1
|
Yeh TS, Blacker D, Willett WC. Dietary Factors and Cognitive Function: with a Focus on Subjective Cognitive Decline. Curr Nutr Rep 2025; 14:62. [PMID: 40285979 DOI: 10.1007/s13668-025-00638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE OF THE REVIEW Age-related cognitive decline is an important global challenge. Substantial evidence suggests that diet may prevent or delay cognitive aging. This narrative review examines recent literature on how dietary factors influence cognitive function, with a focus on subjective cognitive decline (SCD). RECENT FINDINGS Higher intakes of flavonoids, carotenoids, and plant-based protein were associated with lower odds of SCD. Berries, citrus fruits and juices, carotenoid-rich and green leafy vegetables, and beans/legumes were among the foods with the strongest inverse associations with SCD. Healthy dietary patterns, such as the Mediterranean and MIND diet, may be beneficial for maintaining subjective cognitive function. Healthy choice of diet may play a role in lowering the risk of late-life SCD.
Collapse
Affiliation(s)
- Tian-Shin Yeh
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St, Taipei, 11031, Taiwan.
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei, 23561, Taiwan.
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Nutrition and Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK.
| | - Deborah Blacker
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition and Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
2
|
Gavrila AI, Damian EJ, Rosca A, Calinescu I, Hodosan C, Popa I. Optimization of Microwave-Assisted Extraction of Polyphenols from Crataegus monogyna L. Antioxidants (Basel) 2025; 14:357. [PMID: 40227419 PMCID: PMC11939473 DOI: 10.3390/antiox14030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Hawthorns (Crataegus monogyna L.) contain numerous bioactive compounds, with its extracts demonstrating health benefits. This study focused on optimizing a more sustainable extraction method, specifically microwave-assisted extraction (MAE), to obtain polyphenols from hawthorn leaves and flowers. HPLC/UV analysis identified key compounds, including gallic and chlorogenic acids, isoquercetin, rutin, hyperoside, vitexin, and quercetin. Principal component analysis (PCA) assessed correlations between extraction conditions, total phenolic content (TPC), and key compounds. PCA grouped conditions into three clusters, with two remaining ungrouped. The highest vitexin, rutin, and isoquercetin contents were achieved at 60 °C for 10 min using 160-500 μm particles in 75% ethanol (20/1 ratio) or 50% ethanol (20/1 and 30/1 ratios). An ungrouped condition (60 °C, 10 min, < 160 μm particles, 50% ethanol, 20/1 ratio) produced a higher TPC and greater gallic acid, chlorogenic acid, and hyperoside concentrations. The TPC and antioxidant activity (AA) of the extracts were optimized using a 23 full factorial design, with temperature, ethanol concentration, and solvent-to-plant ratio as variables. Optimal MAE conditions (S/Popt = 20.4 mL/g, Topt = 65 °C, and EtOHopt = 60%) yielded a TPC of 116.23 ± 2.85 mg GAE/g DM and an AA of 237.6 ± 6.33 mg TE/g DM using hawthorn leaves and flowers. Summarizing the above, to maximize phytocompound content, a one-factor-at-a-time design identified extraction parameters, but its limitations led to a 23 full factorial design. The latter effectively optimized the TPC and AA, while PCA revealed correlations between extraction parameters, total phenolics, and key compounds.
Collapse
Affiliation(s)
- Adina I. Gavrila
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.G.); (A.R.); (I.C.)
| | - Emilia J. Damian
- Research & Development Department, Teva Pharmaceuticals S.R.L., 011171 Bucharest, Romania;
| | - Anca Rosca
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.G.); (A.R.); (I.C.)
| | - Ioan Calinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.G.); (A.R.); (I.C.)
| | - Camelia Hodosan
- Faculty of Engineering and Animal Production, University of Agronomic Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Ioana Popa
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.G.); (A.R.); (I.C.)
| |
Collapse
|
3
|
Ramos-Lopez O. Personalizing Dietary Polyphenols for Health Maintenance and Disease Management: A Nutrigenetic Approach. Curr Nutr Rep 2025; 14:29. [PMID: 39907890 DOI: 10.1007/s13668-025-00620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF THE REVIEW This literature review provides examples of the influence of certain genetic variants on health outcomes after dietary polyphenol consumption or supplementation. Available evidence is organized according to the major classes of polyphenols (flavonoids, phenolic acids, stilbenes, lignans, and tannins) and their derived subgroups. RECENT FINDINGS Nutrigenetic studies have identified mainly single nucleotide polymorphisms located within genes involved in the biotransformation of phenolic acids, stilbenes, lignans and several flavonoid molecules. These genetic variants may affect polyphenol metabolism rates and related predisposition to chronic non-communicable diseases. Moreover, differential cardiometabolic outcomes upon polyphenol supplementation as dietary sources or nutraceuticals have been modulated by specific genotypes. Although current evidence is still limited, growing gene-polyphenol interactions are contributing to systematically elucidate the biological functions of polyphenols; determine individual risk phenotypes to specific diseases or particular responses upon polyphenol exposure; and facilitate the prescription of personalized genotype-based doses of dietary polyphenols to optimize related health benefits. Additionally, the integration of genetics with other omics insights (epigenomics, transcriptomics, metagenomics, and metabolomics) trough biological systems and high-dimensional data analyses and interpretation may provide a more comprehensive understanding of polyphenol metabolism for precision nutrition applications in health and disease.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Universidad 14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, BC, 22390, México.
| |
Collapse
|
4
|
Lorzadeh E, Weston-Green K, Roodenrys S, do Rosario V, Kent K, Charlton K. The Effect of Anthocyanins on Cognition: A Systematic Review and Meta-analysis of Randomized Clinical Trial Studies in Cognitively Impaired and Healthy Adults. Curr Nutr Rep 2025; 14:23. [PMID: 39875765 PMCID: PMC11775034 DOI: 10.1007/s13668-024-00595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
PURPOSE OF THE REVIEW Clinical trials suggest that dietary anthocyanins may enhance cognitive function. This systematic literature review and meta-analysis aimed to identify the effect of anthocyanin on cognition and mood in adults. RECENT FINDINGS Using a random-effects model, Hedge's g scores were calculated to estimate the effect size. Across 30 randomized controlled trials, fourteen (n = 733 participants) met the criteria for meta-analysis following PRISMA guidelines (Registration number: CRD42021279470). Qualitative synthesis showed improvements in multiple domains after anthocyanin intake: short-term memory, verbal learning and working memory, executive function, visual-spatial function, psychomotor skills, attention and semantic memory. Four of 15 studies reported significant mood improvements, including anti-fatigue and reduced anxiety and depression scores. However, there were no significant effects for working memory (Hedges's g = -0.183, 95% CI = -0.407 to 0.041, P = 0.110), verbal learning (Hedges's g = 0.054, 95% CI = -0.215 to 0.324, P = 0.69), immediate memory (Hedges's g = 0.196, 95% CI = -0.242 to 0.633, P = 0.38) and delayed memory (Hedges's g = -0.188, 95% CI = -0.629 to -0.252, P = 0.402) according to the meta-analysis. This review suggests potential benefits of anthocyanin intake on cognition and mood. However, in meta-analysis of 14 eligible studies, effects on working, immediate, delayed memory and verbal learning were not significant, likely due to study heterogeneity. Recommendations for future study designs are discussed.
Collapse
Affiliation(s)
- Elnaz Lorzadeh
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong NSW, Wollongong, 2522, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong NSW, Wollongong, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Steven Roodenrys
- School of Psychology, Faculty of Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Vinicius do Rosario
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong NSW, Wollongong, 2522, Australia
| | - Katherine Kent
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong NSW, Wollongong, 2522, Australia
| | - Karen Charlton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong NSW, Wollongong, 2522, Australia.
| |
Collapse
|
5
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
6
|
Talik TN, Penna EM, Hack BP, Harp A, Millard-Stafford M. Effects of Acute Guarana ( Paullinia cupana) Ingestion on Mental Performance and Vagal Modulation Compared to a Low Dose of Caffeine. Nutrients 2024; 16:1892. [PMID: 38931247 PMCID: PMC11206275 DOI: 10.3390/nu16121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Guarana (GUA), a Brazilian seed extract, contains caffeine and other bioactive compounds that may have psychoactive effects. To assess the acute effects of GUA compared to a low dose of caffeine (CAF) on cognitive and mood parameters, twenty participants completed a double-blind, crossover experiment where they ingested capsules containing the following: (1) 100 mg CAF, (2) 500 mg GUA containing 130 mg caffeine, or (3) placebo (PLA). Cognitive tests (Simon and 2N-Back Task) were performed at the baseline (pre-ingestion) and 60 min after ingestion. The response time for the cognitive tests and heart rate variability were unaffected (p > 0.05) by treatment, although 2N-Back was overall faster (p = 0.001) across time. The accuracy in the 2N-Back Task showed a significant interaction effect (p = 0.029) due to higher post-ingestion versus pre-ingestion levels (p = 0.033), but only with the PLA. The supplements also had no effect on cognitive measures following physical fatigue (n = 11). There was an interaction effect on perceived mental energy, where the pre-ingestion of GUA had lower mental pep ratings compared to post-ingestion (p = 0.006) and post-exercise (p = 0.018) levels. Neither the acute ingestion of GUA nor low dose of CAF influenced cognitive performance or provided consistent benefit on mood or mental workload through vagal modulation. Additional investigations are beneficial to determining the lowest effective dose for CAF or GUA to influence mood and/or cognitive performance.
