1
|
Chen Y, Luo X, Yin Y, Thomas ER, Liu K, Wang W, Li X. The interplay of iron, oxidative stress, and α-synuclein in Parkinson's disease progression. Mol Med 2025; 31:154. [PMID: 40287631 PMCID: PMC12034127 DOI: 10.1186/s10020-025-01208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
The irreversible degeneration of dopamine neurons induced by α-synuclein (α-syn) aggregation in the substantia nigra is the central pathological feature of Parkinson's disease (PD). Neuroimaging and pathological autopsy studies consistently confirm significant iron accumulation in the brain of PD patients, suggesting a critical role for iron in disease progression. Current research has established that iron overload induces ferroptosis in dopaminergic neurons, evidence indicates that the impact of iron on PD pathology extends beyond ferroptosis. Iron also plays a regulatory role in modulating α-syn, affecting its aggregation, spatial conformation, post-translational modifications, and mRNA stability. Iron-induced α-syn aggregation can contribute to dopaminergic neurodegeneration through additional mechanisms, potentially creating a feedback loop in which α-syn further enhances iron accumulation, thus perpetuating a vicious cycle of neurotoxicity. Given α-syn's intrinsically disordered structure, targeting iron metabolism presents a promising therapeutic strategy for PD. Therefore, the development of iron chelators, alone or in combination with other therapeutic drugs, may offer a beneficial approach to alleviating PD symptoms and slowing disease progression.
Collapse
Affiliation(s)
- Yan Chen
- Department of Psychiatry, The Affiliated Zigong Hospital, Zigong Mental Health Center, Zigong Institute of Brain Science, Southwest Medical University, Luzhou, 646000, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xixi Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yukun Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | | | - Kezhi Liu
- Department of Psychiatry, The Affiliated Zigong Hospital, Zigong Mental Health Center, Zigong Institute of Brain Science, Southwest Medical University, Luzhou, 646000, China
| | - Wenjun Wang
- Department of Psychiatry, The Affiliated Zigong Hospital, Zigong Mental Health Center, Zigong Institute of Brain Science, Southwest Medical University, Luzhou, 646000, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| | - Xiang Li
- Department of Psychiatry, The Affiliated Zigong Hospital, Zigong Mental Health Center, Zigong Institute of Brain Science, Southwest Medical University, Luzhou, 646000, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Corona-Trejo A, Gonsebatt ME, Trejo-Solis C, Campos-Peña V, Quintas-Granados LI, Villegas-Vázquez EY, Daniel Reyes-Hernández O, Hernández-Abad VJ, Figueroa-González G, Silva-Adaya D. Transsulfuration pathway: a targeting neuromodulator in Parkinson's disease. Rev Neurosci 2023; 34:915-932. [PMID: 37409540 DOI: 10.1515/revneuro-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023]
Abstract
The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H2S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine β-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrea Corona-Trejo
- Carrera de Biología, Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | | | - Edgar Yebrán Villegas-Vázquez
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Vicente Jesús Hernández-Abad
- Laboratorio de Investigación Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo s/n, Col, Ejército de Oriente, 09230 Mexico City, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| |
Collapse
|
3
|
Kola A, Nencioni F, Valensin D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer's and Parkinson's Diseases. Molecules 2023; 28:5467. [PMID: 37513339 PMCID: PMC10385134 DOI: 10.3390/molecules28145467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (F.N.)
| |
Collapse
|
4
|
Pathak D, Sriram K. Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants. Int J Mol Sci 2023; 24:2272. [PMID: 36768596 PMCID: PMC9917383 DOI: 10.3390/ijms24032272] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Occupational injuries and toxicant exposures lead to the development of neuroinflammation by activating distinct mechanistic signaling cascades that ultimately culminate in the disruption of neuronal function leading to neurological and neurodegenerative disorders. The entry of toxicants into the brain causes the subsequent activation of glial cells, a response known as 'reactive gliosis'. Reactive glial cells secrete a wide variety of signaling molecules in response to neuronal perturbations and thus play a crucial role in the progression and regulation of central nervous system (CNS) injury. In parallel, the roles of protein phosphorylation and cell signaling in eliciting neuroinflammation are evolving. However, there is limited understanding of the molecular underpinnings associated with toxicant- or occupational injury-mediated neuroinflammation, gliosis, and neurological outcomes. The activation of signaling molecules has biological significance, including the promotion or inhibition of disease mechanisms. Nevertheless, the regulatory mechanisms of synergism or antagonism among intracellular signaling pathways remain elusive. This review highlights the research focusing on the direct interaction between the immune system and the toxicant- or occupational injury-induced gliosis. Specifically, the role of occupational injuries, e.g., trips, slips, and falls resulting in traumatic brain injury, and occupational toxicants, e.g., volatile organic compounds, metals, and nanoparticles/nanomaterials in the development of neuroinflammation and neurological or neurodegenerative diseases are highlighted. Further, this review recapitulates the recent advancement related to the characterization of the molecular mechanisms comprising protein phosphorylation and cell signaling, culminating in neuroinflammation.
