1
|
Jin Z, Cao J, Liu Z, Gao M, Liu H. Comprehensive profiling of candidate biomarkers and immune infiltration landscape in metabolic dysfunction-associated steatohepatitis. Metabol Open 2025; 26:100366. [PMID: 40292075 PMCID: PMC12032907 DOI: 10.1016/j.metop.2025.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Background The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is increasing, with an incompletely understood pathophysiology involving multiple factors, particularly innate and adaptive immune responses. Given the limited pharmacological treatments available, identification of novel immune metabolic targets is urgently needed. In this study, we aimed to identify hub immune-related genes and potential biomarkers with diagnostic and predictive value for MASH patients. Methods The GSE164760 dataset from the Gene Expression Omnibus was utilized for analysis, and the R package was used to identify differentially expressed genes. Immune-related differentially expressed genes (IR-DEGs) were identified by comparing the overlap of differentially expressed genes with well-known immune-related genes. Furthermore, the biological processes and molecular functions of the IR-DEGs were analyzed. To characterize the hub IR-DEGs, we employed a protein-protein interaction network. The diagnostic and predictive values of these hub IR-DEGs in MASH were confirmed using GSE48452 and GSE63067 datasets. Finally, the significance of the hub IR-DEGs was validated using a mouse model of MASH. Results A total of 91 IR-DEGs were identified, with 61 upregulated and 30 downregulated genes. Based on the protein-protein interaction network, FN1, RHOA, FOS, PDGFRα, CCND1, PIK3R1, CSF1, and FGF3 were identified as the hub IR-DEGs. Moreover, we found that these hub genes are closely correlated with immune cells. Notably, the validation across two independent cohorts as well as a murine MASH model confirmed their high diagnostic potential. Conclusion The hub IR-DEGs, such as FN1, RHOA, FOS, PDGFRα, CCND1, PIK3R1, CSF1, and FGF3, may enhance the diagnosis and prognosis of MASH by modulating immune homeostasis.
Collapse
Affiliation(s)
- Zhangliu Jin
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jianyun Cao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, China
| | - Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Mei Gao
- Department of Pharmacy, Anhui Chest Hospital, Hefei, Anhui, 230000, China
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
2
|
Kim JB, Kim SJ, So M, Kim DK, Noh HR, Kim BJ, Choi YR, Kim D, Koo H, Kim T, Woo HG, Park SM. Artificial intelligence-driven drug repositioning uncovers efavirenz as a modulator of α-synuclein propagation: Implications in Parkinson's disease. Biomed Pharmacother 2024; 174:116442. [PMID: 38513596 DOI: 10.1016/j.biopha.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder with an unclear etiology. Despite significant research efforts, developing disease-modifying treatments for PD remains a major unmet medical need. Notably, drug repositioning is becoming an increasingly attractive direction in drug discovery, and computational approaches offer a relatively quick and resource-saving method for identifying testable hypotheses that promote drug repositioning. We used an artificial intelligence (AI)-based drug repositioning strategy to screen an extensive compound library and identify potential therapeutic agents for PD. Our AI-driven analysis revealed that efavirenz and nevirapine, approved for treating human immunodeficiency virus infection, had distinct profiles, suggesting their potential effects on PD pathophysiology. Among these, efavirenz attenuated α-synuclein (α-syn) propagation and associated neuroinflammation in the brain of preformed α-syn fibrils-injected A53T α-syn Tg mice and α-syn propagation and associated behavioral changes in the C. elegans BiFC model. Through in-depth molecular investigations, we found that efavirenz can modulate cholesterol metabolism and mitigate α-syn propagation, a key pathological feature implicated in PD progression by regulating CYP46A1. This study opens new avenues for further investigation into the mechanisms underlying PD pathology and the exploration of additional drug candidates using advanced computational methodologies.
Collapse
Affiliation(s)
- Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Soo-Jeong Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | | | - Dong-Kyu Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | - Hye Rin Noh
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Beom Jin Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Yu Ree Choi
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | - Doyoon Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | | | | | - Hyun Goo Woo
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
3
|
Luo Y, Woodie LN, Graff EC, Zhang J, Fowler S, Wang X, Wang X, O'Neill AM, Greene MW. Role of liquid fructose/sucrose in regulating the hepatic transcriptome in a high-fat Western diet model of NAFLD. J Nutr Biochem 2023; 112:109174. [PMID: 36280127 DOI: 10.1016/j.jnutbio.2022.109174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.