Collapse
Affiliation(s)
- Tyler N. Talik
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA; (T.N.T.); (B.P.H.); (A.H.)
| | - Eduardo Macedo Penna
- Physical Education Faculty, Federal University of Pará, Castanhal 68746-630, PA, Brazil;
| | - Brian P. Hack
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA; (T.N.T.); (B.P.H.); (A.H.)
| | - Alec Harp
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA; (T.N.T.); (B.P.H.); (A.H.)
| | - Mindy Millard-Stafford
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA; (T.N.T.); (B.P.H.); (A.H.)
| |
Collapse
|
7
|
Farag S, Tsang C, Al-Dujaili EAS, Murphy PN. Effect of Polyphenol Supplementation on Memory Functioning in Overweight and Obese Adults: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:474. [PMID: 38398799 PMCID: PMC10893550 DOI: 10.3390/nu16040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Negative health consequences of obesity include impaired neuronal functioning and cell death, thus bringing the risk of impaired cognitive functioning. Antioxidant properties of polyphenols offer a possible intervention for overweight people, but evidence for their effectiveness in supporting cognitive functioning is mixed. This review examined evidence from randomized controlled trials concerning the effect of polyphenols on tasks requiring either immediate or delayed retrieval of learned information, respectively, thus controlling for differences in cognitive processes and related neural substrates supporting respective task demands. Searches of the PubMed/Medline, PsycInfo, and Scopus databases identified 24 relevant primary studies with N = 2336 participants having a BMI ≥ 25.0 kg/m2. The participants' mean age for the 24 studies exceeded 60 years. Respective meta-analyses produced a significant summary effect for immediate retrieval but not for delayed retrieval. The present findings support a potential positive effect of chronic supplementation with polyphenols, most notably flavonoids, on immediate retrieval in participants aged over 60 years with obesity being a risk factor for cognitive impairment. We recommend further investigation of this potential positive effect in participants with such risk factors. Future research on all populations should report the phenolic content of the supplementation administered and be specific regarding the cognitive processes tested.
Collapse
Affiliation(s)
- Sara Farag
- Department of Psychology, Edge Hill University, Ormskirk L39 4QP, UK; (S.F.); (P.N.M.)
| | - Catherine Tsang
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Emad A. S. Al-Dujaili
- Centre for Cardiovascular Science, Faculty of Medicine and Veterinary Medicine, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Philip N. Murphy
- Department of Psychology, Edge Hill University, Ormskirk L39 4QP, UK; (S.F.); (P.N.M.)
| |
Collapse
|
8
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Polyphenols Targeting NF-κB Pathway in Neurological Disorders: What We Know So Far? Int J Biol Sci 2024; 20:1332-1355. [PMID: 38385077 PMCID: PMC10878147 DOI: 10.7150/ijbs.90982] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Polyphenolic compounds have shown promising neuroprotective properties, making them a valuable resource for identifying prospective drug candidates to treat several neurological disorders (NDs). Numerous studies have reported that polyphenols can disrupt the nuclear factor kappa B(NF-κB) pathway by inhibiting the phosphorylation or ubiquitination of signaling molecules, which further prevents the degradation of IκB. Additionally, they prevent NF-κB translocation to the nucleus and pro-inflammatory cytokine production. Polyphenols such as curcumin, resveratrol, and pterostilbene had significant inhibitory effects on NF-κB, making them promising candidates for treating NDs. Recent experimental findings suggest that polyphenols possess a wide range of pharmacological properties. Notably, much attention has been directed towards their potential therapeutic effects in NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, autism, and spinal cord injury (SCI). Much preclinical data supporting the neurotherapeutic benefits of polyphenols has been developed. Nevertheless, this study has described the significance of polyphenols as potential neurotherapeutic agents, specifically emphasizing their impact on the NF-κB pathway. This article offers a comprehensive analysis of the involvement of polyphenols in NDs, including both preclinical and clinical perspectives.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chuxiao Shao
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
| | - Peiwu Geng
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
| | - Shuanghua Wang
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
| | - Jian Xiao
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
9
|
Radtke MD, Steinberg FM, Scherr RE. Methods for Assessing Health Outcomes Associated with Food Insecurity in the United States College Student Population: A Narrative Review. Adv Nutr 2024; 15:100131. [PMID: 37865221 PMCID: PMC10831897 DOI: 10.1016/j.advnut.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
In the United States, college students experience disproportionate food insecurity (FI) rates compared to the national prevalence. The experience of acute and chronic FI has been associated with negative physical and mental health outcomes in this population. This narrative review aims to summarize the current methodologies for assessing health outcomes associated with the experience of FI in college students in the United States. To date, assessing the health outcomes of FI has predominately consisted of subjective assessments, such as self-reported measures of dietary intake, perceived health status, stress, depression, anxiety, and sleep behaviors. This review, along with the emergence of FI as an international public health concern, establishes the need for novel, innovative, and objective biomarkers to evaluate the short- and long-term impacts of FI on physical and mental health outcomes in college students. The inclusion of objective biomarkers will further elucidate the relationship between FI and a multitude of health outcomes to better inform strategies for reducing the pervasiveness of FI in the United States college student population.
Collapse
Affiliation(s)
- Marcela D Radtke
- Propel Postdoctoral Fellow, Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA 94305
| | | | - Rachel E Scherr
- Family, Interiors, Nutrition & Apparel Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, USA, 94132; Scherr Nutrition Science Consulting, San Francisco, CA, 94115.
| |
Collapse
|
10
|
Amidfar M, Garcez ML, Askari G, Bagherniya M, Khorvash F, Golpour-Hamedani S, de Oliveira J. Role of BDNF Signaling in the Neuroprotective and Memory-enhancing Effects of Flavonoids in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:984-995. [PMID: 37702162 DOI: 10.2174/1871527323666230912090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Foods rich in flavonoids are associated with a reduced risk of various chronic diseases, including Alzheimer's disease (AD). In fact, growing evidence suggests that consuming flavonoid- rich foods can beneficially affect normal cognitive function. Animal models have shown that many flavonoids prevent the development of AD-like pathology and improve cognitive deficits. OBJECTIVE Identifying the molecular causes underlying the memory-enhancing effect of flavonoid-rich foods makes it possible to provide the best diet to prevent cognitive decline associated with aging and Alzheimer's disease. Based on the most recent scientific literature, this review article critically examines the therapeutic role of dietary flavonoids in ameliorating and preventing the progression of AD and enhancement of memory with a focus on the role of the BDNF signaling pathway. METHODS The databases of PubMed, Web of Science, Google Scholar, and Scopus were searched up to March 2023 and limited to English language. Search strategies were using the following keywords in titles and abstracts: (Flavonoid-rich foods OR Flavonoids OR Polyphenols); AND (Brain-Derived Neurotrophic Factor OR BDNF OR CREB OR) AND (Alzheimer's disease OR memory OR cognition OR). RESULTS Flavonoid-rich foods including green tea, berries, curcumin and pomegranate exert their beneficial effects on memory decline associated with aging and Alzheimer's disease mostly through the direct interaction with BDNF signaling pathway. CONCLUSION The neuroprotective effects of flavonoid-rich foods through the CREB-BDNF mechanism have the potential to prevent or limit memory decline due to aging and Alzheimer's disease, so their consumption throughout life may prevent age-related cognitive impairment.
Collapse
Affiliation(s)
- Meysam Amidfar
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michelle Lima Garcez
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo, Brazil
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Golpour-Hamedani
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Horvat A, Vlašić I, Štefulj J, Oršolić N, Jazvinšćak Jembrek M. Flavonols as a Potential Pharmacological Intervention for Alleviating Cognitive Decline in Diabetes: Evidence from Preclinical Studies. Life (Basel) 2023; 13:2291. [PMID: 38137892 PMCID: PMC10744738 DOI: 10.3390/life13122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus is a complex metabolic disease associated with reduced synaptic plasticity, atrophy of the hippocampus, and cognitive decline. Cognitive impairment results from several pathological mechanisms, including increased levels of advanced glycation end products (AGEs) and their receptors, prolonged oxidative stress and impaired activity of endogenous mechanisms of antioxidant defense, neuroinflammation driven by the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), decreased expression of brain-derived neurotrophic factor (BDNF), and disturbance of signaling pathways involved in neuronal survival and cognitive functioning. There is increasing evidence that dietary interventions can reduce the risk of various diabetic complications. In this context, flavonols, a highly abundant class of flavonoids in the human diet, are appreciated as a potential pharmacological intervention against cognitive decline in diabetes. In preclinical studies, flavonols have shown neuroprotective, antioxidative, anti-inflammatory, and memory-enhancing properties based on their ability to regulate glucose levels, attenuate oxidative stress and inflammation, promote the expression of neurotrophic factors, and regulate signaling pathways. The present review gives an overview of the molecular mechanisms involved in diabetes-induced cognitive dysfunctions and the results of preclinical studies showing that flavonols have the ability to alleviate cognitive impairment. Although the results from animal studies are promising, clinical and epidemiological studies are still needed to advance our knowledge on the potential of flavonols to improve cognitive decline in diabetic patients.
Collapse
Affiliation(s)
- Anđela Horvat
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ignacija Vlašić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Larit F, León F. Therapeutics to Treat Psychiatric and Neurological Disorders: A Promising Perspective from Algerian Traditional Medicine. PLANTS (BASEL, SWITZERLAND) 2023; 12:3860. [PMID: 38005756 PMCID: PMC10674704 DOI: 10.3390/plants12223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Ancient people sought out drugs in nature to prevent, cure, and treat their diseases, including mental illnesses. Plants were their primary source for meeting their healthcare needs. In Algeria, folk medicine remains a fundamental part of the local intangible knowledge. This study aims to conduct a comprehensive ethnomedicinal investigation and documentation of medicinal plants and the different plant formulations traditionally used in Algeria for the treatment of pain, psychiatric, and neurological disorders. It also intends to improve the current knowledge of Algerian folk medicine. Several scientific databases were used to accomplish this work. Based on this investigation, we identified 82 plant species belonging to 69 genera and spanning 38 distinct botanical families used as remedies to treat various psychological and neurological conditions. Their traditional uses and methods of preparation, along with their phytochemical composition, main bioactive constituents, and toxicity were noted. Therefore, this review provides a new resource of information on Algerian medicinal plants used in the treatment and management of neurological and psychological diseases, which can be useful not only for the documentation and conservation of traditional knowledge, but also for conducting future phytochemical and pharmacological studies.