Collapse
Affiliation(s)
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
5
|
Mechanistic Insights Expatiating the Redox-Active-Metal-Mediated Neuronal Degeneration in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23020678. [PMID: 35054862 PMCID: PMC8776156 DOI: 10.3390/ijms23020678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a complicated and incapacitating neurodegenerative malady that emanates following the dopaminergic (DArgic) nerve cell deprivation in the substantia nigra pars compacta (SN-PC). The etiopathogenesis of PD is still abstruse. Howbeit, PD is hypothesized to be precipitated by an amalgamation of genetic mutations and exposure to environmental toxins. The aggregation of α-synucelin within the Lewy bodies (LBs), escalated oxidative stress (OS), autophagy-lysosome system impairment, ubiquitin-proteasome system (UPS) impairment, mitochondrial abnormality, programmed cell death, and neuroinflammation are regarded as imperative events that actively participate in PD pathogenesis. The central nervous system (CNS) relies heavily on redox-active metals, particularly iron (Fe) and copper (Cu), in order to modulate pivotal operations, for instance, myelin generation, synthesis of neurotransmitters, synaptic signaling, and conveyance of oxygen (O2). The duo, namely, Fe and Cu, following their inordinate exposure, are viable of permeating across the blood–brain barrier (BBB) and moving inside the brain, thereby culminating in the escalated OS (through a reactive oxygen species (ROS)-reliant pathway), α-synuclein aggregation within the LBs, and lipid peroxidation, which consequently results in the destruction of DArgic nerve cells and facilitates PD emanation. This review delineates the metabolism of Fe and Cu in the CNS, their role and disrupted balance in PD. An in-depth investigation was carried out by utilizing the existing publications obtained from prestigious medical databases employing particular keywords mentioned in the current paper. Moreover, we also focus on decoding the role of metal complexes and chelators in PD treatment. Conclusively, metal chelators hold the aptitude to elicit the scavenging of mobile/fluctuating metal ions, which in turn culminates in the suppression of ROS generation, and thereby prelude the evolution of PD.
Collapse
|
6
|
Rethinking IRPs/IRE system in neurodegenerative disorders: Looking beyond iron metabolism. Ageing Res Rev 2022; 73:101511. [PMID: 34767973 DOI: 10.1016/j.arr.2021.101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Iron regulatory proteins (IRPs) and iron regulatory element (IRE) systems are well known in the progression of neurodegenerative disorders by regulating iron related proteins. IRPs are also regulated by iron homeostasis. However, an increasing number of studies have suggested a close relationship between the IRPs/IRE system and non-iron-related neurodegenerative disorders. In this paper, we reviewed that the IRPs/IRE system is not only controlled by iron ions, but also regulated by such factors as post-translational modification, oxygen, nitric oxide (NO), heme, interleukin-1 (IL-1), and metal ions. In addition, by regulating the transcription of non-iron related proteins, the IRPs/IRE system functioned in oxidative metabolism, cell cycle regulation, abnormal proteins aggregation, and neuroinflammation. Finally, by emphasizing the multiple regulations of IRPs/IRE system and its potential relationship with non-iron metabolic neurodegenerative disorders, we provided new strategies for disease treatment targeting IRPs/IRE system.
Collapse
|
7
|
Liu Y, Xiao B, Zhang C, Li J, Lai Y, Shi F, Shen D, Wang L, Sun B, Li Y, Jin Z, Wei H, Haacke EM, Zhou H, Wang Q, Li D, He N, Yan F. Predicting Motor Outcome of Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease Using Quantitative Susceptibility Mapping and Radiomics: A Pilot Study. Front Neurosci 2021; 15:731109. [PMID: 34557069 PMCID: PMC8452872 DOI: 10.3389/fnins.2021.731109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Background Emerging evidence indicates that iron distribution is heterogeneous within the substantia nigra (SN) and it may reflect patient-specific trait of Parkinson’s Disease (PD). We assume it could account for variability in motor outcome of subthalamic nucleus deep brain stimulation (STN-DBS) in PD. Objective To investigate whether SN susceptibility features derived from radiomics with machine learning (RA-ML) can predict motor outcome of STN-DBS in PD. Methods Thirty-three PD patients underwent bilateral STN-DBS were recruited. The bilateral SN were segmented based on preoperative quantitative susceptibility mapping to extract susceptibility features using RA-ML. MDS-UPDRS III scores were recorded 1–3 days before and 6 months after STN-DBS surgery. Finally, we constructed three predictive models using logistic regression analyses: (1) the RA-ML model based on radiomics features, (2) the RA-ML+LCT (levodopa challenge test) response model which combined radiomics features with preoperative LCT response, (3) the LCT response model alone. Results For the predictive performances of global motor outcome, the RA-ML model had 82% accuracy (AUC = 0.85), while the RA-ML+LCT response model had 74% accuracy (AUC = 0.83), and the LCT response model alone had 58% accuracy (AUC = 0.55). For the predictive performance of rigidity outcome, the accuracy of the RA-ML model was 80% (AUC = 0.85), superior to those of the RA-ML+LCT response model (76% accuracy, AUC = 0.82), and the LCT response model alone (58% accuracy, AUC = 0.42). Conclusion Our findings demonstrated that SN susceptibility features from radiomics could predict global motor and rigidity outcomes of STN-DBS in PD. This RA-ML predictive model might provide a novel approach to counsel candidates for STN-DBS.