Collapse
Affiliation(s)
| | | | - Emily C Graff
- Department of Pathobiology; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | | | | | | | - Xu Wang
- Department of Pathobiology; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Michael W Greene
- Department of Nutritional Sciences; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
4
|
Zhu T, Zhang L, Li C, Tan X, Liu J, Huiqin Li, Fan Q, Zhang Z, Zhan M, Fu L, Luo J, Geng J, Wu Y, Zou X, Liang B. The S100 calcium binding protein A11 promotes liver fibrogenesis by targeting TGF-β signaling. J Genet Genomics 2022; 49:338-349. [PMID: 35240304 DOI: 10.1016/j.jgg.2022.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
Liver fibrosis is a key transformation stage and also a reversible pathological process in various types of chronic liver diseases. However, the pathogenesis of liver fibrosis still remains elusive. Here, we report that the calcium binding protein A11 (S100A11) is consistently upregulated in the integrated data from GSE liver fibrosis and tree shrew liver proteomics. S100A11 is also experimentally activated in liver fibrosis in mouse, rat, tree shrew, and human with liver fibrosis. While overexpression of S100A11 in vivo and in vitro exacerbates liver fibrosis, the inhibition of S100A11 improves liver fibrosis. Mechanistically, S100A11 activates hepatic stellate cells (HSCs) and the fibrogenesis process via the regulation of the deacetylation of Smad3 in the TGF-β signaling pathway. S100A11 physically interacts with SIRT6, a deacetylase of Smad2/3, which may competitively inhibit the interaction between SIRT6 and Smad2/3. The subsequent release and activation of Smad2/3 promote the activation of HSCs and fibrogenesis. Additionally, a significant elevation of S100A11 in serum is observed in clinical patients. Our study uncovers S100A11 as a novel profibrogenic factor in liver fibrosis, which may represent both a potential biomarker and a promising therapy target for treating liver fibrosis and fibrosis-related liver diseases.
Collapse
Affiliation(s)
- Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiaoqiong Tan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jing Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Huiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Qijing Fan
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mingfeng Zhan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Jinbo Luo
- Infectious Diseases Department and Hepatic Diseases Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Infectious Diseases Department and Hepatic Diseases Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650034, China
| | - Jiawei Geng
- Infectious Diseases Department and Hepatic Diseases Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Infectious Diseases Department and Hepatic Diseases Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650034, China.
| | - Yingjie Wu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center,Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xiaoju Zou
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China.
| |
Collapse
|
5
|
Zhang L, Zhu T, Miao H, Liang B. The Calcium Binding Protein S100A11 and Its Roles in Diseases. Front Cell Dev Biol 2021; 9:693262. [PMID: 34179021 PMCID: PMC8226020 DOI: 10.3389/fcell.2021.693262] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
The calcium binding protein S100 family in humans contains 21 known members, with each possessing a molecular weight between 10 and 14 kDa. These proteins are characterized by a unique helix-loop-helix EF hand motif, and often form dimers and multimers. The S100 family mainly exists in vertebrates and exerts its biological functions both inside cells as a calcium sensor/binding protein, as well as outside cells. S100A11, a member of the S100 family, may mediate signal transduction in response to internal or external stimuli and it plays various roles in different diseases such as cancers, metabolic disease, neurological diseases, and vascular calcification. In addition, it can function as chemotactic agent in inflammatory disease. In this review, we first detail the discovery of S100 proteins and their structural features, and then specifically focus on the tissue and organ expression of S100A11. We also summarize its biological activities and roles in different disease and signaling pathways, providing an overview of S100A11 research thus far.