Collapse
Affiliation(s)
- Farida Larit
- Laboratoire d’Obtention de Substances Thérapeutiques (LOST), Université Frères Mentouri-Constantine 1, Route de Ain El Bey, Constantine 25017, Algeria
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
13
|
Shateri Z, Kooshki A, Hormoznejad R, Hosseini SA, Mousavi R, Foroumandi E. Effects of chocolate on cognitive function in healthy adults: A systematic review and meta-analysis on clinical trials. Phytother Res 2023; 37:3688-3697. [PMID: 37211619 DOI: 10.1002/ptr.7896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/05/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Cognitive function is defined as performance in objective tasks that need conscious mind effort. It has been shown that consuming foods rich in flavanols causes neurobiological effects and improves learning, memory, and global cognitive function. This study aimed to investigate the impact of chronic chocolate consumption on cognitive function in healthy adults based on published trials. The PICO strategy was applied to examine the research question in this study. Researchers searched the Web of Science, Science Direct, Pubmed, Scopus, Cochrane Library, and Google Scholar databases. Related articles of randomized controlled trials that evaluated the chronic effect of chocolate on cognitive function were selected (all published from their inception to February 2021). The difference in means of the last and first measurements was the main effect measure between the control and intervention groups. For quantitative data synthesis, weighted mean difference (WMD) and 95% confidence interval (CI) were performed in the random effect model. Of the initial 340 articles identified, seven trials met the eligibility criteria. Chronic chocolate intake significantly reduced executive function time (WMD: -11.77, 95% CI: -22.49, -1.05, p = 0.03) of the participants. Further, the language and executive function (WMD: 6.38, 95% CI: 5.97, 6.80, p < 0.001) was raised by 6.38 times after the intervention with chocolate. We could not perform subgroup analysis due to insufficient trials and significant heterogeneity in some studies. It is concluded that daily consumption of cocoa may provide short and middle-term effects on young adults and make them better cognitive performance in learning, memory, and attention.
Collapse
Affiliation(s)
- Zainab Shateri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Kooshki
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Razie Hormoznejad
- Department of Internal Medicine, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reihaneh Mousavi
- 29 Bahman Hospital, Iranian Social Security Organization, Tabriz, Iran
| | - Elaheh Foroumandi
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
14
|
Smith L, López Sánchez GF, Veronese N, Soysal P, Oh H, Kostev K, Rahmati M, Butler L, Gibson P, Keyes H, Barnett Y, Shin JI, Koyanagi A. Association of Fruit and Vegetable Consumption With Mild Cognitive Impairment in Low- and Middle-Income Countries. J Gerontol A Biol Sci Med Sci 2023; 78:1410-1416. [PMID: 36754373 PMCID: PMC10848221 DOI: 10.1093/gerona/glad055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Inadequate fruit and vegetable intake may be associated with cognitive decline but its association with mild cognitive impairment (MCI; a preclinical stage of dementia) is largely unknown. Therefore, we examined the association of fruit and vegetable consumption with MCI among middle-aged and older adults from low- and middle-income countries (LMICs). METHODS Cross-sectional, nationally representative data from the WHO Study on global AGEing and adult health were analyzed. MCI was defined using the National Institute on Aging-Alzheimer's Association criteria. Quintiles of vegetable and fruit consumption were created based on the number of servings consumed on a typical day. Multivariable logistic regression analysis was conducted. RESULTS Data on 32 715 individuals aged ≥50 years were analyzed (mean [standard deviation] age 62.1 [15.6] years; 51.7% females). Greater fruit consumption was dose-dependently associated with lower odds for MCI. For example, the highest quintile (vs lowest) had 47% lower odds for MCI (odds ratio [OR] = 0.53; 95% confidence interval [CI] = 0.43-0.66). For vegetable consumption, compared to the lowest quintile, the second to fourth quintiles had significant 38%-44% lower odds for MCI but there was no significant difference for the highest quintile (OR = 0.82; 95% CI = 0.59-1.15). CONCLUSIONS Higher fruit and vegetable consumption was associated with lower odds for MCI among middle-aged and older adults from LMICs, but no significant differences were found between the highest and lowest quintiles of vegetable consumption. Future longitudinal studies are required to explore these findings in more depth, and mechanistic studies are required to elucidate on the observed possible U-shaped association between vegetable consumption and MCI.
Collapse
Affiliation(s)
- Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Guillermo F López Sánchez
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, School of Medicine, University of Murcia, Murcia, Spain
| | - Nicola Veronese
- Department of Internal Medicine, Geriatrics Section, University of Palermo, Palermo, Italy
| | - Pinar Soysal
- Department of Geriatric Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Hans Oh
- Suzanne Dworak Peck School of Social Work, University of Southern California, Los Angeles, California, USA
| | | | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Laurie Butler
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Poppy Gibson
- Faculty of Education and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Helen Keyes
- School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Yvonne Barnett
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Dr. Antoni Pujadas, Sant Boi de Llobregat, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| |
Collapse
|
15
|
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023; 28:5415. [PMID: 37513286 PMCID: PMC10385962 DOI: 10.3390/molecules28145415] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in people's longevity has, consequently, led to more brain involvement and neurodegenerative diseases, which can become complicated and lead to chronic degenerative diseases, thereby presenting greater public health problems. Medicinal plants have been used since ancient times and contain high concentrations of molecules, including polyphenols. It has been proven that polyphenols, which are present in various natural sources can provide curative effects against various diseases and brain disorders through neuroprotective effects. These neuroprotective effects are mainly attributed to their ability to cross the blood-brain barrier, eliminate reactive oxygen species, and cause the chelation of metal ions. Polyphenols increase the concentration of neurotrophic factors and bind directly to the membrane receptors of these neurotrophic factors, to modulate and activate the signaling cascades that allow the plasticity, survival, proliferation, and growth of neuronal cells, thereby allowing for better learning, memory, and cognition. Moreover, polyphenols have no serious adverse side effects resulting from their consumption.
Collapse
Affiliation(s)
- Raziel Alejandro Arias-Sánchez
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| | - Luz Torner
- Centro de Investigaciones Biomédicas de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| | - Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| |
Collapse
|
16
|
Heras NDL, Galiana A, Ballesteros S, Quintela JC, Bonilauri I, Lahera V, Martín-Fernández B. Polyphenols and Triterpenes Combination in an In Vitro Model of Cardiac Damage: Protective Effects. Int J Mol Sci 2023; 24:7977. [PMID: 37175685 PMCID: PMC10178477 DOI: 10.3390/ijms24097977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Olive products contain high levels of monounsaturated fatty acids as well as other minor components such as triterpenic alcohols and other pentacyclic triterpenes, which together form the main triterpenes of virgin olive oil. Olive fruits and leaves contain significant amounts of hydrophilic and lipophilic bioactives including flavones, phenolic acids and phenolic alcohols, amongst others. Several studies have shown the benefits of these substances on the cardiovascular system. Regardless, little is known about the specific combination of bioactive compounds in cardiovascular health. Thus, we aimed to test the combination of a triterpenes (TT70) and a polyphenols (HT60) olive oil bioactive extract in H9c2 cells under stress conditions: LPS and H2O2 stimulation. To evaluate the effectiveness of the combination, we measured cell viability, superoxide production and protein expression of caspase 3, eNOS, peNOS, TNF-α and Il-6. Overall, cells stimulated with LPS or H2O2 and co-incubated with the combination of triterpenes and polyphenols had increased cell survival, lower levels of superoxide anion, lower protein expression of eNOS and higher expression of peNOS, increased protein expression of SOD-1 and lower protein expression of TNF-α and Il-6. The specific combination of HT60+TT70 is of great interest for further study as a possible treatment for cardiovascular damage.
Collapse
Affiliation(s)
- Natalia de las Heras
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Adrián Galiana
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | | | - Ileana Bonilauri
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
- Scientific Department, Natac Biotech, 28923 Madrid, Spain;
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
17
|
Inactivation of the dorsal CA1 hippocampus impairs the consolidation of discriminative avoidance memory by modulating the intrinsic and extrinsic hippocampal circuitry. J Chem Neuroanat 2023; 128:102209. [PMID: 36496001 DOI: 10.1016/j.jchemneu.2022.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Despite progress in understanding the role of the dorsal hippocampus in the acquisition, consolidation and retrieval of episodic-like memory, plastic changes within the intra- and extrahippocampal circuits for aversive memory formation and anxiety-like behaviours must still be identified since both processes contribute to multiple aspects of flexible decision-making. Here, we investigated the effect of reversible inactivation induced by a muscimol microinfusion into the dorsal CA1 subfield (dCA1) either prior to acquisition or to retrieval testing of a discriminative avoidance task performed in a plus-maze apparatus (PM-DAT). Differential cAMP-response-element-binding protein 1 (CREB-1) expression in the dorsal and ventral CA1 and CA3 of the hippocampus (dCA1, dCA3, vCA1, and vCA3), dorsal dentate gyrus (dDG), and infralimbic (IL) and prelimbic (PrL) regions of the medial prefrontal cortex was also assessed to investigate the molecular changes associated with the consolidation or retrieval of episodic-like memory and anxiety. Adult male Wistar rats were assigned to two control groups, learning (no surgery/no microinfusion, n = 7) and sham-operated (sham surgery/no microinfusion, n = 6) groups, or four experimental groups, in which the vehicle (0.5 µl per side, n = 8/per group) or a GABAA receptor agonist (0.5 µg/0.5 µl muscimol/per side) was bilaterally microinfused in the dCA1 30 min prior to training (n = 9) or prior to testing sessions (n = 6) with a 24 h intertrial interval. Memory was evaluated using the percentage of time spent in the nonaversive enclosed arms, whereas anxiety was measured by calculating the percentages of time spent and entries into open arms and the percentage of time spent self-grooming. Our findings corroborated previous data showing that the dCA1 is required for discriminative avoidance consolidation. Furthermore, additional information indicated that impaired long-term memory was associated with downregulated CREB-1 expression in the dDG and vCA3. Moreover, memory retrieval was not impaired by dCA1 inactivation prior to the testing session, which was associated with the upregulation of CREB-1 in the dCA3 and vCA1 and downregulation in the dCA1 and vCA3. Differential expression of CREB was not identified in the IL or PrL areas. These results improve our understanding of how the hippocampal circuitry mediates the acquisition and retrieval of aversive memory and anxiety.