Collapse
Affiliation(s)
- Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Xiao
- School of Biomedical Engineering, Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junchen Li
- Department of Radiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yijie Lai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Shi
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Dinggang Shen
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.,School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.,Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Linbin Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ewart Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Haiyan Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wang
- School of Biomedical Engineering, Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
9
|
Yu B, Li L, Guan X, Xu X, Liu X, Yang Q, Wei H, Zuo C, Zhang Y. HybraPD atlas: Towards precise subcortical nuclei segmentation using multimodality medical images in patients with Parkinson disease. Hum Brain Mapp 2021; 42:4399-4421. [PMID: 34101297 PMCID: PMC8357000 DOI: 10.1002/hbm.25556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human brain atlases are essential for research and surgical treatment of Parkinson's disease (PD). For example, deep brain stimulation for PD often requires human brain atlases for brain structure identification. However, few atlases can provide disease-specific subcortical structures for PD, and most of them are based on T1w and T2w images. In this work, we construct a HybraPD atlas using fused quantitative susceptibility mapping (QSM) and T1w images from 87 patients with PD. The constructed HybraPD atlas provides a series of templates, that is, T1w, GRE magnitude, QSM, R2*, and brain tissue probabilistic maps. Then, we manually delineate a parcellation map with 12 bilateral subcortical nuclei, which are highly related to PD pathology, such as sub-regions in globus pallidus and substantia nigra. Furthermore, we build a whole-brain parcellation map by combining existing cortical parcellation and white-matter segmentation with the proposed subcortical nuclei map. Considering the multimodality of the HybraPD atlas, the segmentation accuracy of each nucleus is evaluated using T1w and QSM templates, respectively. The results show that the HybraPD atlas provides more accurate segmentation than existing atlases. Moreover, we analyze the metabolic difference in subcortical nuclei between PD patients and healthy control subjects by applying the HybraPD atlas to calculate uptake values of contrast agents on positron emission tomography (PET) images. The atlas-based analysis generates accurate disease-related brain nuclei segmentation on PET images. The newly developed HybraPD atlas could serve as an efficient template to study brain pathological alterations in subcortical regions for PD research.
Collapse
Affiliation(s)
- Boliang Yu
- School of Information Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Ling Li
- PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xueling Liu
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
| | - Qing Yang
- Institute of Brain‐Intelligence Technology, Zhangjiang LaboratoryShanghaiChina
| | - Hongjiang Wei
- Institute for Medicine Imaging Technology, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Chuantao Zuo
- PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuyao Zhang
- School of Information Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Engineering Research Center of Intelligent Vision and ImagingShanghaiTech UniversityShanghaiChina
| |
Collapse
|
10
|
Alpha-synuclein increases in rodent and human spinal cord injury and promotes inflammation and tissue loss. Sci Rep 2021; 11:11720. [PMID: 34083630 PMCID: PMC8175699 DOI: 10.1038/s41598-021-91116-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
Synucleinopathies are neurodegenerative diseases in which α-synuclein protein accumulates in neurons and glia. In these diseases, α-synuclein forms dense intracellular aggregates that are disease hallmarks and actively contribute to tissue pathology. Interestingly, many pathological mechanisms, including iron accumulation and lipid peroxidation, are shared between classical synucleinopathies such as Alzheimer’s disease, Parkinson’s disease and traumatic spinal cord injury (SCI). However, to date, no studies have determined if α-synuclein accumulation occurs after human SCI. To examine this, cross-sections from injured and non-injured human spinal cords were immunolabeled for α-synuclein. This showed robust α-synuclein accumulation in profiles resembling axons and astrocytes in tissue surrounding the injury, revealing that α-synuclein markedly aggregates in traumatically injured human spinal cords. We also detected significant iron deposition in the injury site, a known catalyst for α-synuclein aggregation. Next a rodent SCI model mimicking the histological features of human SCI revealed aggregates and structurally altered monomers of α-synuclein are present after SCI. To determine if α-synuclein exacerbates SCI pathology, α-synuclein knockout mice were tested. Compared to wild type mice, α-synuclein knockout mice had significantly more spared axons and neurons and lower pro-inflammatory mediators, macrophage accumulation, and iron deposition in the injured spinal cord. Interestingly, locomotor analysis revealed that α-synuclein may be essential for dopamine-mediated hindlimb function after SCI. Collectively, the marked upregulation and long-lasting accumulation of α-synuclein and iron suggests that SCI may fit within the family of synucleinopathies and offer new therapeutic targets for promoting neuron preservation and improving function after spinal trauma.