Collapse
Affiliation(s)
- Linqiang Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of General Surgery, Dongguan Liaobu Hospital, Dongguan, China
| | - Bin Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Zhang L, Zhang Z, Li C, Zhu T, Gao J, Zhou H, Zheng Y, Chang Q, Wang M, Wu J, Ran L, Wu Y, Miao H, Zou X, Liang B. S100A11 Promotes Liver Steatosis via FOXO1-Mediated Autophagy and Lipogenesis. Cell Mol Gastroenterol Hepatol 2020; 11:697-724. [PMID: 33075563 PMCID: PMC7841444 DOI: 10.1016/j.jcmgh.2020.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is becoming a severe liver disorder worldwide. Autophagy plays a critical role in liver steatosis. However, the role of autophagy in NAFLD remains exclusive and under debate. In this study, we investigated the role of S100 calcium binding protein A11 (S100A11) in the pathogenesis of hepatic steatosis. METHODS We performed liver proteomics in a well-established tree shrew model of NAFLD. The expression of S100A11 in different models of NAFLD was detected by Western blot and/or quantitative polymerase chain reaction. Liver S100A11 overexpression mice were generated by injecting a recombinant adenovirus gene transfer vector through the tail vein and then induced by a high-fat and high-cholesterol diet. Cell lines with S100a11 stable overexpression were established with a recombinant lentiviral vector. The lipid content was measured with either Bodipy staining, Oil Red O staining, gas chromatography, or a triglyceride kit. The autophagy and lipogenesis were detected in vitro and in vivo by Western blot and quantitative polymerase chain reaction. The functions of Sirtuin 1, histone deacetylase 6 (HDAC6), and FOXO1 were inhibited by specific inhibitors. The interactions between related proteins were analyzed by a co-immunoprecipitation assay and immunofluorescence analysis. RESULTS The expression of S100A11 was up-regulated significantly in a time-dependent manner in the tree shrew model of NAFLD. S100A11 expression was induced consistently in oleic acid-treated liver cells as well as the livers of mice fed a high-fat diet and NAFLD patients. Both in vitro and in vivo overexpression of S100A11 could induce hepatic lipid accumulation. Mechanistically, overexpression of S100A11 activated an autophagy and lipogenesis process through up-regulation and acetylation of the transcriptional factor FOXO1, consequently promoting lipogenesis and lipid accumulation in vitro and in vivo. Inhibition of HDAC6, a deacetylase of FOXO1, showed similar phenotypes to S100A11 overexpression in Hepa 1-6 cells. S100A11 interacted with HDAC6 to inhibit its activity, leading to the release and activation of FOXO1. Under S100A11 overexpression, the inhibition of FOXO1 and autophagy could alleviate the activated autophagy as well as up-regulated lipogenic genes. Both FOXO1 and autophagy inhibition and Dgat2 deletion could reduce liver cell lipid accumulation significantly. CONCLUSIONS A high-fat diet promotes liver S100A11 expression, which may interact with HDAC6 to block its binding to FOXO1, releasing or increasing the acetylation of FOXO1, thus activating autophagy and lipogenesis, and accelerating lipid accumulation and liver steatosis. These findings indicate a completely novel S100A11-HDAC6-FOXO1 axis in the regulation of autophagy and liver steatosis, providing potential possibilities for the treatment of NAFLD.
Collapse
Affiliation(s)
- Linqiang Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yingzhuan Zheng
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Qing Chang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Mingshan Wang
- Howard Hughes Medical Institute, Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| | - Jieyu Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liyuan Ran
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China; Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Xiaoju Zou
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
7
|
Fischer IP, Irmler M, Meyer CW, Sachs SJ, Neff F, Hrabě de Angelis M, Beckers J, Tschöp MH, Hofmann SM, Ussar S. A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue. Int J Obes (Lond) 2018; 42:507-517. [PMID: 28901330 PMCID: PMC5880583 DOI: 10.1038/ijo.2017.224] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/28/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES Dieting is a popular yet often ineffective way to lower body weight, as the majority of people regain most of their pre-dieting weights in a relatively short time. The underlying molecular mechanisms driving weight regain and the increased risk for metabolic disease are still incompletely understood. Here we investigate the molecular alterations inherited from a history of obesity. METHODS In our model, male high-fat diet (HFD)-fed obese C57BL/6J mice were switched to a low caloric chow diet, resulting in a decline of body weight to that of lean mice. We measured body composition, as well as metrics of glucose, insulin and lipid homeostasis. This was accompanied by histological and gene expression analysis of adipose tissue and liver to assess adipose tissue inflammation and hepatosteatosis. Moreover, acute hypothalamic response to (re-) exposure to HFD was assessed by qPCR. RESULTS & CONCLUSIONS Within 7 weeks after diet switch, most obesity-associated phenotypes, such as body mass, glucose intolerance and blood metabolite levels were reversed. However, hepatic inflammation, hepatic steatosis as well as hypertrophy and inflammation of perigonadal, but not subcutaneous, adipocytes persisted in formerly obese mice. Transcriptional profiling of liver and perigonadal fat revealed an upregulation of pathways associated with immune function and cellularity. Thus, we show that weight reduction leaves signs of inflammation in liver and perigonadal fat, indicating that persisting proinflammatory signals in liver and adipose tissue could contribute to an increased risk of formerly obese subjects to develop the metabolic syndrome upon recurring weight gain.
