1
|
Zhao H, Tu X. The potential key genes within focal adhesion that regulate mesenchymal stem cells osteogenesis or adipogenesis in microgravity related disuse osteoporosis: an integrated analysis. Front Endocrinol (Lausanne) 2025; 16:1469400. [PMID: 40130165 PMCID: PMC11930814 DOI: 10.3389/fendo.2025.1469400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
This study aimed to identify key genes related to focal adhesions (FA) and cells involved in osteoblast (OS) and adipocyte (AD) differentiation in osteoporosis. A mouse model of disuse osteoporosis was made by hindlimbs unloading (HLU)/Tail - suspension. Micro - CT and histological analysis were done, and differentially expressed genes (DEGs) from GSE100930 were analyzed. Soft clustering on GSE80614 OS/AD samples found FA - related candidate genes. protein-protein interaction (PPI) network and cytoHubba's Degree algorithm identified key FA - genes, validated by quantitative polymerase chain reaction (qPCR). Key OS/AD - associated cells were identified by single - cell analysis. The mouse model showed decreased bone density, microstructure damage, increased marrow adiposity, and altered gene expression. Key FA - related genes for osteogenesis (ITGB3, LAMC1, COL6A3, ITGA8, PDGFRB) and adipogenesis (ITGB3, ITGA4, LAMB1, ITGA8, LAMA4) were found and validated. Key cells (chondrocyte, adipocyte, and osteoblast progenitors) are involved in specific pathways, with osteoblast progenitors having stronger interactions. Pseudotime analysis implies differentiation from chondrocyte progenitors to adipocyte, then osteoblast progenitors. This study provides new insights for disuse osteoporosis research.
Collapse
Affiliation(s)
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Gliniak CM, Pedersen L, Scherer PE. Adipose tissue fibrosis: the unwanted houseguest invited by obesity. J Endocrinol 2023; 259:e230180. [PMID: 37855264 PMCID: PMC11648981 DOI: 10.1530/joe-23-0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of obesity is increasing exponentially across the globe. The lack of effective treatment options for long-term weight loss has magnified the enormity of this problem. Studies continue to demonstrate that adipose tissue holds a biological memory, one of the most important determinant of long-term weight maintenance. This phenomenon is consistent with the metabolically dynamic role of adipose tissue: it adapts and expands to store for excess energy and serves as an endocrine organ capable of synthesizing a number of biologically active molecules that regulate metabolic homeostasis. An important component of the plasticity of adipose tissue is the extracellular matrix, essential for structural support, mechanical stability, cell signaling and function. Chronic obesity upends a delicate balance of extracellular matrix synthesis and degradation, and the ECM accumulates in such a way that prevents the plasticity and function of the diverse cell types in adipose tissue. A series of maladaptive responses among the cells in adipose tissue leads to inflammation and fibrosis, major mechanisms that explain the link between obesity and insulin resistance, risk of type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Adipose tissue fibrosis persists after weight loss and further enhances adipose tissue dysfunction if weight is regained. Here, we highlight the current knowledge of the cellular events governing adipose tissue ECM remodeling during the development of obesity. Our goal is to delineate the relationship more clearly between adipose tissue ECM and metabolic disease, an important step toward better defining the pathophysiology of dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Line Pedersen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
3
|
Hafida S, Apovian C. Physiology of the Weight-Reduced State and Its Impact on Weight Regain. Endocrinol Metab Clin North Am 2022; 51:795-815. [PMID: 36244694 DOI: 10.1016/j.ecl.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Obesity is a chronic disease characterized by long duration, slow progression, and periods of remission and relapses. Despite the development of effective medical and surgical interventions and millions of people conducting tremendous personal efforts to manage their weight every year, recidivism remains a significant barrier to attaining long-term weight maintenance. This review aimed to explain the underlying physiology of the weight-reduced state including changes in energy balance, adipose tissue, genetic, environmental, and behavioral factors that may predispose individuals to weight regain following weight loss.