Collapse
|
11
|
Xu J, Xiao C, Song W, Cui X, Pan M, Wang Q, Feng Y, Xu Y. Elevated Heme Oxygenase-1 Correlates With Increased Brain Iron Deposition Measured by Quantitative Susceptibility Mapping and Decreased Hemoglobin in Patients With Parkinson's Disease. Front Aging Neurosci 2021; 13:656626. [PMID: 33815094 PMCID: PMC8012799 DOI: 10.3389/fnagi.2021.656626] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Brain iron deposition, low hemoglobin (HGB), and increased heme oxygenase-1 (HO-1) have been implicated in Parkinson’s disease (PD). However, the association among them in PD is poorly studied. Objective: To explore the association of the level of HO-1 with brain iron deposition and low level of HGB in PD. Methods: A total of 32 patients with PD and 26 controls were recruited for this study. C57BL/6 male mice were used in generating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced chronic PD model. The Levels of serum HO-1 and HGB of human subjects and mice were assayed by ELISA, blood routine test, respectively. Quantitative susceptibility mapping (QSM) was used to quantitatively analyze brain iron deposition in human subjects and mice. HO-1 inhibitor (Sn-protoporphyrin, SnPP) was used to suppress the function and expression of HO-1 in PD mice. Correlations between the concentration of serum HO-1 and iron deposition of the region of interests (ROIs), levels of HGB, between the three factors mentioned above, and scores of clinical scales were explored in PD patients. Results: This study revealed significant elevation of the serum HO-1 concentration, iron deposition within bilateral substantial nigra (SN), red nucleus (RN), and putamen (PUT) and decrease of HGB level in PD patients. There was a significantly positive correlation between the serum HO-1 concentration and iron deposition within SN, an inverse correlation between the serum HO-1 concentration and HGB level in PD patients. A significant increase in HO-1 expression of serum and iron deposition in SN was also observed in the PD mouse model, and the SnPP could significantly reduce iron deposition in the SN. Conclusions: The high level of HO-1 may be the common mechanism of iron deposition and low HGB in PD. Therefore, the findings presented in this study indicate that HO-1 correlates with brain iron deposition and anemia in PD.
Collapse
Affiliation(s)
- Jinghui Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Xiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weizheng Song
- Department of Neurosurgery, the Eighth People's Hospital of Chengdu, Chengdu, China
| | - Xiangqin Cui
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengqiu Pan
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Qun Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yunqi Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Liang T, Qian ZM, Mu MD, Yung WH, Ke Y. Brain Hepcidin Suppresses Major Pathologies in Experimental Parkinsonism. iScience 2020; 23:101284. [PMID: 32623334 PMCID: PMC7334576 DOI: 10.1016/j.isci.2020.101284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/26/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Despite intensive research on Parkinson disease (PD) for decades, this common neurodegenerative disease remains incurable. We hypothesize that abnormal iron accumulation is a common thread underlying the emergence of the hallmarks of PD, namely mitochondrial dysfunction and α-synuclein accumulation. We investigated the powerful action of the main iron regulator hepcidin in the brain. In both the rotenone and 6-hydroxydopamine models of PD, overexpression of hepcidin by means of a virus-based strategy prevented dopamine neuronal loss and suppressed major pathologies of Parkinsonism as well as motor deficits. Hepcidin protected rotenone-induced mitochondrial deficits by reducing cellular and mitochondrial iron accumulation. In addition, hepcidin decreased α-synuclein accumulation and promoted clearance of α-synuclein through decreasing iron content that leads to activation of autophagy. Our results not only pinpoint a critical role of iron-overload in the pathogenesis of PD but also demonstrate that targeting brain iron levels through hepcidin is a promising therapeutic direction.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong 226001, China
| | - Ming-Dao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Artyukhova MA, Tyurina YY, Chu CT, Zharikova TM, Bayır H, Kagan VE, Timashev PS. Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing. Free Radic Biol Med 2019; 144:279-292. [PMID: 31201850 PMCID: PMC6832799 DOI: 10.1016/j.freeradbiomed.2019.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Loss of dopaminergic neurons in the substantia nigra is one of the pathogenic hallmarks of Parkinson's disease, yet the underlying molecular mechanisms remain enigmatic. While aberrant redox metabolism strongly associated with iron dysregulation and accumulation of dysfunctional mitochondria is considered as one of the major contributors to neurodegeneration and death of dopaminergic cells, the specific anomalies in the molecular machinery and pathways leading to the PD development and progression have not been identified. The high efficiency and relative simplicity of a new genome editing tool, CRISPR/Cas9, make its applications attractive for deciphering molecular changes driving PD-related impairments of redox metabolism and lipid peroxidation in relation to mishandling of iron, aggregation and oligomerization of alpha-synuclein and mitochondrial injury as well as in mechanisms of mitophagy and programs of regulated cell death (apoptosis and ferroptosis). These insights into the mechanisms of PD pathology may be used for the identification of new targets for therapeutic interventions and innovative approaches to genome editing, including CRISPR/Cas9.