Collapse
Affiliation(s)
- I P Fischer
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Garching, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - M Irmler
- Institute for Experimental Genetics, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - C W Meyer
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - S J Sachs
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV der LMU, Munich, Germany
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, Garching, Germany
| | - F Neff
- Institute for Pathology, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - M Hrabě de Angelis
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Experimental Genetics, Helmholtz Zentrum München, München-Neuherberg, Germany
- Technische Universität München, Lehrstuhl für Experimentelle Genetik, Freising, Germany
| | - J Beckers
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Experimental Genetics, Helmholtz Zentrum München, München-Neuherberg, Germany
- Technische Universität München, Lehrstuhl für Experimentelle Genetik, Freising, Germany
| | - M H Tschöp
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Garching, Germany
| | - S M Hofmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV der LMU, Munich, Germany
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, Garching, Germany
| | - S Ussar
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Garching, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
8
|
Kim SE, Choo J, Yoon J, Chu JR, Bae YJ, Lee S, Park T, Sung MK. Genome-wide analysis identifies colonic genes differentially associated with serum leptin and insulin concentrations in C57BL/6J mice fed a high-fat diet. PLoS One 2017; 12:e0171664. [PMID: 28170448 PMCID: PMC5295695 DOI: 10.1371/journal.pone.0171664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity-induced chronic inflammation is known to increase the risk of ulcerative colitis, Crohn's disease, and colorectal cancer. Accumulating evidence suggests that leptin and insulin are key molecules linking obesity with diseases of the lower intestine. Here, we identified serum phenotype-associated genes in the colon of diet-induced obese mice as early biomarkers of obesity-associated colonic diseases. C57BL/6J mice were fed with either normal diet (ND, 15% of fat calories) or high-fat diet (HFD, 45% of fat calories) for 8 weeks. Serum concentrations of insulin, insulin-like growth factor-1 (IGF-1), leptin, and adiponectin were measured as obesity-related phenotypic markers. Genome-wide gene expression profiles of colon tissue were determined, followed by statistical analyses to detect differentially expressed and serum phenotype-associated genes. HFD-fed mice showed higher serum concentrations of leptin (P < 0.001) and insulin (P < 0.01) than those in the ND group, whereas serum IGF-1 and adiponectin concentrations did not differ between the two dietary groups. Among differentially expressed genes affected by HFD, 135, 128, 110, and 341 genes were associated with serum levels of leptin, insulin, IGF-1, and adiponectin, respectively. We identified 17 leptin-associated genes and 4 insulin-associated genes that inversely responded to HFD and ND. Among these, leptin-associated Peli3 (Pellino E3 ubiquitin protein ligase family member 3), Creb1 (cAMP responsive element binding protein 1), and Enpp2 (ectonucleotide pyrophosphatase/phosphodiesterase 2, autotaxin) and insulin-associated Centg1 (AGAP2, ArfGAP with GTPase domain) are reported to play a role either in obesity or colonic diseases. mRNA expression of these genes was validated by RT-qPCR. Our data suggest Peli3, Creb1, Enpp2, and Centg1 as potential early biomarker candidates for obesity-induced pathophysiological changes in the colon. Future studies verifying the function of these candidates are needed for the prevention, early detection, and treatment of colon diseases.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Jinsil Choo
- Department of Life Systems, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Joon Yoon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Jae Ryang Chu
- Department of Life Systems, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Yun Jung Bae
- Division of Food Science and Culinary Arts, Shinhan University, Gyeonggi-do, Republic of Korea
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul, Republic of Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