Collapse
Affiliation(s)
- Samar Hafida
- Division of Endocrinology, Diabetes, Nutrition and Weight Management, 72 East, Concord Street C3 (Room 321 A), Collamore Building, Boston, MA 02118, USA.
| | - Caroline Apovian
- Division of Endocrinology, Diabetes and Hypertension, Center for Weight Management and Wellness, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Suite RFB-2, Brigham and Women's at 221 Longwood, Boston, MA 02115, USA
| |
Collapse
|
4
|
de Sousa Neto IV, Durigan JLQ, da Silva ASR, de Cássia Marqueti R. Adipose Tissue Extracellular Matrix Remodeling in Response to Dietary Patterns and Exercise: Molecular Landscape, Mechanistic Insights, and Therapeutic Approaches. BIOLOGY 2022; 11:biology11050765. [PMID: 35625493 PMCID: PMC9138682 DOI: 10.3390/biology11050765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary Adipose tissue is considered a metabolic organ that adjusts overall energy homeostasis and critical hormones to the body’s needs. In conditions of caloric intake surpassing energy expenditure, lipid accumulation occurs with constant extracellular matrix deposition. Excess lipids and adipocyte hypertrophy may reduce extracellular matrix flexibility in conjunction with hypoxia and inflammation. These processes induce the development of adipose tissue fibrosis and correlated metabolic dysfunctions, such as insulin resistance. With the increasing rate of chronic diseases worldwide, it is essential to generate a more precise knowledge of fibrotic processes, as well as to create optimal models to study potential therapies to combat the harmful effects of extracellular matrix deposition. In this work, we focused on the physiological processes in the remodeling of adipose tissue fibrosis, along with their relevance to clinical indications. Furthermore, we emphasize understanding how lifestyle can alleviate adipocyte dysfunction. Several studies showed that a nutritionally balanced diet combined with exercise is a remarkable potential strategy for lipolytic activity, preventing rapid extracellular matrix expansion in parallel with insulin and glucose action improvements. Thus, the emerging beneficial role of exercise training and low-calorie diet on adipose tissue ECM remodeling is a topic that deserves attention from health professionals. Abstract The extracellular matrix (ECM) is a 3-dimensional network of molecules that play a central role in differentiation, migration, and survival for maintaining normal homeostasis. It seems that ECM remodeling is required for adipose tissue expansion. Despite evidence indicating that ECM is an essential component of tissue physiology, adipose tissue ECM has received limited attention. Hence, there is great interest in approaches to neutralize the harmful effects of ECM enlargement. This review compiles and discusses the current literature on adipose tissue ECM remodeling in response to different dietary patterns and exercise training. High-calorie diets result in substantial adipose tissue ECM remodeling, which in turn could lead to fibrosis (excess deposition of collagens, elastin, and fibronectin), inflammation, and the onset of metabolic dysfunction. However, combining a nutritionally balanced diet with exercise is a remarkable potential strategy for lipolytic activity, preventing rapid ECM expansion in different adipose tissue depots. Despite the distinct exercise modalities (aerobic or resistance exercise) reversing adipose tissue fibrosis in animal models, the beneficial effect on humans remains controversial. Defining molecular pathways and specific mechanisms that mediate the positive effects on adipose tissue, ECM is essential in developing optimized interventions to improve health and clinical outcomes.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília, Brasília 70910-900, Brazil; or
- Correspondence:
| | | | - Adelino Sanchez Ramos da Silva
- Graduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
- School of Physical Education and Sport of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Rita de Cássia Marqueti
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília, Brasília 70910-900, Brazil; or
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília 70910-900, Brazil;
- Graduate Program in Health Sciences and Technology, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
5
|
Insight into the Candidate Genes and Enriched Pathways Associated with Height, Length, Length to Height Ratio and Body-Weight of Korean Indigenous Breed, Jindo Dog Using Gene Set Enrichment-Based GWAS Analysis. Animals (Basel) 2021; 11:ani11113136. [PMID: 34827868 PMCID: PMC8614278 DOI: 10.3390/ani11113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
As a companion and hunting dog, height, length, length to height ratio (LHR) and body-weight are the vital economic traits for Jindo dog. Human selection and targeted breeding have produced an extraordinary diversity in these traits. Therefore, the identification of causative markers, genes and pathways that help us to understand the genetic basis of this variability is essential for their selection purposes. Here, we performed a genome-wide association study (GWAS) combined with enrichment analysis on 757 dogs using 118,879 SNPs. The genomic heritability (h2) was 0.33 for height and 0.28 for weight trait in Jindo. At p-value < 5 × 10-5, ten, six, thirteen and eleven SNPs on different chromosomes were significantly associated with height, length, LHR and body-weight traits, respectively. Based on our results, HHIP, LCORL and NCAPG for height, IGFI and FGFR3 for length, DLK1 and EFEMP1 for LHR and PTPN2, IGFI and RASAL2 for weight can be the potential candidate genes because of the significant SNPs located in their intronic or upstream regions. The gene-set enrichment analysis highlighted here nine and seven overlapping significant (p < 0.05) gene ontology (GO) terms and pathways among traits. Interestingly, the highlighted pathways were related to hormone synthesis, secretion and signalling were generally involved in the metabolism, growth and development process. Our data provide an insight into the significant genes and pathways if verified further, which will have a significant effect on the breeding of the Jindo dog's population.