Collapse
Affiliation(s)
- M A Artyukhova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA
| | - C T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - T M Zharikova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation; Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Russian Federation
| | - H Bayır
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA; Department of Critical Care Medicine, University of Pittsburgh, USA
| | - V E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, I.M. Sechenov Moscow State Medical University, Russian Federation; Department of Chemistry, University of Pittsburgh, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Department of Radiation Oncology, University of Pittsburgh, USA.
| | - P S Timashev
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation; Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, Russian Federation; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, Russian Federation
| |
Collapse
|
14
|
Bergsland N, Tavazzi E, Schweser F, Jakimovski D, Hagemeier J, Dwyer MG, Zivadinov R. Targeting Iron Dyshomeostasis for Treatment of Neurodegenerative Disorders. CNS Drugs 2019; 33:1073-1086. [PMID: 31556017 PMCID: PMC6854324 DOI: 10.1007/s40263-019-00668-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While iron has an important role in the normal functioning of the brain owing to its involvement in several physiological processes, dyshomeostasis has been found in many neurodegenerative disorders, as evidenced by both histopathological and imaging studies. Although the exact causes have remained elusive, the fact that altered iron levels have been found in disparate diseases suggests that iron may contribute to their development and/or progression. As such, the processes involved in iron dyshomeostasis may represent novel therapeutic targets. There are, however, many questions about the exact interplay between neurodegeneration and altered iron homeostasis. Some insight can be gained by considering the parallels with respect to what occurs in healthy aging, which is also characterized by increased iron throughout many regions in the brain along with progressive neurodegeneration. Nevertheless, the exact mechanisms of iron-mediated damage are likely disease specific to a certain degree, given that iron plays a crucial role in many disparate biological processes, which are not always affected in the same way across different neurodegenerative disorders. Moreover, it is not even entirely clear yet whether iron actually has a causative role in all of the diseases where altered iron levels have been noted. For example, there is strong evidence of iron dyshomeostasis leading to neurodegeneration in Parkinson's disease, but there is still some question as to whether changes in iron levels are merely an epiphenomenon in multiple sclerosis. Recent advances in neuroimaging now offer the possibility to detect and monitor iron levels in vivo, which allows for an improved understanding of both the temporal and spatial dynamics of iron changes and associated neurodegeneration compared to post-mortem studies. In this regard, iron-based imaging will likely play an important role in the development of therapeutic approaches aimed at addressing altered iron dynamics in neurodegenerative diseases. Currently, the bulk of such therapies have focused on chelating excess iron. Although there is some evidence that these treatment options may yield some benefit, they are not without their own limitations. They are generally effective at reducing brain iron levels, as assessed by imaging, but clinical benefits are more modest. New drugs that specifically target iron-related pathological processes may offer the possibility to prevent, or at the least, slow down irreversible neurodegeneration, which represents an unmet therapeutic target.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
| | - Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
15
|
Ammal Kaidery N, Ahuja M, Thomas B. Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson's disease. Mol Cell Neurosci 2019; 101:103413. [PMID: 31644952 DOI: 10.1016/j.mcn.2019.103413] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Search for a definitive cure for neurodegenerative disorders like Parkinson's disease (PD) has met with little success. Mitochondrial dysfunction and elevated oxidative stress precede characteristic loss of dopamine-producing neurons from the midbrain in PD. The majority of PD cases are classified as sporadic (sPD) with an unknown etiology, whereas mutations in a handful of genes cause monogenic form called familial (fPD). Both sPD and fPD is characterized by proteinopathy and mitochondrial dysfunction leading to increased oxidative stress. These pathophysiological mechanisms create a vicious cycle feeding into each other, ultimately tipping the neurons to its demise. Effect of iron accumulation and dopamine oxidation adds an additional dimension to mitochondrial oxidative stress and apoptotic pathways affected. Nrf2 is a redox-sensitive transcription factor which regulates basal as well as inducible expression of antioxidant enzymes and proteins involved in xenobiotic detoxification. Recent advances, however, shows a multifaceted role for Nrf2 in the regulation of genes connected with inflammatory response, metabolic pathways, protein homeostasis, iron management, and mitochondrial bioenergetics. Here we review the role of mitochondria and oxidative stress in the PD etiology and the potential crosstalk between Nrf2 signaling and mitochondrial function in PD. We also make a case for the development of therapeutics that safely activates Nrf2 pathway in halting the progression of neurodegeneration in PD patients.