9
|
Kitson AP, Marks KA, Aristizabal Henao JJ, Tupling AR, Stark KD. Prevention of hyperphagia prevents ovariectomy-induced triacylglycerol accumulation in liver, but not plasma. Nutr Res 2015; 35:1085-94. [PMID: 26475180 DOI: 10.1016/j.nutres.2015.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022]
Abstract
Menopause is associated with higher plasma and liver triacylglycerol (TAG) and increased risk for cardiovascular disease. Lowering TAG in menopause may be beneficial; however, the mechanism underlying menopause-induced TAG accumulation is not clear. Ovariectomy is a model for menopause and is associated with metabolic alterations and hyperphagia. This study investigated the role of hyperphagia in ovariectomy-induced increases in blood and tissue TAG, as well as differences in lipid metabolism enzymes and resting metabolic measures. It was hypothesized that prevention of hyperphagia would restore blood and tissue TAG, enzyme expression, and metabolic measures to eugonadal levels. Ovariectomized rats were fed ad libitum (OVX + AL) or pair-fed (OVX + PF) relative to sham-operated rats (SHAM) to prevent hyperphagia. OVX + AL had higher TAG concentrations in liver and plasma than SHAM (60% and 50%, respectively), and prevention of hyperphagia in OVX + PF normalized TAG concentrations to SHAM levels in liver, but not plasma. OVX + AL also had 141% higher hepatic stearoyl-CoA desaturase 1 which was almost completely normalized to SHAM levels by pair-feeding, suggesting normalization of hepatic lipid storage. In contrast, skeletal muscle carnitine palmitoyl transferase 1 was 40% lower in OVX + AL than SHAM and was intermediate in OVX + PF, suggesting lower muscle fatty acid oxidation that may underlie the higher plasma TAG in OVX. No differences were seen in energy expenditure, VO2, or VCO2. Overall, this study indicates that prevention of hyperphagia resulting from ovarian hormone withdrawal normalizes hepatic TAG to eugonadal levels but has no effect on ovariectomy-induced increases in plasma TAG.
Collapse
Affiliation(s)
- Alex P Kitson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1
| | - Kristin A Marks
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1
| | | | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1.
| |
Collapse
|
10
|
Hennig EE, Mikula M, Goryca K, Paziewska A, Ledwon J, Nesteruk M, Woszczynski M, Walewska-Zielecka B, Pysniak K, Ostrowski J. Extracellular matrix and cytochrome P450 gene expression can distinguish steatohepatitis from steatosis in mice. J Cell Mol Med 2014; 18:1762-72. [PMID: 24913135 PMCID: PMC4196652 DOI: 10.1111/jcmm.12328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022] Open
Abstract
One of the main questions regarding nonalcoholic fatty liver disease is the molecular background of the transition from simple steatosis (SS) to the inflammatory and fibrogenic condition of steatohepatitis (NASH). We examined the gene expression changes during progression from histologically normal liver to SS and NASH in models of obesity caused by hyperphagia or a high-fat diet. Microarray-based analysis revealed that the expression of 1445 and 264 probe sets was changed exclusively in SS and NASH samples, respectively, and 1577 probe sets were commonly altered in SS and NASH samples. Functional annotations indicated that transcriptome alterations that were common for NASH and SS, as well as exclusive for NASH, involved extracellular matrix (ECM)-related processes, although they differed in the type of matrix structure change. The expression of 80 genes was significantly changed in all three comparisons: SS versus control, NASH versus control and NASH versus SS. Of these genes, epithelial membrane protein 1, IKBKB interacting protein and decorin were progressively up-regulated in both SS and NASH compared to normal tissue. The molecular context of interactions of encoded 80 proteins revealed that they are highly interconnected and significantly enriched for processes involving metabolism by cytochrome P450. Validation of 10 selected mRNAs encoding genes related to ECM and cytochrome P450 with quantitative RT-PCR analysis showed consistent changes in their expression during NASH development. The expression profile of these genes has the potential to distinguish NASH from SS and normal tissue and may possibly be beneficial in the clinical diagnosis of NASH.