Collapse
|
6
|
Abstract
Obesity is associated with an increased risk of various diseases and mortality. Although nearly 50 % of adults have been reported trying to lose weight, the prevalence of obesity has increased. One factor that hinders weight loss-induced decrease in obesity prevalence is weight regain. Although behavioural, psychological and physiological factors associated with weight regain have been reviewed, the information regarding the relationship between weight regain and genetics has not been previously summarised. In this paper, we comprehensively review the association between genetic polymorphisms and weight regain in adults and children with obesity after weight loss. Based on this information, identification of genetic polymorphism in patients who undergo weight loss intervention might be used to estimate their risks of weight regain. Additionally, the genetic-based risk estimation may be used as a guide for physicians and dietitians to provide each of their patients with the most appropriate strategies for weight loss and weight maintenance.
Collapse
|
7
|
Berger SE, Huggins GS, McCaffery JM, Jacques PF, Lichtenstein AH. Change in Cardiometabolic Risk Factors Associated With Magnitude of Weight Regain 3 Years After a 1-Year Intensive Lifestyle Intervention in Type 2 Diabetes Mellitus: The Look AHEAD Trial. J Am Heart Assoc 2019; 8:e010951. [PMID: 31594431 PMCID: PMC6818027 DOI: 10.1161/jaha.118.010951] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Weight regain after weight loss is common. The impact on cardiometabolic risk factors is not well established. Methods and Results Publicly available data were analyzed from participants of the Look AHEAD (Action for Health in Diabetes) trial with ≥3% initial weight loss (n=1561) during a 1‐year intensive lifestyle intervention and with year 4 follow‐up data. Participants who regained (regainers) or maintained (maintainers) weight loss were defined with 5 dichotomized cut points (0%, 25%, 50%, 75%, and 100%) of percentage weight loss regained (weight change from years 1–4 as percentage of first year weight loss). Change in cardiometabolic risk factors after initial weight loss was compared in maintainers and regainers, after controlling for demographics, medications, and baseline and year 1 change in body mass index. The effect was assessed separately in participants with <10% and ≥10% initial weight loss, and women and men. Maintainers exhibited significant improvements to the cardiometabolic risk factors assessed compared with regainers. No weight regain cut point maximized risk difference between maintainers and regainers across risk factors or sex/initial weight loss subgroups. For many risk factors, allowing more regain as part of maintenance (increasing cut point) diminished the cardiometabolic benefit among maintainers. Conclusions Maintaining weight loss was better than regain for all risk factors. No single cut point maximized the risk difference between maintainers and regainers. Maintainers who kept off ≥75% of weight lost had the greatest benefit. These findings emphasize the importance of intervention programs focusing not only on weight loss but weight loss maintenance, given the adverse consequences of the latter. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00017953.