Collapse
|
18
|
Feng RC, Dong YH, Hong XL, Su Y, Wu XV. Effects of anthocyanin-rich supplementation on cognition of the cognitively healthy middle-aged and older adults: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2023; 81:287-303. [PMID: 35960187 DOI: 10.1093/nutrit/nuac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT The prevalence of age-related cognitive decline has been on the rise as the global population age, putting the independence and quality of life of elderly at risk. Anthocyanin, as a subclass of dietary flavonoids, may have a beneficial impact on cognitive outcomes. OBJECTIVES To examine the effects of dietary anthocyanin supplementation on cognition of the cognitively healthy middle-aged and older adults. DATA SOURCES PubMed, ScienceDirect, CINAHL, EMBASE, ProQuest and Cochrane databases were searched. DATA EXTRACTION AND ANALYSIS Thirteen studies were included in this meta-analysis. Anthocyanin-rich supplementation was found to significantly improve the processing speed of the older adults (95%CI 0.08, 0.44; P = 0.004). No significant differences were observed between intervention and control groups on memory, attention, executive function and psychomotor performance. Current neuroimaging studies have found promising effects of anthocyanin supplementation on brain activation and cerebral perfusion. CONCLUSION Anthocyanin-rich supplementation may preserve cognitive processing speed and neuro-activities in older adults, which improves their daily functioning and quality of life. This review provides useful insights to guide direction and methodological designs for future studies to explore the underlying mechanisms of anthocyanins. SYSTEMATIC REVIEW AND META-ANALYSIS REGISTRATION PROSPERO registration No. CRD42021228007.
Collapse
Affiliation(s)
- Ruo Chen Feng
- is with the High-Dependency Unit, Tan Tock Seng Hospital, National Health Group, Singapore
| | - Yan Hong Dong
- are with the Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,is with the Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xian Li Hong
- is with the Medical Intensive Care Unit, Tan Tock Seng Hospital, National Health Group, Singapore
| | - Ya Su
- is with the Shanghai Jiao Tong University, School of Nursing, Shanghai, China.,is with the Faculty of Health Sciences, Hokkaido University, Japan
| | - Xi Vivien Wu
- are with the Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,is with the NUSMED Healthy Longevity Translational Research Programme, National University of Singapore, Singapore
| |
Collapse
|
19
|
Effects of Flavonoid-Rich Orange Juice Intervention on Major Depressive Disorder in Young Adults: A Randomized Controlled Trial. Nutrients 2022; 15:nu15010145. [PMID: 36615801 PMCID: PMC9823945 DOI: 10.3390/nu15010145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Many individuals are suffering from depression, and various improvements are being proposed. This study was conducted on young people diagnosed with depression and aimed to assess the effects of flavonoid-rich orange juice on the major depressive disorder (MDD) using a randomized controlled trial. In all, 40 young men and women with MDD aged 18−29 years were randomly assigned to a flavonoid-rich orange juice group (FR group) and a flavonoid-low orange cordial group (FL group). The subjects drank the corresponding juice three times a day (190 mL per bottle) for 8 weeks. The blood BDNF, zonulin, and claudin-5 levels significantly increased (p < 0.0001, p < 0.01, and p < 0.05, respectively) in the FR group, and the fatty acid binding protein 2 (FABP2) level was significantly decreased (p < 0.0001) in the FR group after the juice intervention. The FABP2, LPS, and valeric acid levels were negatively correlated with the abundance of Butyricicoccus pullicaecorum, which was higher in the FR group. Orange juice intake improved depressive symptoms in young adults with MDD in the FR group. This B. pullicaecorum can be a potential biomarker for clinical improvement in young adults with MDD patients.
Collapse
|
20
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
21
|
Flavonoids as Promising Neuroprotectants and Their Therapeutic Potential against Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6038996. [PMID: 36071869 PMCID: PMC9441372 DOI: 10.1155/2022/6038996] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is one of the serious and progressive neurodegenerative disorders in the elderly worldwide. Various genetic, environmental, and lifestyle factors are associated with its pathogenesis that affect neuronal cells to degenerate over the period of time. AD is characterized by cognitive dysfunctions, behavioural disability, and psychological impairments due to the accumulation of amyloid beta (Aβ) peptides and neurofibrillary tangles (NFT). Several research reports have shown that flavonoids are the polyphenolic compounds that significantly improve cognitive functions and inhibit or delay the amyloid beta aggregation or NFT formation in AD. Current research has uncovered that dietary use of flavonoid-rich food sources essentially increases intellectual abilities and postpones or hinders the senescence cycle and related neurodegenerative problems including AD. During AD pathogenesis, multiple signalling pathways are involved and to target a single pathway may relieve the symptoms but not provides the permanent cure. Flavonoids communicate with different signalling pathways and adjust their activities, accordingly prompting valuable neuroprotective impacts. Flavonoids likewise hamper the movement of obsessive indications of neurodegenerative disorders by hindering neuronal apoptosis incited by neurotoxic substances. In this short review, we briefly discussed about the classification of flavonoids and their neuroprotective properties that could be used as a potential source for the treatment of AD. In this review, we also highlight the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.
Collapse
|
22
|
ALNasser MN, Mellor IR, Carter WG. A Preliminary Assessment of the Nutraceutical Potential of Acai Berry ( Euterpe sp.) as a Potential Natural Treatment for Alzheimer's Disease. Molecules 2022; 27:4891. [PMID: 35956841 PMCID: PMC9370152 DOI: 10.3390/molecules27154891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
23
|
Effects of the Treatment with Flavonoids on Metabolic Syndrome Components in Humans: A Systematic Review Focusing on Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23158344. [PMID: 35955475 PMCID: PMC9369232 DOI: 10.3390/ijms23158344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Diets high in bioactive compounds, such as polyphenols, have been used to mitigate metabolic syndrome (MetS). Polyphenols are a large group of naturally occurring bioactive compounds, classified into two main classes: non-flavonoids and flavonoids. Flavonoids are distributed in foods, such as fruits, vegetables, tea, red wine, and cocoa. Studies have already demonstrated the benefits of flavonoids on the cardiovascular and nervous systems, as well as cancer cells. The present review summarizes the results of clinical studies that evaluated the effects of flavonoids on the components of the MetS and associated complications when offered as supplements over the long term. The results show that flavonoids can significantly modulate several metabolic parameters, such as lipid profile, blood pressure, and blood glucose. Only theaflavin and catechin were unable to affect metabolic parameters. Moreover, only body weight and body mass index were unaltered. Thus, the evidence presented in this systematic review offers bases in support of a flavonoid supplementation, held for at least 3 weeks, as a strategy to improve several metabolic parameters and, consequently, reduce the risk of diseases associated with MetS. This fact becomes stronger due to the rare side effects reported with flavonoids.
Collapse
|
24
|
Bari A, Shah SMM, Al-Joufi FA, Shah SWA, Shoaib M, Shah I, Zahoor M, Ahmed MN, Ghias M, Shah SMH, Khalil AAK. Effects of Artemisia macrocephala Jacquem on Memory Deficits and Brain Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Molecules 2022; 27:molecules27082399. [PMID: 35458597 PMCID: PMC9028531 DOI: 10.3390/molecules27082399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Different species of Artemisia have been reported to have therapeutic potential in treating various health disorders, including diabetes and memory dysfunction. The present study was planned to evaluate the effects of Artemisia macrocephala Jacquem crude extract and its subfractions as antiamnesic agents in streptozotocin-induced (STZ) diabetic mice. The in vivo behavioral studies were performed using the Y Maze test and novel object recognition test (NORT) test at doses of 100 and 200 mg/kg of crude extract and 75 and 150 mg/kg of fractions. The in vitro and ex vivo anticholinesterase activities, along with biochemical parameters (superoxide dismutase, catalase, glutathione and lipid peroxidation) in the brain, were evaluated. Blood glucose levels were monitored with a glucometer; crude extract and fractions reduced the glucose level considerably, with some differences in the extent of their efficacies. The crude extract and fractions demonstrated significant inhibitory activity against cholinesterases (AChE and BuChE) in vitro. Crude, chloroform and ethyl acetate extract were found to be more potent than the other fractions, with IC50 of Crd-Am = 116.36 ± 1.48 and 240.52 ± 1.35 µg/mL, Chl-Am = 52.68 ± 1.09 and 57.45 ± 1.39 µg/mL and Et-Am = 75.19 ± 1.02 and 116.58 ± 1.09 µg/mL, respectively. Oxidative stress biomarkers like superoxide dismutase, catalase and glutathione levels were elevated, whereas MDA levels were reduced by crude extract and all fractions with little difference in their respective values. The Y-maze test and novel object recognition test demonstrated declines in memory impairment in groups (n = 6) treated with crude extract and fractions as compared to STZ diabetic (amnesic) group. The most active fraction, Chl-Am, was also subjected to isolation of bioactive compounds; three compounds were obtained in pure state and designated as AB-I, AB-II and AB-III. Overall, the results of the study showed that Artemisia macrocephala Jacquem enhanced the memory impairment associated with diabetes, elevated acetylcholine levels and ameliorated oxidative stress. Further studies are needed to explore the beneficial role of the secondary metabolites isolated in the present study as memory enhancers. Toxicological aspects of the extracts are also important and need to be evaluated in other animal models.
Collapse
Affiliation(s)
- Atiqul Bari
- Department of Pharmacy, University of Swabi, Swabi 23460, Khyber Pakhtunkhwa, Pakistan; (A.B.); (S.M.M.S.)
| | | | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Aljouf, Saudi Arabia;
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (M.S.); (M.G.)
- Correspondence: (S.W.A.S.); (M.Z.)