Collapse
Affiliation(s)
- Navneet Ammal Kaidery
- Darby Research Institute, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Manuj Ahuja
- Darby Research Institute, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Bobby Thomas
- Darby Research Institute, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425, United States of America.
| |
Collapse
|
16
|
Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4609702. [PMID: 31687080 PMCID: PMC6803728 DOI: 10.1155/2019/4609702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
The etiology of Parkinson's disease (PD) is linked with cellular inclusions in the substantia nigra pars compacta region of the brain that are enriched in the misfolded presynaptic protein α-synuclein (αS) and death of the dopaminergic neurons. Brain iron homeostasis governs both neurotransmission and neurodegeneration; hence, the role of iron in PD progression and neuronal health is apparent. Elevated iron deposits become prevalent in the cerebral region upon aging and even more so in the PD brain. Structural as well as oxidative modifications can result from coordination of αS with redox active iron, which could have functional and/or pathological implications. In this review, we will discuss iron-mediated αS aggregation, alterations in iron metabolism, and the role of the iron-dopamine couple. Moreover, iron interactions with N-terminally acetylated αS, the physiologically relevant form of the human protein, will be addressed to shed light on the current understanding of protein dynamics and the physiological environment in the disease state. Oxidative pathways and biochemical alterations resulting from aberrant iron-induced chemistry are the principal focus of this review in order to highlight the plethora of research that has uncovered this emerging dichotomy of iron playing both functional and disruptive roles in PD pathology.
Collapse
|
17
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer's and Parkinson's disease models. Pharmacol Res 2019; 146:104336. [PMID: 31271846 DOI: 10.1016/j.phrs.2019.104336] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are recognized as the universal neurodegenerative diseases, with the involvement of misfolded proteins pathology, leading to oxidative stress, glial cells activation, neuroinflammation, mitochondrial dysfunction, and cellular apoptosis. Several discoveries indicate that accumulation of pathogenic proteins, i.e. amyloid β (Aβ), the microtubule-binding protein tau, and α-synuclein, are parallel with oxidative stress, neuroinflammation, and mitochondrial dysfunction. Whether the causative factors are misfolded proteins or these pathophysiological changes, leading to neurodegeneration still remain ambiguous. Importantly, directing pharmacological researches towards the prevention of AD and PD seem a promising approach to detect these complicating mechanisms, and provide new insight into therapy for AD and PD patients. Mangiferin (MGF, 2-C-β-D-glucopyranosyl-1, 3, 6, 7-tetrahydroxyxanthone), well-known as a natural product, is detached from multiple plants, including Mangifera indica L. With the structure of C-glycosyl and phenolic moiety, MGF possesses multipotent properties starting from anti-oxidant effects, to the alleviation of mitochondrial dysfunction, neuroinflammation, and cellular apoptosis. In particular, MGF can cross the blood-brain barrier to exert neuronal protection. Different researches implicate that MGF is able to protect the central nervous system from oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis under in vitro and in vivo models. Additional facts support that MGF plays a role in improving the declined memory and cognition of rat models. Taken together, the neuroprotective capacity of MGF may stand out as an agent candidate for AD and PD therapy.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
18
|
Li G, Zhai G, Zhao X, An H, Spincemaille P, Gillen KM, Ku Y, Wang Y, Huang D, Li J. 3D texture analyses within the substantia nigra of Parkinson's disease patients on quantitative susceptibility maps and R2∗ maps. Neuroimage 2019; 188:465-472. [DOI: 10.1016/j.neuroimage.2018.12.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022] Open
|
19
|
Liu C, Liang MC, Soong TW. Nitric Oxide, Iron and Neurodegeneration. Front Neurosci 2019; 13:114. [PMID: 30833886 PMCID: PMC6388708 DOI: 10.3389/fnins.2019.00114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Iron is a crucial cofactor for several physiological functions in the brain including transport of oxygen, DNA synthesis, mitochondrial respiration, synthesis of myelin, and neurotransmitter metabolism. If iron concentration exceeds the capacity of cellular sequestration, excessive labile iron will be harmful by generating oxidative stress that leads to cell death. In patients suffering from Parkinson disease, the total amount of iron in the substantia nigra was reported to increase with disease severity. High concentrations of iron were also found in the amyloid plaques and neurofibrillary tangles of human Alzheimer disease brains. Besides iron, nitric oxide (NO) produced in high concentration has been associated with neurodegeneration. NO is produced as a co-product when the enzyme NO synthase converts L-arginine to citrulline, and NO has a role to support normal physiological functions. When NO is produced in a high concentration under pathological conditions such as inflammation, aberrantly S-nitrosylated proteins can initiate neurodegeneration. Interestingly, NO is closely related with iron homeostasis. Firstly, it regulates iron-related gene expression through a system involving iron regulatory protein and its cognate iron responsive element (IRP-IRE). Secondly, it modified the function of iron-related protein directly via S-nitrosylation. In this review, we examine the recent advances about the potential role of dysregulated iron homeostasis in neurodegeneration, with an emphasis on AD and PD, and we discuss iron chelation as a potential therapy. This review also highlights the changes in iron homeostasis caused by NO. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate iron-related neurodegeneration in diseases such as AD and PD.