Collapse
Affiliation(s)
- Samantha E Berger
- Friedman School of Nutrition Science and Policy Tufts University Boston MA
| | - Gordon S Huggins
- Molecular Cardiology Research Institute Center for Translational Genomics Tufts Medical Center and Tufts University Boston MA
| | - Jeanne M McCaffery
- Department of Allied Health Sciences University of Connecticut Storrs CT
| | - Paul F Jacques
- Friedman School of Nutrition Science and Policy Tufts University Boston MA.,Jean Mayer USDA Human Nutrition Research Center on Aging Tufts University Boston MA
| | - Alice H Lichtenstein
- Friedman School of Nutrition Science and Policy Tufts University Boston MA.,Jean Mayer USDA Human Nutrition Research Center on Aging Tufts University Boston MA
| |
Collapse
|
8
|
Ruiz-Ojeda FJ, Méndez-Gutiérrez A, Aguilera CM, Plaza-Díaz J. Extracellular Matrix Remodeling of Adipose Tissue in Obesity and Metabolic Diseases. Int J Mol Sci 2019; 20:4888. [PMID: 31581657 PMCID: PMC6801592 DOI: 10.3390/ijms20194888] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is a network of different proteins and proteoglycans that controls differentiation, migration, repair, survival, and development, and it seems that its remodeling is required for healthy adipose tissue expansion. Obesity drives an excessive lipid accumulation in adipocytes, which provokes immune cells infiltration, fibrosis (an excess of deposition of ECM components such as collagens, elastin, and fibronectin) and inflammation, considered a consequence of local hypoxia, and ultimately insulin resistance. To understand the mechanism of this process is a challenge to treat the metabolic diseases. This review is focused at identifying the putative role of ECM in adipose tissue, describing its structure and components, its main tissue receptors, and how it is affected in obesity, and subsequently the importance of an appropriate ECM remodeling in adipose tissue expansion to prevent metabolic diseases.
Collapse
Affiliation(s)
- Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- RG Adipocytes and metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany.
| | - Andrea Méndez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| |
Collapse
|
9
|
Abstract
One of the biggest challenges in the management of obesity is the prevention of weight regain after successful weight loss. Weight regain after weight loss has large interindividual variation. Although many factors probably contribute to this variation, we hypothesize that variability in biological responses associated with weight loss-induced shrinking of subcutaneous adipocytes has an important role. In this Review, we show that weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis seem to be associated with the amount of weight that is regained after successful weight loss. Weight regain could therefore, at least in part, depend on a combination of these factors. Further research on the causality of these associations could aid the development of effective strategies to prevent weight regain after successful weight loss.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
Vogel MAA, Wang P, Bouwman FG, Hoebers N, Blaak EE, Renes J, Mariman EC, Goossens GH. A comparison between the abdominal and femoral adipose tissue proteome of overweight and obese women. Sci Rep 2019; 9:4202. [PMID: 30862933 PMCID: PMC6414508 DOI: 10.1038/s41598-019-40992-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Body fat distribution is an important determinant of cardiometabolic health. Lower-body adipose tissue (AT) has protective characteristics as compared to upper-body fat, but the underlying depot-differences remain to be elucidated. Here, we compared the proteome and morphology of abdominal and femoral AT. Paired biopsies from abdominal and femoral subcutaneous AT were taken from eight overweight/obese (BMI ≥ 28 kg/m2) women with impaired glucose metabolism after an overnight fast. Proteins were isolated and quantified using liquid chromatography-mass spectrometry, and protein expression in abdominal and femoral subcutaneous AT was compared. Moreover, correlations between fat cell size and the proteome of both AT depots were determined. In total, 651 proteins were identified, of which 22 proteins tended to be differentially expressed between abdominal and femoral AT after removal of blood protein signals (p < 0.05). Proteins involved in cell structure organization and energy metabolism were differently expressed between AT depots. Fat cell size, which was higher in femoral AT, was significantly correlated with ADH1B, POSTN and LCP1. These findings suggest that there are only slight differences in protein expression between abdominal and femoral subcutaneous AT. It remains to be determined whether these differences, as well as differences in protein activity, contribute to functional and/or morphological differences between these fat depots.