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (M.S.); (M.G.)
| | - Ismail Shah
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (S.W.A.S.); (M.Z.)
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu & Kashmir, Muzaffarabad 13100, Azad Kashmir, Pakistan;
| | - Mehreen Ghias
- Department of Pharmacy, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (M.S.); (M.G.)
| | - Syed Muhammad Hassan Shah
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan;
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Punjab, Pakistan;
| |
Collapse
|
25
|
ALNasser MN, Mellor IR. Neuroprotective activities of acai berries (Euterpe sp.): A review. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dietary interventions rich in fruits and vegetables in aging people can reverse or mitigate age-related cognitive declines, delay the onset of neurodegenerative diseases (NDDs), and provide long-term health dividends. The novel food, popularly known as "Acai", is a berry belonging to the Euterpe genus of tropical palms trees and natively found in South America. Euterpe oleracea has been given much attention among scientists due to its high antioxidant capacity compared to other fruits and berries. Additionally, acai pulp composition analysis found that it contains various biologically active phytochemicals. In this review, we focused on current evidence relating to acai berry neuroprotection mechanisms and its efficacy in preventing or reversing neurodegeneration and age-related cognitive decline. A number of studies have illustrated the potential neuroprotective properties of acai berries. They have shown that their chemical extracts have antioxidant and anti-inflammatory properties and maintain proteins, calcium homeostasis, and mitochondrial function. Moreover, acai berry extract offers other neuromodulatory mechanisms, including anticonvulsant, antidepressant, and anti-aging properties. This neuromodulation gives valuable insights into the acai pulp and its considerable pharmacological potential on critical brain areas involved in memory and cognition. The isolated chemical matrix of acai berries could be a new substitute in research for NDD medicine development. However, due to the limited number of investigations, there is a need for further efforts to establish studies that enable progressing to clinical trials to consequently prove and ratify the therapeutic potential of this berry for several incurable NDDs.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Biological Sciences, College of Science, King Faisal University, Saudi Arabia
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Sivakumar PM, Prabhakar PK, Cetinel S, R N, Prabhawathi V. Molecular Insights on the Therapeutic Effect of Selected Flavonoids on Diabetic Neuropathy. Mini Rev Med Chem 2022; 22:1828-1846. [PMID: 35264089 DOI: 10.2174/1389557522666220309140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
One of the common clinical complications of diabetes is diabetic neuropathy affecting the nervous system. Painful diabetic neuropathy is widespread and highly prevalent. At least 50% of diabetes patients develop diabetic neuropathy eventually. The four main types of diabetic neuropathy are peripheral neuropathy, autonomic neuropathy, proximal neuropathy (diabetic polyradiculopathy), and mononeuropathy (Focal neuropathy). Glucose control remains the common therapy for diabetic neuropathy due to limited knowledge on early biomarkers that are expressed during nerve damage, thereby limiting the cure through pharmacotherapy. Glucose control dramatically reduces the onset of neuropathy in type 1 diabetes but proves less effective in type 2 diabetes. Therefore, the focus is on various herbal remedies for prevention and treatment. There is numerous research on the use of anticonvulsants and antidepressants for the management of pain in diabetic neuropathy. Extensive research is being done on natural products including the isolation of pure compounds like flavonoids from plants and their effect on diabetic neuropathy. This review focuses on the use of an important of flavonoids such as flavanols (e.g., quercetin, rutin, kaempferol, and isorhamnetin), flavanones (e.g., hesperidin, naringenin and c,lass eriodictyol), and flavones (e.g., apigenin, luteolin, tangeretin, chrysin, and diosmin) for the prevention and treatment of diabetic neuropathy. The mechanisms of action of flavonoids against diabetic neuropathy by their antioxidant, anti-inflammation, anti-glycation properties, etc. are also covered in this review article.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | | | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey.
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Neelakandan R
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India
| | - Veluchamy Prabhawathi
- Multidisciplinary Research Unit, Coimbatore Medical College, Coimbatore - 641014, Tamil Nadu, India
| |
Collapse
|
27
|
Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front Neurosci 2022; 16:833202. [PMID: 35273477 PMCID: PMC8902155 DOI: 10.3389/fnins.2022.833202] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer's disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Carol L. Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David C. Nieman
- Human Performance Lab, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
28
|
Altınok A, Karabay A, Akyürek EG. Acute effects of cocoa flavanols on visual working memory: maintenance and updating. Eur J Nutr 2022; 61:1665-1678. [PMID: 35031887 DOI: 10.1007/s00394-021-02767-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Consumption of cocoa flavanols may have acute physiological effects on the brain due to their ability to activate nitric oxide synthesis. Nitric oxide mediates vasodilation, which increases cerebral blood flow, and can also act as a neurotransmitter. OBJECTIVES This study aimed to examine whether cocoa flavanols have an acute influence on visual working memory (WM). METHODS Two separate randomised, double-blind, placebo-controlled, counterbalanced crossover experiments were conducted on normal healthy young adult volunteers (NExp1 = 48 and NExp2 = 32, gender-balanced). In these experiments, 415 mg of cocoa flavanols were administered to test their acute effects on visual working memory. In the first experiment, memory recall precision was measured in a task that required only passive maintenance of grating orientations in WM. In the second experiment, recall was measured after active updating (mental rotation) of WM contents. Habitual daily flavanols intake, body mass index, and gender were also considered in the analysis. RESULTS The results suggested that neither passive maintenance in visual WM nor active updating of WM were acutely enhanced by consumption of cocoa flavanols. Exploratory analyses with covariates (body mass index and daily flavanols intake), and the between-subjects factor of gender also showed no evidence for effects of cocoa flavanols, neither in terms of reaction time, nor accuracy. CONCLUSIONS Overall, cocoa flavanols did not improve visual working memory recall performance during maintenance, nor did it improve recall accuracy after memory updating.
Collapse
Affiliation(s)
- Ahmet Altınok
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands.
| | - Aytaç Karabay
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - Elkan G Akyürek
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| |
Collapse
|
29
|
Cahoon D, Shertukde SP, Avendano EE, Tanprasertsuk J, Scott TM, Johnson EJ, Chung M, Nirmala N. Walnut intake, cognitive outcomes and risk factors: a systematic review and meta-analysis. Ann Med 2021; 53:971-997. [PMID: 34132152 PMCID: PMC8211141 DOI: 10.1080/07853890.2021.1925955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/02/2021] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Walnuts contain nutrients that are associated with improved cognitive health. To our knowledge, no review has systematically examined the effects of walnuts on cognitive function and risk for cognitive decline. OBJECTIVE To conduct a systematic review and meta-analysis evaluating the effects of walnut intake on cognition-related outcomes and risk-factors for cognitive decline in adults. METHODS Medline®, Commonwealth Agricultural Bureau, and Cochrane Central Register of Controlled Trials were searched for randomized controlled trials (RCTs) and observational studies published until April 2020 on walnut intake, cognition (e.g. cognitive function, stroke, and mood), and selected risk factors for cognitive decline (e.g. glucose homeostasis and inflammation). Risk-of-bias and strength-of-evidence assessments were conducted using standard validated tools. Random-effects meta-analyses were conducted when ≥3 studies reported quantitative data for each outcome. RESULTS 32 RCT and 7 observational study publications were included. Meta-analysis of cognition-related outcomes could not be conducted due to heterogeneity of tests. None of the 5 cognition RCTs found significant effects of walnuts on overall cognition, although 3 studies found improvements on subdomains and/or subgroups. All 7 observational studies found significant associations and a dose-response relationship between walnut intake and cognition-related outcomes. Meta-analyses of 27 RCTs reporting glucose homeostasis and inflammation outcomes, selected risk factors for cognitive decline, did not show significant effects of walnut intake. CONCLUSIONS Due to the non-uniformity of tests for cognition-related outcomes, definitive conclusions regarding the effect of walnut consumption on cognition could not be reached. Additionally, evidence does not show associations between walnut intake and glucose homeostasis or inflammation, cognitive decline risk-factors. High-quality studies with standardized measures are needed to clarify the role of walnuts in cognitive health.KEY MESSAGESThis is a systematic review and meta-analysis of 5 randomized clinical trials and 7 observational study articles of the impact of walnut intake on cognition decline and 27 randomized clinical trials of the effect of walnut intake on risk factors for cognitive decline including glucose homeostasis and inflammation.The non-uniformity of tests performed to measure cognitive function in the various studies did not allow for a meta-analysis of these studies. A definitive conclusion could therefore not be reached regarding the effect of walnut intake on cognitive decline.The evidence available does not show an association between walnut intake and glucose homeostasis or inflammation.
Collapse
Affiliation(s)
- Danielle Cahoon
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Shruti P. Shertukde
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Esther E. Avendano
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Jirayu Tanprasertsuk
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Tammy M. Scott
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Elizabeth J. Johnson
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mei Chung
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Nanguneri Nirmala
- Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA , USA
| |
Collapse
|
30
|
A flavonoid, quercetin, is capable of enhancing long-term memory formation if encountered at different times in the learning, memory formation, and memory recall continuum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:253-265. [PMID: 34820709 DOI: 10.1007/s00359-021-01522-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
A major extrinsic factor influencing memory and neuro-cognitive performances across taxa is diet. Studies from vertebrates have shown the effects of a flavonoid rich diet on cognitive performance, but the mechanism underlying this action is still poorly understood. A common and abundant flavonoid present in numerous food substances is quercetin (Q). The present study provides the first support for Q-modulated enhancement of cognitive function in an invertebrate model, the pond snail Lymnaea stagnalis, after an operant conditioning procedure. We found that when snails were exposed to Q 3 h before or after a single 0.5 h training session, which typically results in memory lasting ~ 3 h, they formed a long-term memory (LTM) lasting for at least 24 h. Additionally, we assessed the effects of the combined presentation of a single reinforcing stimulus (at 24 h post-training or 24 h before training) and Q-exposure on both LTM formation and reconsolidation. That is, when applied within 3 h of critical periods of memory, Q regulates four different phases: (1) acquisition (i.e., a learning event), (2) consolidation processes after acquisition, (3) memory recall, and (4) memory reconsolidation. In all these phases Q-exposure enhanced LTM persistence.