Collapse
Affiliation(s)
- Ewa E Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland; Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Buchner I, Medeiros N, Lacerda DDS, Normann CABM, Gemelli T, Rigon P, Wannmacher CMD, Henriques JAP, Dani C, Funchal C. Hepatoprotective and Antioxidant Potential of Organic and Conventional Grape Juices in Rats Fed a High-Fat Diet. Antioxidants (Basel) 2014; 3:323-38. [PMID: 26784874 PMCID: PMC4665483 DOI: 10.3390/antiox3020323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to investigate the antioxidant and hepatoprotective effect of the chronic use of conventional (CGJ) or organic (OGJ) grape juice from the Bordeaux variety grape on oxidative stress and cytoarchitecture in the liver of rats supplemented with a high-fat diet (HFD) for three months. The results demonstrated that HFD induced an increase in thiobarbituric acid-reactive substances (TBARS), catalase (CAT) activity and 2′,7′-dihydrodichlorofluorescein (DCFH) oxidation and a decrease in sulfhydryl content and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. HFD also induced hepatocellular degeneration and steatosis. These alterations were prevented by CGJ and OGJ, where OGJ was more effective. Therefore, it was concluded that HFD induced oxidative stress and liver damage and that the chronic use of grape juice was able to prevent these alterations.
Collapse
Affiliation(s)
- Iselde Buchner
- Centro Universitário Metodista do IPA, 90420-060 Porto Alegre, Brazil.
| | - Niara Medeiros
- Centro Universitário Metodista do IPA, 90420-060 Porto Alegre, Brazil.
| | | | | | - Tanise Gemelli
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil.
| | - Paula Rigon
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, 90040-060 Porto Alegre, Brazil.
| | | | - João Antônio Pegas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil.
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, 95070-560 Porto Alegre, Brazil.
| | - Caroline Dani
- Centro Universitário Metodista do IPA, 90420-060 Porto Alegre, Brazil.
| | - Cláudia Funchal
- Centro Universitário Metodista do IPA, 90420-060 Porto Alegre, Brazil.
| |
Collapse
|
12
|
McGregor RA, Kwon EY, Shin SK, Jung UJ, Kim E, Park JHY, Yu R, Yun JW, Choi MS. Time-course microarrays reveal modulation of developmental, lipid metabolism and immune gene networks in intrascapular brown adipose tissue during the development of diet-induced obesity. Int J Obes (Lond) 2013; 37:1524-31. [PMID: 23628853 DOI: 10.1038/ijo.2013.52] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was to establish the time-course of molecular events in intrascapular brown adipose tissue (iBAT) during the development of diet-induced obesity using microarrays and molecular network analysis. DESIGN C57BL/6J male inbred mice were fed a high-fat diet (HFD) or normal diet (ND) and killed at multiple time-points over 24 weeks. METHODS Global transcriptional changes in iBAT were determined by time-course microarrays of pooled RNA (n=6, pools per time-point) at 2, 4, 8, 20 and 24 weeks using Illumina MouseWG-6 v2.0 Beadchips. Molecular networks were constructed using the Ingenuity knowledgebase based on differentially expressed genes at each time-point. RESULTS Body weight and subcutaneous adipose were progressively increased over 24 weeks, whereas iBAT was significantly increased between 6 and 12 weeks in HFD-fed C57BL/6J mice compared with controls. Blood glucose and insulin levels were increased between 16 and 24 weeks. Time-course microarrays, revealed 155 differentially expressed genes at one or more time-points over 24 weeks in the iBAT of HFD-fed mice compared with controls. Time-course network analysis revealed a network of skeletal muscle development genes that was activated between 2 and 4 weeks, subsequently a network of immune trafficking genes was activated at 8 weeks. After 20 and 24 weeks, multiple lipid metabolism and immune response networks were activated. Several target genes identified by time-course microarrays were independently validated using RT-qPCR. Tnnc1 was upregulated early between 2 and 4 weeks, later Cd68 and Col1a1 were upregulated between 20 and 24 weeks, whereas 11β-hydroxysteroid dehydrogenase (Hsd11b1) was consistently downregulated during the development of diet-induced obesity. CONCLUSION Molecular networks in iBAT are modulated in a time-dependent manner in response to a HFD. A broad range of gene targets exists to alter molecular changes within iBAT during the development of diet-induced obesity.
Collapse
Affiliation(s)
- R A McGregor
- 1] Center for Food and Nutritional Genomics Research, Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea [2] Institute for Innovation in Biology, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|