Collapse
Affiliation(s)
- M A A Vogel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - P Wang
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F G Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - N Hoebers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Renes
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Corella D, Coltell O, Portolés O, Sotos-Prieto M, Fernández-Carrión R, Ramirez-Sabio JB, Zanón-Moreno V, Mattei J, Sorlí JV, Ordovas JM. A Guide to Applying the Sex-Gender Perspective to Nutritional Genomics. Nutrients 2018; 11:E4. [PMID: 30577445 PMCID: PMC6357147 DOI: 10.3390/nu11010004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Precision nutrition aims to make dietary recommendations of a more personalized nature possible, to optimize the prevention or delay of a disease and to improve health. Therefore, the characteristics (including sex) of an individual have to be taken into account as well as a series of omics markers. The results of nutritional genomics studies are crucial to generate the evidence needed so that precision nutrition can be applied. Although sex is one of the fundamental variables for making recommendations, at present, the nutritional genomics studies undertaken have not analyzed, systematically and with a gender perspective, the heterogeneity/homogeneity in gene-diet interactions on the different phenotypes studied, thus there is little information available on this issue and needs to be improved. Here we argue for the need to incorporate the gender perspective in nutritional genomics studies, present the general context, analyze the differences between sex and gender, as well as the limitations to measuring them and to detecting specific sex-gene or sex-phenotype associations, both at the specific gene level or in genome-wide-association studies. We analyzed the main sex-specific gene-diet interactions published to date and their main limitations and present guidelines with recommendations to be followed when undertaking new nutritional genomics studies incorporating the gender perspective.
Collapse
Affiliation(s)
- Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain.
| | - Olga Portolés
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Mercedes Sotos-Prieto
- School of Applied Health Sciences and Wellness, Ohio University, Athens, OH 45701, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Rebeca Fernández-Carrión
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | | | - Vicente Zanón-Moreno
- Ophthalmology Research Unit "Santiago Grisolia", Dr. Peset University Hospital, 46017 Valencia, Spain.
- Red Temática de Investigación Cooperativa OftaRed, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Josiemer Mattei
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - José V Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 USA.
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
- IMDEA Alimentación, 28049 Madrid, Spain.
| |
Collapse
|
12
|
Crujeiras AB, Pissios P, Moreno-Navarrete JM, Diaz-Lagares A, Sandoval J, Gomez A, Ricart W, Esteller M, Casanueva FF, Fernandez-Real JM. An Epigenetic Signature in Adipose Tissue Is Linked to Nicotinamide N-Methyltransferase Gene Expression. Mol Nutr Food Res 2018; 62:e1700933. [PMID: 29688621 DOI: 10.1002/mnfr.201700933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The enzyme nicotinamide N-methyltransferase (NNMT) is a major methyltransferase in adipose tissue. We hypothesized an epigenetic signature in association with NNMT gene expression in adipose tissue. METHODS AND RESULTS The global human methylome was analyzed in visceral adipose tissue (VAT) from morbidly obese patients using the Infinium Human Methylation 450 BeadChip array (discovery cohort: n = 11). The findings were confirmed in two additional independent cohorts (cohort 1: n = 60; BMI 20-60 kg m-2 and cohort 2: n = 40; BMI > 40 kg m-2 ) and validated after weight loss (using microarray data). Among the genes associated with the largest methylation fold change were genes related to metabolic processes, proliferation, inflammation, and extracellular matrix remodeling, such as COL23A1, PLEC1, FBXO21, STEAP3, RGS12, IGDCC3, FOXK2, and ORAI2. In fact, the results showed 577 differentially methylated CpG sites (DMCpGs) associated with the NNMT expression levels, with low methylation levels paralleling high NNMT expression. The expression of FBXO21 and FOXK2 was specifically modified after weight loss concomitantly with a decrease in NNMT expression and inflammation-related genes. Interestingly, the adipose tissue NNMT gene expression correlated with markers of adipose tissue inflammation. CONCLUSIONS The expression of NNMT in VAT is associated with a specific methylome signature involving genes linked to adipose tissue metabolic pathophysiology.