Collapse
|
31
|
Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, dos Santos CN. Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients 2021; 13:2940. [PMID: 34578818 PMCID: PMC8464690 DOI: 10.3390/nu13092940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Diogo Carregosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Sara Mota
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sofia Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Beatriz Alves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Natasa Loncarevic-Vasiljkovic
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Carolina Lage Crespo
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Cláudia Nunes dos Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
32
|
Bielory L, Tabliago NRA. Flavonoid and cannabinoid impact on the ocular surface. Curr Opin Allergy Clin Immunol 2021; 20:482-492. [PMID: 32796166 DOI: 10.1097/aci.0000000000000673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW To evaluate the impact of flavonoids and cannabinoids as anti-inflammatory and antiallergic treatments on the anterior surface of the eye. RECENT FINDINGS Allergic conjunctivitis and dry eye syndrome are common ocular surface diseases that have been treated with traditional pharmacological measures, e.g. corticosteroids, antihistamines. Given the side-effect profiles of these medications and the growing interest in complementary treatment modalities as part of integrative medical interventions, well known flavonoids, such as quercetin and catechin, are under investigation for topical and systemic application methods for relief. As flavonoid derivatives, pycnogenol and epigallocatechin gallate have alleviated dry eye symptoms, including lacrimal gland inflammation, tear secretion, and the stability of the tear film. Research on ocular cannabinoid receptors and response to synthetic cannabinoids are also being considered for therapy of anterior ocular disorders. The expansion of herbal formulations provides a framework for future treatment regimens for ocular surface disorders. SUMMARY Flavonoids and cannabinoids show promise as potential complementary treatment for allergic diseases because of their anti-inflammatory and antiallergic properties. Several studies implementing ocular and systemic application of these compounds show potential in becoming adjuvant treatment strategies for improving quality of life while also managing ocular surface disease processes.
Collapse
Affiliation(s)
- Leonard Bielory
- Professor of Medicine, Allergy, Immunology and Ophthalmology, Hackensack Meridian School of Medicine, Springfield
| | - Nikko Rowe A Tabliago
- Overlook Medical Center, Atlantic Health System, St. George's University Medical School, Summit, New Jersey, USA
| |
Collapse
|
33
|
Bird RJ, Hoggard N, Aceves-Martins M. The effect of grape interventions on cognitive and mental performance in healthy participants and those with mild cognitive impairment: a systematic review of randomized controlled trials. Nutr Rev 2021; 80:367-380. [PMID: 34041549 PMCID: PMC8829676 DOI: 10.1093/nutrit/nuab025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 11/23/2022] Open
Abstract
Context The prevalence of cognitive and mental health disorders are growing, and existing drug therapies do not treat the underlying cause. Grapes are a flavonoid-rich soft fruit and may therefore be beneficial to cognitive and mental health. Objective To systematically review evidence from randomized controlled trials investigating the acute and chronic effects of grape interventions on measures of cognition and mood in healthy participants and those with mild cognitive impairment. Data Sources MEDLINE, The Cochrane Library and EMBASE were searched. Data Extraction and Analysis Eight studies met the inclusion criteria: one considered acute interventions, 6 assessed chronic effects, and one assessed acute and chronic effects of grapes. The chronic studies found improvements in some cognitive domains (eg, memory, motor skills, or executive function). Acute studies found no consistent effect on memory but saw improvements in reaction time. Conclusions Differences in study design, dosages, and outcome tests hindered between-study comparison. Even so, the results across studies show that grapes can enhance some aspects of cognition, after both acute and chronic interventions. Systematic Review Registration PROSPERO registration no. CRD42020193062.
Collapse
Affiliation(s)
- Rachel Jayne Bird
- R.J. Bird and N. Hoggard are with the Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom. M. Aceves-Martins is with the Health Services Research Unit, University of Aberdeen, Aberdeen, United Kingdom
| | - Nigel Hoggard
- R.J. Bird and N. Hoggard are with the Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom. M. Aceves-Martins is with the Health Services Research Unit, University of Aberdeen, Aberdeen, United Kingdom
| | - Magaly Aceves-Martins
- R.J. Bird and N. Hoggard are with the Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom. M. Aceves-Martins is with the Health Services Research Unit, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
34
|
El-Hawwary SS, Abd Almaksoud HM, Saber FR, Elimam H, Sayed AM, El Raey MA, Abdelmohsen UR. Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling. RSC Adv 2021; 11:18009-18025. [PMID: 35480186 PMCID: PMC9033216 DOI: 10.1039/d1ra01725j] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, the biosynthesis of metal nanoparticles, particularly from plants, has been gaining interest. In the present work, the methanolic extracts of leaves, fruits, and the pollen grains of Sabal blackburniana were used for the green synthesis of ZnO nanoparticles, which were early detected by the formation of precipitate and further confirmed by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy and zeta potential (ZP) studies. TEM analysis has shown different shapes, predominantly irregular small spherical narrow particles included in hexagonal structures with size ranging from 2.23 to 49.56 nm. The XRD pattern confirmed that all synthesized ZnO nanoparticles have wurtzite hexagonal structure with crystalline nature. The average particle crystallite sizes were 47.21, 47.67 and 47.8 nm. The UV-visible spectra showed λ max in the range of 354-368 nm, which indicated the presence of ZnO nanoparticles. The FT-IR analysis identifies the characteristic functional groups present on the surface of ZnO nanoparticles. The ZP determination demonstrated that all representative selected synthesized ZnONPs exhibited acceptable ZP values of -30.8 to -45.9 mV, which indicated their good stability. In addition, the anti-Alzheimer potential of the selected extracts and ZnONPs was evaluated by assessing acetylcholinesterase inhibitory activity in vitro according to the improved Ellman method. The results indicated that the selected extracts have acetylcholinesterase inhibitory activity, and highlighted the promising inhibitory potential of green-synthesized ZnONPs using pollen grains, fruits and leaves extracts; they exhibited a potent inhibitory effect with IC50 values 63.78 ± 1.04651, 81.985 ± 3.075 and 117.95 ± 6.858 ng ml-1 respectively in comparison to donepezil as standard (IC50 = 50.7 ± 5.769 ng ml-1). Dereplication analysis of the selected extracts was performed using LC-MS; metabolic profiling revealed the presence of 41 compounds belonging to various chemical classes: flavonoids, steroidal saponins, terpenoids, alkaloids, lignans, sterols and fatty acids. Docking these dereplicated metabolites against the human AChE showed that the non-glycosylated flavonoid class of compounds was able to achieve interesting binding modes inside the AChE active site; they are suggested to be associated with the observed anti-AChE activity of Sabal extracts. This study is the first report to shed light on the acetylcholinesterase inhibitory activity of green-synthesized ZnO nanoparticles of S. blackburniana metabolites.
Collapse
Affiliation(s)
- Seham S El-Hawwary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | | | - Fatema R Saber
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City Sadat City 32897 Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Mohamed A El Raey
- Phytochemistry and Plant systematics Department, Pharmaceutical Division, National Research Centre Dokki Cairo Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone, 61111 New Minia City Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| |
Collapse
|
35
|
Yang W, Cui K, Li X, Zhao J, Zeng Z, Song R, Qi X, Xu W. Effect of Polyphenols on Cognitive Function: Evidence from Population-Based Studies and Clinical Trials. J Nutr Health Aging 2021; 25:1190-1204. [PMID: 34866146 DOI: 10.1007/s12603-021-1685-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Due to progressive population aging, a new dementia case occurs at every 3 seconds, placing a heavy burden of disease. Identifying potential risk or preventive factors is emphasized owing to a lack of effective treatment for dementia. There has been emerging evidence on the link of certain dietary components, particularly polyphenols, to brain wellness and cognitive outcomes. Findings from animal and in vitro studies appear more consistent and conclusive. However, such an association has not been investigated in depth in human beings. In this review, we examined studies on the effect of dietary polyphenols (including flavonoids, curcumin, and resveratrol) on cognitive function. Intervention in early stages of dementia/Alzheimer's disease might be a target to slow down age-related cognitive decline before disease onset. We summarized 28 epidemiological studies (8 cross-sectional and 20 cohort studies) and 55 trials in this review. Preliminary evidence from epidemiological data provides the necessity for intervention trials, even though the measures of polyphenol intake tend to be less precise. Clinical trials are in favor of the role of some polyphenols in benefiting specific domains of cognition. This review also describes the divergence of results and current limitations of research in this field.
Collapse
Affiliation(s)
- W Yang
- Weili Xu and Xiuying Qi, Professors, Dept. of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China, Qixiangtai Road 22, Heping District, 300070, Tianjin, PR, China, ; ; Weili Xu, Associate Professor and Senior Researcher, Aging Research Center, Karolinska Institutet, Tomtebodavägen 18A Floor 10, SE-171 65 Solna, Stockholm, Sweden, Phone: +46 8 524 858 26;
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bento C, Gonçalves AC, Silva B, Silva LR. Peach (Prunus Persica): Phytochemicals and Health Benefits. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Catarina Bento
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C. Gonçalves
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Branca Silva
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Luís R. Silva
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- LEPABE – Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Flavonoid-Rich Orange Juice Intake and Altered Gut Microbiome in Young Adults with Depressive Symptom: A Randomized Controlled Study. Nutrients 2020; 12:nu12061815. [PMID: 32570775 PMCID: PMC7353347 DOI: 10.3390/nu12061815] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
Depression is not just a general mental health problem but a serious medical illness that can worsen without treatment. The gut microbiome plays a major role in the two-way communication system between the intestines and brain. The current study examined the effects of flavonoids on depression by observing the changes in the gut microbiome and depressive symptoms of young participants consuming flavonoid-rich orange juice. The depressive symptom was assessed using the Center for Epidemiological Studies Depression Scale (CES-D), a psychiatric screening tool used to detect preexisting mental disorders. The study population was randomly divided into two groups: the flavonoid-rich orange juice (FR) and an equicaloric flavonoid-low orange cordial (FL) group. For 8 weeks, participants consumed FR (serving a daily 380 mL, 600 ± 5.4 mg flavonoids) or FL (serving a daily 380 mL, 108 ± 2.6 mg flavonoids). In total, 80 fecal samples from 40 participants (mean age, 21.83 years) were sequenced. Regarding depression, we observed positive correlations between brain-derived neurotrophic factor (BDNF) and the Lachnospiraceae family (Lachnospiraceae_uc and Murimonas) before flavonoid orange juice treatment. Most notably, the abundance of the Lachnospiraceae family (Lachnospiraceae_uc, Eubacterium_g4, Roseburia_uc, Coprococcus_g2_uc, Agathobacter_uc) increased after FR treatment compared to that after FL treatment. We also validated the presence of unclassified Lachnospiraceae through sensitive real-time quantitative polymerase chain reaction using stool samples from participants before and after flavonoid treatment. Our results provide novel interventional evidence that alteration in the microbiome due to flavonoid treatment is related to a potential improvement in depression in young adults.