Collapse
Affiliation(s)
- Chao Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- Neurobiology/Ageing Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Mui Cheng Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Neurobiology/Ageing Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Neurobiology/Ageing Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
20
|
Singh S, Gupta SK, Seth PK. Biomarkers for detection, prognosis and therapeutic assessment of neurological disorders. Rev Neurosci 2018; 29:771-789. [PMID: 29466244 DOI: 10.1515/revneuro-2017-0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/17/2017] [Indexed: 10/24/2023]
Abstract
Neurological disorders have aroused a significant concern among the health scientists globally, as diseases such as Parkinson's, Alzheimer's and dementia lead to disability and people have to live with them throughout the life. Recent evidence suggests that a number of environmental chemicals such as pesticides (paraquat) and metals (lead and aluminum) are also the cause of these diseases and other neurological disorders. Biomarkers can help in detecting the disorder at the preclinical stage, progression of the disease and key metabolomic alterations permitting identification of potential targets for intervention. A number of biomarkers have been proposed for some neurological disorders based on laboratory and clinical studies. In silico approaches have also been used by some investigators. Yet the ideal biomarker, which can help in early detection and follow-up on treatment and identifying the susceptible populations, is not available. An attempt has therefore been made to review the recent advancements of in silico approaches for discovery of biomarkers and their validation. In silico techniques implemented with multi-omics approaches have potential to provide a fast and accurate approach to identify novel biomarkers.
Collapse
Affiliation(s)
- Sarita Singh
- Distinguished Scientist Laboratory, Biotech Park, Sector-G Jankipram, Kursi Road, Lucknow 226021, Uttar Pradesh, India
| | - Sunil Kumar Gupta
- Distinguished Scientist Laboratory, Biotech Park, Lucknow 226021, Uttar Pradesh, India
| | - Prahlad Kishore Seth
- Distinguished Scientist Laboratory, Biotech Park, Lucknow 226021, Uttar Pradesh, India
| |
Collapse
|
21
|
Zhou ZD, Tan EK. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener 2017; 12:75. [PMID: 29061112 PMCID: PMC5654065 DOI: 10.1186/s13024-017-0218-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
The homeostasis of iron is vital to human health, and iron dyshomeostasis can lead to various disorders. Iron homeostasis is maintained by iron regulatory proteins (IRP1 and IRP2) and the iron-responsive element (IRE) signaling pathway. IRPs can bind to RNA stem-loops containing an IRE in the untranslated region (UTR) to manipulate translation of target mRNA. However, iron can bind to IRPs, leading to the dissociation of IRPs from the IRE and altered translation of target transcripts. Recently an IRE is found in the 5′-UTR of amyloid precursor protein (APP) and α-synuclein (α-Syn) transcripts. The levels of α-Syn, APP and amyloid β-peptide (Aβ) as well as protein aggregation can be down-regulated by IRPs but are up-regulated in the presence of iron accumulation. Therefore, inhibition of the IRE-modulated expression of APP and α-Syn or chelation of iron in patient’s brains has therapeutic significance to human neurodegenerative diseases. Currently, new pre-drug IRE inhibitors with therapeutic effects have been identified and are at different stages of clinical trials for human neurodegenerative diseases. Although some promising drug candidates of chemical IRE inhibitors and iron-chelating agents have been identified and are being validated in clinical trials for neurodegenerative diseases, future studies are expected to further establish the clinical efficacy and safety of IRE inhibitors and iron-chelating agents in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.,Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore
| |
Collapse
|
22
|
Yao S, Zhong Y, Xu Y, Qin J, Zhang N, Zhu X, Li Y. Quantitative Susceptibility Mapping Reveals an Association between Brain Iron Load and Depression Severity. Front Hum Neurosci 2017; 11:442. [PMID: 28900391 PMCID: PMC5581806 DOI: 10.3389/fnhum.2017.00442] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/17/2017] [Indexed: 01/13/2023] Open
Abstract
Previous studies have detected abnormal serum ferritin levels in patients with depression; however, the results have been inconsistent. This study used quantitative susceptibility mapping (QSM) for the first time to examine brain iron concentration in depressed patients and evaluated whether it is related to severity. We included three groups of age- and gender-matched participants: 30 patients with mild-moderate depression (MD), 14 patients with major depression disorder (MDD) and 20 control subjects. All participants underwent MR scans with a 3D gradient-echo sequence reconstructing for QSM and performed the 17-item Hamilton Depression Rating Scale (HDRS) test. In MDD, the susceptibility value in the bilateral putamen was significantly increased compared with MD or control subjects. In addition, a significant difference was also observed in the left thalamus in MDD patients compared with controls. However, the susceptibility values did not differ between MD patients and controls. The susceptibility values positively correlated with the severity of depression as indicated by the HDRS scores. Our results provide evidence that brain iron deposition may be associated with depression and may even be a biomarker for investigating the pathophysiological mechanism of depression.