Collapse
Affiliation(s)
- Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela 15706, Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Pavlos Pissios
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jose M Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Angel Diaz-Lagares
- Translational Medical Oncology (Oncomet), Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and CIBERonc, Santiago de Compostela, 15706, Spain
| | - Juan Sandoval
- Laboratory of Personalized Medicine, Epigenomics Unit, Medical Research Institute La Fe, Valencia, 46026, Spain
| | - Antonio Gomez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, 08908, Spain
| | - Wilfredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia 08908, Spain, Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - Felipe F Casanueva
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela 15706, Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Jose M Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| |
Collapse
|
13
|
Vink RG, Roumans NJ, Mariman EC, van Baak MA. Dietary weight loss-induced changes in RBP4, FFA, and ACE predict weight regain in people with overweight and obesity. Physiol Rep 2018; 5:5/21/e13450. [PMID: 29122953 PMCID: PMC5688773 DOI: 10.14814/phy2.13450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 01/22/2023] Open
Abstract
Adipokines and other biomarkers were previously identified with roles in energy expenditure, appetite, satiety, and adiposity. Therefore, we investigated whether dietary weight loss‐induced changes in adipokines and other biomarkers known to play a role in weight regulation or energy expenditure could predict weight regain in people with overweight and obesity. In this randomized controlled trial 26 males and 30 females (BMI: 28–35 kg/m2) followed either a low‐calorie diet (LCD; 1250 kcal/day) for 12 weeks or a very‐low‐calorie diet (VLCD; 500 kcal/day) for 5 weeks followed by a weight stable period of 4 weeks (dietary intervention (DI) period) and a 9‐month follow‐up period. Blood samples were taken before and after each period to measure FFA, TAG, total cholesterol, insulin, glucose, angiotensin‐converting enzyme (ACE) activity, IL‐6, RBP4, apelin, leptin, adiponectin, vaspin, and nesfatin‐1 concentrations. Weight loss was similar between groups (LCD: −8.2 ± 0.5 kg; VLCD: −8.9 ± 0.4 kg, P = 0.30). Only changes in ACE activity, FFA and RBP4 concentrations during DI were correlated with weight regain in the whole group (r = −0.299, P = 0.030, r = −0.274, P = 0.047, and r = 0.357, P = 0.008, respectively). Together they explained 28% (r = 0.532) of weight regain variation. Dietary weight loss‐induced changes in ACE activity, FFA and RBP4 independently contribute to weight regain prediction.
Collapse
Affiliation(s)
- Roel G Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Nadia J Roumans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Edwin C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marleen A van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
14
|
Roumans NJT, Wang P, Vink RG, van Baak MA, Mariman ECM. Combined Analysis of Stress- and ECM-Related Genes in Their Effect on Weight Regain. Obesity (Silver Spring) 2018; 26:492-498. [PMID: 29399976 DOI: 10.1002/oby.22093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE During weight loss, the volume of adipocytes decreases, leading to stress because of the misfit between the cell contents and the surrounding extracellular matrix (ECM). This stress can be resolved by remodeling the ECM or the restorage of triglycerides within the adipocytes. The objective of this study was to investigate the existence of a connection between stress-related and ECM-related genes that is associated with weight regain. METHODS Thirty-one participants with overweight or obesity followed a 5-week very-low-calorie diet (500 kcal/d) with a subsequent 4-week weight-stable diet (WS), and then an uncontrolled 9-month follow-up. Adipose tissue biopsies were collected for microarray analysis. A correlation and interaction analysis was performed with the weight regain percentage (WR%) ([weight after follow-up - weight after WS] ÷ weight after WS × 100%) by using two gene sets that were previously defined as "stress-related" (n = 107) and "ECM-related" genes (n = 277). RESULTS During WS, a coexpression network of 8 stress-related genes and 15 ECM-related genes correlating with WR% could be constructed, with links to multiple biological processes. Interaction analysis between stress- and ECM-related genes revealed that several gene combinations were highly related to weight regain. CONCLUSIONS Our findings underscore the importance of the connection between stress- and ECM-related genes in the risk for weight regain.