Collapse
|
38
|
Barrera-Reyes PK, de Lara JCF, González-Soto M, Tejero ME. Effects of Cocoa-Derived Polyphenols on Cognitive Function in Humans. Systematic Review and Analysis of Methodological Aspects. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:1-11. [PMID: 31933112 DOI: 10.1007/s11130-019-00779-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of cocoa-derived polyphenols on cognitive functions have been analyzed through numerous studies using different interventions (doses, vehicles, time frame, cognition tests, and characteristics of participants) which may hamper the interpretation and comparison of findings across investigations. Thus, a systematic review was conducted to analyze the effects of cocoa-derived polyphenols intake on human cognition and discuss the methodological aspects that may contribute to the heterogeneity of findings. Randomized clinical trials evaluating the effect of cocoa polyphenols on cognitive function in healthy subjects were selected according to selection criteria. Twelve studies were selected. Quality was assessed according to the Cochrane risk for bias tool. The most common risk for bias was the lack of information about the sequence generation process. Effects on cognitive function were observed after consumption of 50 mg/day of (-)-epicatechin and in studies using a component-matched placebo and cocoa as the polyphenol vehicle given to healthy adults (18-50 years). Memory (n = 5) and executive function (n = 4) showed the most significant effects with medium and large effect sizes after intake of intermediate doses of cocoa flavanols (500-750 mg/day). Overall, this set of studies suggest a positive effect of cocoa polyphenols on memory and executive function. However, the available evidence is very diverse and future studies may address the identified sources of variation to strengthen current evidence on this promising field.
Collapse
Affiliation(s)
- Paloma K Barrera-Reyes
- Laboratory of Nutrigenomics and Nutrigenetics, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col Arenal Tepepan, CP 016000, Ciudad de México, DF, Mexico
| | - Josué Cortés-Fernández de Lara
- Laboratory of Nutrigenomics and Nutrigenetics, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col Arenal Tepepan, CP 016000, Ciudad de México, DF, Mexico
| | - Melissa González-Soto
- Laboratory of Nutrigenomics and Nutrigenetics, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col Arenal Tepepan, CP 016000, Ciudad de México, DF, Mexico
| | - M Elizabeth Tejero
- Laboratory of Nutrigenomics and Nutrigenetics, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col Arenal Tepepan, CP 016000, Ciudad de México, DF, Mexico.
| |
Collapse
|
39
|
Carregosa D, Carecho R, Figueira I, N Santos C. Low-Molecular Weight Metabolites from Polyphenols as Effectors for Attenuating Neuroinflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1790-1807. [PMID: 31241945 DOI: 10.1021/acs.jafc.9b02155] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Age-associated pathophysiological changes such as neurodegenerative diseases are multifactorial conditions with increasing incidence and no existing cure. The possibility of altering the progression and development of these multifactorial diseases through diet is an attractive approach with increasing supporting data. Epidemiological and clinical studies have highlighted the health potential of diets rich in fruits and vegetables. Such food sources are rich in (poly)phenols, natural compounds increasingly associated with health benefits, having the potential to prevent or retard the development of various diseases. However, absorption and the blood concentration of (poly)phenols is very low when compared with their corresponding (poly)phenolic metabolites. Therefore, these serum-bioavailable metabolites are much more promising candidates to overcome cellular barriers and reach target tissues, such as the brain. Bearing this in mind, it will be reviewed that the molecular mechanisms underlying (poly)phenolic metabolites effects, range from 0.1 to <50 μM and their role on neuroinflammation, a central hallmark in neurodegenerative diseases.
Collapse
Affiliation(s)
- Diogo Carregosa
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
- iBET , Instituto de Biologia Experimental e Tecnológica , Avenida da República, Apartado 12 , 2781-901 Oeiras , Portugal
| | - Rafael Carecho
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
- Instituto de Tecnologia Química e Biológica António Xavier , Universidade NOVA de Lisboa , Avenida da República , 2780-157 Oeiras , Portugal
| | - Inês Figueira
- iBET , Instituto de Biologia Experimental e Tecnológica , Avenida da República, Apartado 12 , 2781-901 Oeiras , Portugal
- Instituto de Tecnologia Química e Biológica António Xavier , Universidade NOVA de Lisboa , Avenida da República , 2780-157 Oeiras , Portugal
| | - Cláudia N Santos
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
- iBET , Instituto de Biologia Experimental e Tecnológica , Avenida da República, Apartado 12 , 2781-901 Oeiras , Portugal
- Instituto de Tecnologia Química e Biológica António Xavier , Universidade NOVA de Lisboa , Avenida da República , 2780-157 Oeiras , Portugal
| |
Collapse
|
40
|
Philip P, Sagaspe P, Taillard J, Mandon C, Constans J, Pourtau L, Pouchieu C, Angelino D, Mena P, Martini D, Del Rio D, Vauzour D. Acute Intake of a Grape and Blueberry Polyphenol-Rich Extract Ameliorates Cognitive Performance in Healthy Young Adults During a Sustained Cognitive Effort. Antioxidants (Basel) 2019; 8:antiox8120650. [PMID: 31861125 PMCID: PMC6943592 DOI: 10.3390/antiox8120650] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
Despite an increasing level of evidence supporting the individual beneficial effect of polyphenols on cognitive performance, information related to the potential synergistic action of these phytonutrients on cognitive performance during a prolonged cognitive effort is currently lacking. This study investigated the acute and sustained action of a polyphenols-rich extract from grape and blueberry (PEGB), on working memory and attention in healthy students during a prolonged and intensive cognitive effort. In this randomised, cross-over, double blind study, 30 healthy students consumed 600 mg of PEGB or a placebo. Ninety minutes after product intake, cognitive functions were assessed for one hour using a cognitive demand battery including serial subtraction tasks, a rapid visual information processing (RVIP) task and a visual analogical scale. Flow-mediated dilation (FMD) and plasma flavan-3-ols metabolites quantification were also performed. A 2.5-fold increase in serial three subtraction variation net scores was observed following PEGB consumption versus placebo (p < 0.001). A trend towards significance was also observed with RVIP percentage of correct answers (p = 0.058). No treatment effect was observed on FMD. Our findings suggest that consumption of PEGB coupled with a healthy lifestyle may be a safe alternative to acutely improve working memory and attention during a sustained cognitive effort.
Collapse
Affiliation(s)
- Pierre Philip
- Pôle Neurosciences Cliniques, Centre Hospitalier Universitaire de Bordeaux, F-33076 Bordeaux, France; (P.P.); (P.S.)
- Sommeil, Addiction et NeuroPSYchiatrie, Université de Bordeaux, CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France;
- Centre d’Investigation Clinique Bordeaux, INSERM CIC 1401, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France
| | - Patricia Sagaspe
- Pôle Neurosciences Cliniques, Centre Hospitalier Universitaire de Bordeaux, F-33076 Bordeaux, France; (P.P.); (P.S.)
- Sommeil, Addiction et NeuroPSYchiatrie, Université de Bordeaux, CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France;
| | - Jacques Taillard
- Sommeil, Addiction et NeuroPSYchiatrie, Université de Bordeaux, CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France;
| | - Claire Mandon
- Vascular Medicine Service, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France; (C.M.); (J.C.)
| | - Joël Constans
- Vascular Medicine Service, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France; (C.M.); (J.C.)
| | - Line Pourtau
- Activ’Inside, F-33750 Beychac et Caillau, France; (L.P.); (C.P.)
| | - Camille Pouchieu
- Activ’Inside, F-33750 Beychac et Caillau, France; (L.P.); (C.P.)
| | - Donato Angelino
- Department of Food & Drugs, University of Parma, 43125 Parma, Italy; (D.A.); (P.M.)
| | - Pedro Mena
- Department of Food & Drugs, University of Parma, 43125 Parma, Italy; (D.A.); (P.M.)
| | - Daniela Martini
- Department of Veterinary Science, University of Parma, 43125 Parma, Italy; (D.M.); (D.D.R.)
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, 43125 Parma, Italy; (D.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Correspondence: ; Tel.: +44-1603-591-732
| |
Collapse
|
41
|
The ameliorative effects of myricetin on neurobehavioral activity, electrophysiology, and biochemical changes in an animal model of traumatic brain injury. LEARNING AND MOTIVATION 2019. [DOI: 10.1016/j.lmot.2019.101597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Cognitive Function and Consumption of Fruit and Vegetable Polyphenols in a Young Population: Is There a Relationship? Foods 2019; 8:foods8100507. [PMID: 31627296 PMCID: PMC6836211 DOI: 10.3390/foods8100507] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Scientific evidence has shown the relationship between consumption of fruits and vegetables and their polyphenols with the prevention or treatment of diseases. The aim of this review was to find out whether the same relationship exists between fruits and vegetables and cognitive function, especially memory, in a young population. The mechanisms by which polyphenols of fruits and vegetables can exert cognitive benefits were also evaluated. These compounds act to improve neuronal plasticity through the protein CREB (Camp Response Element Binding) in the hippocampus, modulating pathways of signaling and transcription factors (ERK/Akt). In the same way, brain-derived neurotrophic factor (BDNF) is implicated in the maintenance, survival, growth, and differentiation of neurons. All these effects are produced by an increase of cerebral blood flow and an increase of the blood’s nitric oxide levels and oxygenation.
