryogel. The human serum albumin (HSA), marker of hepatic viability was detected up to 600 ng/ml on 24th day of culture. The 3D spheroid culture exhibited a distinct morphology and transcript levels with the upregulation of hepato-specific transcripts, nuclear factor 4α (HNF4α), transthyretin (TTr), albumin (Alb), phase I and phase II drug-metabolizing genes. The two most important phase I enzymes CYP3A4 and CYP2D6, together responsible for 90% metabolism of drugs exhibited up to 9- and 12-fold increment, respectively in transcripts. The 3D culture was highly permissive to HCV infection and supported higher multiplicity of infection compared to monolayer Huh7.5 culture. Quantitation of high levels of HSA (500-200 ng/ml) in circulation in mice for 32 days asserted integration with host vasculature and in vivo establishment of 3D culture implants as an ectopic human hepatic tissue in mice. The study demonstrates the 3D spheroid Huh7.5 culture as a model for HCV studies and screening potential for anti-HCV drug candidates.
Collapse
Affiliation(s)
- Priyanka Jayal
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Padmanava Behera
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ranajoy Mullick
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anjali Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
44
|
Lu TY, Yu KF, Kuo SH, Cheng NC, Chuang EY, Yu JS. Enzyme-Crosslinked Gelatin Hydrogel with Adipose-Derived Stem Cell Spheroid Facilitating Wound Repair in the Murine Burn Model. Polymers (Basel) 2020; 12:E2997. [PMID: 33339100 PMCID: PMC7765510 DOI: 10.3390/polym12122997] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Engineered skin that can facilitate tissue repair has been a great advance in the field of wound healing. A well-designed dressing material together with active biological cues such as cells or growth factors can overcome the limitation of using auto-grafts from patients. Recently, many studies showed that human adipose-derived stem cells (hASCs) can be used to promote wound healing and skin tissue engineering. hASCs have already been widely applied for clinical trials. hASCs can be harvested abundantly because they can be easily isolated from fat tissue known as the stromal vascular fraction (SVF). On the other hand, increasing studies have proven that cells from spheroids can better simulate the biological microenvironment and can enhance the expression of stemness markers. However, a three-dimensional (3D) scaffold that can harbor implanted cells and can serve as a skin-repaired substitute still suffers from deficiency. In this study, we applied a gelatin/microbial transglutaminase (mTG) hydrogel to encapsulate hASC spheroids to evaluate the performance of 3D cells on skin wound healing. The results showed that the hydrogel is not toxic to the wound and that cell spheroids have significantly improved wound healing compared to cell suspension encapsulated in the hydrogel. Additionally, a hydrogel with cell spheroids was much more effective than other groups in angiogenesis since the cell spheroid has the possibility of cell-cell signaling to promote vascular generation.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (T.-Y.L.); (K.-F.Y.); (S.-H.K.)
| | - Kai-Fu Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (T.-Y.L.); (K.-F.Y.); (S.-H.K.)
| | - Shuo-Hsiu Kuo
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (T.-Y.L.); (K.-F.Y.); (S.-H.K.)
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei 10617, Taiwan
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Shing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (T.-Y.L.); (K.-F.Y.); (S.-H.K.)
| |
Collapse
|
45
|
Zimmerling A, Chen X. Bioprinting for combating infectious diseases. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2020; 20:e00104. [PMID: 33015403 PMCID: PMC7521216 DOI: 10.1016/j.bprint.2020.e00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Infectious diseases have the ability to impact health on a global scale, as is being demonstrated by the current coronavirus disease 2019 (COVID-19) pandemic. The strenuous circumstances related to this global health crisis have been highlighting the challenges faced by the biomedical field in combating infectious diseases. Notably, printing technologies have advanced rapidly over the last decades, allowing for the incorporation of living cells in the printing process (or bioprinting) to create constructs that are able to serve as in vitro tissue or virus-disease models in combating infectious diseases. This paper describes applications of bioprinting in addressing the challenges faced in combating infectious diseases, with a specific focus on in vitro modelling and on development of therapeutic agents and vaccines. Integration of these technologies may allow for a more efficient and effective response to current and future pandemics.
Collapse
Affiliation(s)
- Amanda Zimmerling
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
46
|
Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering. Int J Mol Sci 2020; 21:ijms21238908. [PMID: 33255352 PMCID: PMC7727824 DOI: 10.3390/ijms21238908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
We introduce a new benchtop microgravity simulator (MGS) that is scalable and easy to use. Its working principle is similar to that of random positioning machines (RPM), commonly used in research laboratories and regarded as one of the gold standards for simulating microgravity. The improvement of the MGS concerns mainly the algorithms controlling the movements of the samples and the design that, for the first time, guarantees equal treatment of all the culture flasks undergoing simulated microgravity. Qualification and validation tests of the new device were conducted with human bone marrow stem cells (bMSC) and mouse skeletal muscle myoblasts (C2C12). bMSC were cultured for 4 days on the MGS and the RPM in parallel. In the presence of osteogenic medium, an overexpression of osteogenic markers was detected in the samples from both devices. Similarly, C2C12 cells were maintained for 4 days on the MGS and the rotating wall vessel (RWV) device, another widely used microgravity simulator. Significant downregulation of myogenesis markers was observed in gravitationally unloaded cells. Therefore, similar results can be obtained regardless of the used simulated microgravity devices, namely MGS, RPM, or RWV. The newly developed MGS device thus offers easy and reliable long-term cell culture possibilities under simulated microgravity conditions. Currently, upgrades are in progress to allow real-time monitoring of the culture media and liquids exchange while running. This is of particular interest for long-term cultivation, needed for tissue engineering applications. Tissue grown under real or simulated microgravity has specific features, such as growth in three-dimensions (3D). Growth in weightlessness conditions fosters mechanical, structural, and chemical interactions between cells and the extracellular matrix in any direction.