Collapse
Affiliation(s)
- Nadia J T Roumans
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ping Wang
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roel G Vink
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marleen A van Baak
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Edwin C M Mariman
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
15
|
Ryan AS, Serra MC, Goldberg AP. Metabolic Benefits of Prior Weight Loss with and without Exercise on Subsequent 6-Month Weight Regain. Obesity (Silver Spring) 2018; 26:37-44. [PMID: 29071802 PMCID: PMC5739994 DOI: 10.1002/oby.22032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To determine the 6-month follow-up effects after intentional 6-month weight loss alone (WL) and after weight loss with aerobic exercise (AEX + WL) on body composition, glucose metabolism, and cardiovascular disease risk factors in older postmenopausal women and to identify the mechanisms for weight regain. METHODS Women (n = 65, BMI > 25 kg/m2 ) underwent maximal oxygen consumption testing, dual-energy x-ray absorptiometry, computed tomography scans, and oral glucose tolerance tests before and after 6 months of AEX + WL or WL and at 12 months ad libitum follow-up. Insulin sensitivity (M) (hyperinsulinemic-euglycemic clamp) was measured at baseline and 6 months. Thirty WL and thirty-five AEX + WL women completed a follow-up at 12 months. RESULTS Similar weight loss was observed (-8%) in both groups from 0 to 6 months. Total fat mass, fat-free mass, visceral fat area, subcutaneous abdominal and midthigh fat areas, fasting glucose, insulin levels, homeostatic model assessment of insulin resistance (HOMA-IR), insulin areas under the curve, and triglyceride levels decreased similarly after WL and AEX + WL and remained lower at 12 months than at baseline, despite weight regain at 12 months. Initial M was associated with weight regain (r = -0.40, P < 0.01). Weight regain was related to independent changes in leptin and HOMA-IR from 6 to 12 months in a multiple regression model (r = 0.77, P < 0.0001). CONCLUSIONS Reductions in body fat and improvements in insulin sensitivity after AEX + WL and WL were maintained at 12 months despite modest weight regain. Baseline insulin resistance partially predicted the magnitude of weight regain in postmenopausal women.
Collapse
Affiliation(s)
- Alice S Ryan
- Veterans Affairs Research Service, Baltimore, Maryland, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Geriatric Research, Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, Maryland, USA
| | - Monica C Serra
- Veterans Affairs Research Service, Baltimore, Maryland, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Geriatric Research, Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, Maryland, USA
| | - Andrew P Goldberg
- Veterans Affairs Research Service, Baltimore, Maryland, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Geriatric Research, Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Berger SE, Huggins GS, McCaffery JM, Lichtenstein AH. Comparison among criteria to define successful weight-loss maintainers and regainers in the Action for Health in Diabetes (Look AHEAD) and Diabetes Prevention Program trials. Am J Clin Nutr 2017; 106:1337-1346. [PMID: 29046304 PMCID: PMC5698838 DOI: 10.3945/ajcn.117.157446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/12/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Given the low rates of successful weight maintenance after lifestyle-induced weight loss, it is critical to develop approaches that distinguish successful weight-loss maintainers from regainers.Objective: The aim of this study was to compare published categorization criteria that differentiate maintainers and regainers via quantitative agreement.Design: The study used publicly available data from Look AHEAD (Action for Health in Diabetes; n = 1791) and Diabetes Prevention Program (DPP; n = 613) participants with ≥3% initial weight loss after lifestyle interventions and 4-y follow-up data. Eight previously published criteria defining maintainers and regainers were compared with respect to number of participants and concordance via agreement statistics. Criteria were assessed separately among those with 3-9% and ≥10% initial weight loss.Results: Regainers had higher body weight at year 4 than did maintainers (mean difference range: 6.6-11.9 kg in Look AHEAD; 11.5-14.6 kg in DPP; P < 0.0001). Assessing concordance among criteria, agreement was dependent on initial weight loss. Among those with 3-9% initial weight loss in both cohorts, 9 of 28 comparisons were concordant (agreement ≥80%). Among those with ≥10% initial weight loss, 7 of 28 comparisons in Look AHEAD and 13 of 28 in the DPP were in high agreement. The definition of successful weight-loss maintenance "regaining ≤25% of initial weight loss during maintenance" showed high agreement with the most commonly used definition of "staying ≥10% below initial weight" among those with ≥10% initial weight loss (agreement: 85.0% in Look AHEAD; 87.4% in DPP). The same definition of ≤25% regain showed high agreement with the definition of staying ≥5% below initial weight among those with 3-9% initial weight loss (agreement: 91.6% in Look AHEAD; 90.5% in DPP).Conclusions: Although all of the criteria discriminated on the basis of weight loss, many showed low agreement, which limited cross-study comparisons. Among criteria with high agreement, the definition of successful weight maintenance "regaining ≤25% of initial weight loss during maintenance" is a preferred definition of success, given the realistic challenges of maintaining 100% weight loss and flexible application in populations with high initial weight-loss variations. This trial was registered at clinicaltrials.gov as NCT00017953 (Look AHEAD) and NCT00004992 (DPP).