Collapse
|
43
|
Abstract
Flavonoids are a group of polyphenolic dietary compounds found in many different plant-based foods. There is increasing evidence that higher flavonoid intake may be causally linked to a reduced risk of cardiovascular disease and other chronic diseases. The bioactivity and bioavailability of many dietary flavonoids can be influenced by gastrointestinal microbiome metabolism. However, the role that habitual flavonoid intake plays in shaping the human gut microbiome is poorly understood. We describe an application of an ecosystem-based analytic approach to nutritional, microbiome, and questionnaire data from a cohort of more than 240 generally healthy adult males to assess the role of dietary flavonoid compounds in driving patterns of microbial community assembly. We identified six subclass-specific microbial communities (SMCs) uniquely and independently associated with intakes of the six flavonoid subclasses. Eggerthela lenta was positively associated with intakes of flavonol and flavanone, and Adlercreutzia equolifaciens was positively associated with intakes of flavonols and flavanol monomers. In contrast, for nearly all flavonoid subclasses, Flavonifractor plautii was inversely associated with subclass consumption. Consuming tea at least once per week explained 10.4% of the total variance in assembly of the 20 species comprising the flavanol monomer SMC. The novel methodology employed, necessitated by multidimensional microbiome data that consist of nonindependent features that exhibit a wide range of distributions and mean values, addresses a major challenge in our ability to understand associations of the microbiome in a wide range of clinical and epidemiologic settings.IMPORTANCE Dietary flavonoids, which have been implicated in lowering chronic disease risk and improving blood pressure, represent a diverse group of polyphenolic compounds found in many commonly consumed foods such as tea, red wine, apples, and berries. The bioactivity and bioavailability of more dietary flavonoids can be influenced by gastrointestinal microbiome metabolism. With demonstrated prebiotic and antimicrobial effects in in vitro and in animal models, it is surprising that there are not many human studies investigating the role dietary flavonoids play in shaping the gastrointestinal microbiome. Our analysis revealed patterns of community assembly that uniquely and independently characterize an individual's exposure to various flavonoid compounds. Furthermore, this study confirmed, independent from effects of other dietary and lifestyle factors included in the multivariate-adjusted model, that flavonoid intake is associated with microbial community assembly.
Collapse
|
44
|
Dodd GF, Williams CM, Butler LT, Spencer JP. Acute effects of flavonoid-rich blueberry on cognitive and vascular function in healthy older adults. ACTA ACUST UNITED AC 2019. [DOI: 10.3233/nha-180056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Georgina F. Dodd
- Department of Food and Nutritional Sciences, Hugh Sinclair Unit of Human Nutrition, School of Chemistry, Food & Pharmacy, University of Reading, Berkshire, UK
- Department of Psychology, School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| | - Claire M. Williams
- Department of Psychology, School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| | - Laurie T. Butler
- Department of Psychology, School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| | - Jeremy P.E. Spencer
- Department of Food and Nutritional Sciences, Hugh Sinclair Unit of Human Nutrition, School of Chemistry, Food & Pharmacy, University of Reading, Berkshire, UK
| |
Collapse
|
45
|
Francis HM, Stevenson RJ. Potential for diet to prevent and remediate cognitive deficits in neurological disorders. Nutr Rev 2019; 76:204-217. [PMID: 29346658 DOI: 10.1093/nutrit/nux073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pathophysiology of many neurological disorders involves oxidative stress, neuroinflammation, and mitochondrial dysfunction. There is now substantial evidence that diet can decrease these forms of pathophysiology, and an emerging body of literature relatedly suggests that diet can also prevent or even remediate the cognitive deficits observed in neurological disorders that exhibit such pathology (eg, Alzheimer's disease, multiple sclerosis, age-related cognitive decline, epilepsy). The current review summarizes the emerging evidence in relation to whole diets prominent in the scientific literature-ketogenic, caloric restriction, high polyphenol, and Mediterranean diets-and provides a discussion of the possible underlying neurophysiological mechanisms.
Collapse
Affiliation(s)
- Heather M Francis
- Psychology Department, Faculty of Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Richard J Stevenson
- Psychology Department, Faculty of Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
46
|
Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front Aging Neurosci 2019; 11:155. [PMID: 31293414 PMCID: PMC6606780 DOI: 10.3389/fnagi.2019.00155] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich foods significantly improve cognitive capabilities, inhibit or delay the senescence process and related neurodegenerative disorders including Alzheimer’s disease (AD). The flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the various states of cognitive dysfunction, AD and dementia-like pathological alterations in different animal models. The mechanisms of flavonoids have been shown to be mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation of signaling pathways, that are implicated in cognitive and neuroprotective functions. Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt and modulate their actions, thereby leading to beneficial neuroprotective effects. Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in the hippocampus. Flavonoids also hamper the progression of pathological symptoms of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic substances including free radicals and β-amyloid proteins (Aβ). All these protective mechanisms contribute to the maintenance of number, quality of neurons and their synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-related disorders and can be a potential source for the design and development of new drugs effective in cognitive disorders.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ikram Ullah
- Suliman Bin Abdullah Aba-Alkhail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| |
Collapse
|
47
|
Naoi M, Shamoto-Nagai M, Maruyama W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In neurodegenerative disorders, including Alzheimer's and Parkinson's disease, neuroprotection by diet and natural bioactive compounds has been proposed to prevent the onset and progress of neurodegeneration by modification of pathogenic factors. Plant food-derived phytochemicals protect neurons via targeting oxidative stress, mitochondrial dysfunction, neurotrophic factor deficit, apoptosis and abnormal protein accumulation. This review presents the molecular mechanism of neuroprotection by phytochemicals: direct regulation of mitochondrial apoptotic machinery, modification of cellular signal pathways, induction of antiapoptotic Bcl-2 protein family and prosurvival neurotrophic factors, such as brain- and glial cell line-derived neurotrophic factor, and prevention of protein aggregation. Multitargeted neuroprotective agents are under development based on the structure of blood–brain barrier-permeable phytochemicals to ameliorate brain dysfunction and prevent neurodegeneration.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Masayo Shamoto-Nagai
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Wakako Maruyama
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
48
|
Biochemical deficits and cognitive decline in brain aging: Intervention by dietary supplements. J Chem Neuroanat 2019; 95:70-80. [DOI: 10.1016/j.jchemneu.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023]
|
49
|
Walsh EI, Cherbuin N. Mapping the Literature on Nutritional Interventions in Cognitive Health: A Data-Driven Approach. Nutrients 2018; 11:nu11010038. [PMID: 30586933 PMCID: PMC6356193 DOI: 10.3390/nu11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
Manual review of the extensive literature covering nutrition-based lifestyle interventions to promote healthy cognitive ageing has proved educational, however, data-driven techniques can better account for the large size of the literature (tens of thousands of potentially relevant publications to date) and interdisciplinary nature, where relevant publications may be found. In this study, we present a new way to map the literature landscape, focusing on nutrition-based lifestyle interventions to promote healthy cognitive ageing. We applied a combination of citation network analysis and text mining to map out the existing literature on nutritional interventions and cognitive health. Results indicated five overarching clusters of publications, which could be further deconstructed into a total of 35 clusters. These could be broadly distinguished by the focus on lifespan stages (e.g., infancy versus older age), and specificity regarding nutrition (e.g., a narrow focus on iodine deficiency versus a broad focus on weight gain). Rather than concentrating into a single cluster, interventions were present throughout the majority of the research. We conclude that a data-driven map of the nutritional intervention literature can benefit the design of future interventions, by highlighting topics and themes that could be synthesized across currently disconnected clusters of publications.
Collapse
Affiliation(s)
- Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra 0200, Australia.
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra 0200, Australia.
| |
Collapse
|
50
|
A pilot dose-response study of the acute effects of haskap berry extract (Lonicera caerulea L.) on cognition, mood, and blood pressure in older adults. Eur J Nutr 2018; 58:3325-3334. [PMID: 30535796 PMCID: PMC6842388 DOI: 10.1007/s00394-018-1877-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/03/2018] [Indexed: 11/29/2022]
Abstract
Purpose Haskap (Lonicera caerulea L. or blue honeysuckle) is a plant native to the low-lying wet areas and mountains of Siberia and northeastern Asia, but is now cultivated in Canada. The dark blue berries are rich in anthocyanins, particularly cyanidin-3-O-glucoside. Previously, anthocyanin-rich fruits have been observed to benefit cognitive performance during the immediate postprandial period following a single acute dose. However, no study has currently examined the potential for haskap berries to influence cognitive performance. Here, we investigate the acute cognitive benefits of an anthocyanin-rich haskap berry extract. Methods A double-blind, counterbalanced, crossover intervention study compared the acute effects of three separate haskap berry extract doses, containing 100 mg, 200 mg, and 400 mg anthocyanins, with a sugar-matched placebo. Participants were an opportunity sample of 20 older adults, aged 62–81 years. Measures of cognition, mood, and blood pressure were recorded at baseline and 1.5 h postprandially. Results Compared to placebo, the 400 mg dose elicited significantly lower diastolic blood pressure and heart rate. Both 200 mg and 400 mg doses elicited significantly higher word recall, with the 400 mg dose also significantly improving word recognition scores, on an episodic memory task. However, mood, working memory and executive function task results were more equivocal. Conclusions The findings provide evidence for improvements in episodic memory and blood pressure following acute supplementation with haskap berry extract, with higher doses appearing most effective. The cognitive findings concur with previous literature that suggests episodic memory effects, and not executive function effects, are most prevalent in older adults following anthocyanin-rich berry supplementation. The blood pressure outcome is consistent with a vasodilatory mechanism of action.
Collapse
|