Collapse
|
47
|
Tissue-scale tensional homeostasis in skin regulates structure and physiological function. Commun Biol 2020; 3:637. [PMID: 33127987 PMCID: PMC7603398 DOI: 10.1038/s42003-020-01365-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Tensional homeostasis is crucial for organ and tissue development, including the establishment of morphological and functional properties. Skin plays essential roles in waterproofing, cushioning and protecting deeper tissues by forming internal tension-distribution patterns, which involves aligning various cells, appendages and extracellular matrices (ECMs). The balance of traction force is thought to contribute to the formation of strong and pliable physical structures that maintain their integrity and flexibility. Here, by using a human skin equivalent (HSE), the horizontal tension-force balance of the dermal layer was found to clearly improve HSE characteristics, such as the physical relationship between cells and the ECM. The tension also promoted skin homeostasis through the activation of mechano-sensitive molecules such as ROCK and MRTF-A, and these results compared favourably to what was observed in tension-released models. Tension-induced HSE will contribute to analyze skin physiological functions regulated by tensional homeostasis as an alternative animal model.
Collapse
|
48
|
Gilazieva Z, Ponomarev A, Rutland C, Rizvanov A, Solovyeva V. Promising Applications of Tumor Spheroids and Organoids for Personalized Medicine. Cancers (Basel) 2020; 12:E2727. [PMID: 32977530 PMCID: PMC7598156 DOI: 10.3390/cancers12102727] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
One of the promising directions in personalized medicine is the use of three-dimensional (3D) tumor models such as spheroids and organoids. Spheroids and organoids are three-dimensional cultures of tumor cells that can be obtained from patient tissue and, using high-throughput personalized medicine methods, provide a suitable therapy for that patient. These 3D models can be obtained from most types of tumors, which provides opportunities for the creation of biobanks with appropriate patient materials that can be used to screen drugs and facilitate the development of therapeutic agents. It should be noted that the use of spheroids and organoids would expand the understanding of tumor biology and its microenvironment, help develop new in vitro platforms for drug testing and create new therapeutic strategies. In this review, we discuss 3D tumor spheroid and organoid models, their advantages and disadvantages, and evaluate their promising use in personalized medicine.
Collapse
Affiliation(s)
- Zarema Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| | - Aleksei Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| | - Catrin Rutland
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| |
Collapse
|
49
|
Gaudin A, Tolar M, Peters OA. Cytokine Production and Cytotoxicity of Calcium Silicate–based Sealers in 2- and 3-dimensional Cell Culture Models. J Endod 2020; 46:818-826. [DOI: 10.1016/j.joen.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
|
50
|
Zhou Z, Zeiter S, Schmid T, Sakai D, Iatridis JC, Zhou G, Richards RG, Alini M, Grad S, Li Z. Effect of the CCL5-Releasing Fibrin Gel for Intervertebral Disc Regeneration. Cartilage 2020; 11:169-180. [PMID: 29582673 PMCID: PMC7097979 DOI: 10.1177/1947603518764263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To explore if chemokine (C-C motif) ligand 5 (CCL5) delivery could recruit annulus fibrosus (AF) cells to the injury sites and facilitate the repair of ruptured AF. DESIGN The effects of CCL5 on bovine AF cells in vitro were tested by transwell assay and quantitative real-time polymerase chain reaction. Fibrin gel containing CCL5 was used to treat annulotomized bovine caudal discs cultured under dynamic loading conditions. After 14 days of loading, the samples were collected for histological examination. A pilot animal study was performed using sheep cervical discs to investigate the effect of fibrin gel encapsulated with CCL5 for the treatment of ruptured AF. After 14 weeks, the animals were sacrificed, and the discs were scanned with magnetic resonance imaging before histopathological examination. RESULTS CCL5 showed a chemotactic effect on AF cells in a dose-dependent manner. AF cells cultured with CCL5 in vitro did not show any change of the gene expression of CCL5 receptors, catabolic and proinflammatory markers. In vitro release study showed that CCL5 exhibited sustained release from the fibrin gel into the culture media; however, in the organ culture study CCL5 did not stimulate homing of AF cells toward the defect sites. The pilot animal study did not show any repair effect of CCL5. CONCLUSIONS CCL5 has a chemotactic effect on AF cells in vitro, but no ex vivo or in vivo regenerative effect when delivered within fibrin gel. Further study with a stronger chemotactic agent and/or an alternate biomaterial that is more conductive of cell migration is warranted.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- AO Research Institute Davos, Davos, Switzerland
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Stephan Zeiter
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Tanja Schmid
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Daisuke Sakai
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
- Department of Orthopaedic Surgery, Surgical Science and Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - James C. Iatridis
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - R. Geoff Richards
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| |
Collapse
|