Collapse
Affiliation(s)
| | - Gordon S Huggins
- Molecular Cardiology Research Institute Center for Translational Genomics, Tufts Medical Center and Tufts University, Boston, MA; and
| | - Jeanne M McCaffery
- Department of Psychiatry and Human Behavior, Miriam Hospital, Warren Alpert School of Medicine and Weight Control and Diabetes Research Center, Brown University, Providence, RI
| | - Alice H Lichtenstein
- Friedman School of Nutrition Science and Policy and .,Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| |
Collapse
|
17
|
Roumans NJ, Vink RG, Fazelzadeh P, van Baak MA, Mariman EC. A role for leukocyte integrins and extracellular matrix remodeling of adipose tissue in the risk of weight regain after weight loss. Am J Clin Nutr 2017; 105:1054-1062. [PMID: 28298393 DOI: 10.3945/ajcn.116.148874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Weight loss (WL) is often followed by weight regain after an energy-restricted dietary intervention (DI). When people are following a diet, the volume of an adipocyte decreases by loss of triglycerides, which creates stress between the cell contents and the surrounding extracellular matrix (ECM). Previously, we observed that genetic variations in ECM genes are associated with an increased risk of weight regain.Objective: We investigated the relation between the expression of ECM genes during WL and a period of weight stabilization (WS) and the risk of weight regain.Design: In this randomized controlled trial, 61 healthy overweight or obese participants followed either a 5-wk very-low-calorie diet (VLCD; 500 kcal/d) or a 12-wk low-calorie diet (1250 kcal/d) (WL period) with a subsequent 4-wk WS period and a 9-mo follow-up. The WL and WS periods combined were considered the DI. Abdominal subcutaneous adipose tissue biopsy samples were collected for microarray analysis. Gene expression changes for a broad set of ECM-related genes were correlated with the weight-regain percentage (WR%).Results: A total of 26 of the 277 genes were significantly correlated with WR% during WL, WS, or the DI periods. Most correlations were observed in the VLCD group during the WS period. Four genes code for leukocyte-specific receptors. These and other genes belong to a group of 26 genes, among which the expression changes were highly correlated (r ≥ 0.7, P ≤ 0.001). This group could be divided into 3 subclusters linking to 2 biological processes-leukocyte integrin gene activity and ECM remodeling-and a link to insulin sensitivity was also apparent.Conclusions: Our present findings indicate the importance of adipose tissue leukocytes for the risk of weight regain. ECM modification also seems to be involved, and we observed a link to insulin sensitivity. This trial was registered at clinicaltrials.gov as NCT01559415.
Collapse
Affiliation(s)
- Nadia Jt Roumans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands; and
| | - Roel G Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands; and
| | - Parastoo Fazelzadeh
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Marleen A van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands; and
| | - Edwin Cm Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands; and
| |
Collapse
|
18
|
Ryan AS. Weight Regain Following Intentional Weight Loss in Older Adults. Curr Nutr Rep 2016. [DOI: 10.1007/s13668-016-0160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Giles ED, Steig AJ, Jackman MR, Higgins JA, Johnson GC, Lindstrom RC, MacLean PS. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss. Front Physiol 2016; 7:32. [PMID: 26903882 PMCID: PMC4748045 DOI: 10.3389/fphys.2016.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/15/2022] Open
Abstract
Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising animals compared to their energy gap-matched controls. Our interpretation of this data is that much of this lipid is being made by the liver and subsequently trafficked to adipose tissue storage. Together, these concerted effects may explain the beneficial effects of exercise on preventing weight regain following weight loss.
Collapse
Affiliation(s)
- Erin D Giles
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Amy J Steig
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Matthew R Jackman
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Janine A Higgins
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Ginger C Johnson
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Rachel C Lindstrom
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Paul S MacLean
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| |
Collapse
|