Collapse
Affiliation(s)
- Shun Yao
- Department of Radiology, The Affiliated Hospital of Jiangsu UniversityZhenjiang, China
| | - Yi Zhong
- Department of Research and Development, Magnetic Resonance Innovations Inc.Detroit, MI, United States
| | - Yuhao Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu UniversityZhenjiang, China
| | - Jiasheng Qin
- Department of Radiology, The Affiliated Hospital of Jiangsu UniversityZhenjiang, China
| | - Ningning Zhang
- Department of Radiology, The Affiliated Hospital of Jiangsu UniversityZhenjiang, China
| | - Xiaolan Zhu
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, China
| | - Yuefeng Li
- Department of Radiology, The Affiliated Hospital of Jiangsu UniversityZhenjiang, China
| |
Collapse
|
23
|
Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol 2017; 155:96-119. [PMID: 26455458 PMCID: PMC4826627 DOI: 10.1016/j.pneurobio.2015.09.012] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration.
Collapse
Affiliation(s)
- Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Emanuele Ferrari
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Patricia Muñoz
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Irmgard Paris
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Sciences, Santo Tomás University, Viña del Mar, Chile
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
24
|
Valera E, Monzio Compagnoni G, Masliah E. Review: Novel treatment strategies targeting alpha-synuclein in multiple system atrophy as a model of synucleinopathy. Neuropathol Appl Neurobiol 2016; 42:95-106. [PMID: 26924723 DOI: 10.1111/nan.12312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/30/2022]
Abstract
Neurodegenerative disorders with alpha-synuclein (α-syn) accumulation (synucleinopathies) include Parkinson's disease (PD), PD dementia, dementia with Lewy bodies and multiple system atrophy (MSA). Due to the involvement of toxic α-syn aggregates in the molecular origin of these disorders, developing effective therapies targeting α-syn is a priority as a disease-modifying alternative to current symptomatic treatments. Importantly, the clinical and pathological attributes of MSA make this disorder an excellent candidate as a synucleinopathy model for accelerated drug development. Recent therapeutic strategies targeting α-syn in in vivo and in vitro models of MSA, as well as in clinical trials, have been focused on the pathological mechanisms of α-syn synthesis, aggregation, clearance, and/or cell-to-cell propagation of its neurotoxic conformers. Here we summarize the most relevant approaches in this direction, with emphasis on their potential as general synucleinopathy modifiers, and enumerate research areas for potential improvement in MSA drug discovery.
Collapse
Affiliation(s)
- E Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - G Monzio Compagnoni
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - E Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Dusek P, Schneider SA, Aaseth J. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 2016; 38:81-92. [PMID: 27033472 DOI: 10.1016/j.jtemb.2016.03.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/14/2023]
Abstract
Disturbance of cerebral iron regulation is almost universal in neurodegenerative disorders. There is a growing body of evidence that increased iron deposits may contribute to degenerative changes. Thus, the effect of iron chelation therapy has been investigated in many neurological disorders including rare genetic syndromes with neurodegeneration with brain iron accumulation as well as common sporadic disorders such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis. This review summarizes recent advances in understanding the role of iron in the etiology of neurodegeneration. Outcomes of studies investigating the effect of iron chelation therapy in neurodegenerative disorders are systematically presented in tables. Iron chelators, particularly the blood brain barrier-crossing compound deferiprone, are capable of decreasing cerebral iron in areas with abnormally high concentrations as documented by MRI. Yet, currently, there is no compelling evidence of the clinical effect of iron removal therapy on any neurological disorder. However, several studies indicate that it may prevent or slow down disease progression of several disorders such as aceruloplasminemia, pantothenate kinase-associated neurodegeneration or Parkinson's disease.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Czech Republic; Institute of Neuroradiology, University Göttingen, Göttingen, Germany.
| | | | - Jan Aaseth
- Innlandet Hospital Trust, Kongsvinger, Norway; Hedmark University College, Elverum, Norway
| |
Collapse
|
26
|
Lan AP, Chen J, Chai ZF, Hu Y. The neurotoxicity of iron, copper and cobalt in Parkinson's disease through ROS-mediated mechanisms. Biometals 2016; 29:665-78. [PMID: 27349232 DOI: 10.1007/s10534-016-9942-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/18/2016] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with gradual loss of dopaminergic neurons. Despite extensive research in the past decades, the etiology of PD remains elusive. Nevertheless, multiple lines of evidence suggest that oxidative stress is one of the common causes in the pathogenesis of PD. It has also been suggested that heavy metal-associated oxidative stress may be implicated in the etiology and pathogenesis of PD. Here we review the roles of redox metals, including iron, copper and cobalt, in PD. Iron is a highly reactive element and deregulation of iron homeostasis is accompanied by concomitant oxidation processes in PD. Copper is a key metal in cell division process, and it has been shown to have an important role in neurodegenerative diseases such as PD. Cobalt induces the generation of reactive oxygen species (ROS) and DNA damage in brain tissues.
Collapse
Affiliation(s)
- A P Lan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - J Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Z F Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China.,School of Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, 215123, China
| | - Y Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China.
| |
Collapse
|
27
|
Gazzina S, Premi E, Zanella I, Biasiotto G, Archetti S, Cosseddu M, Scarpini E, Galimberti D, Serpente M, Gasparotti R, Padovani A, Borroni B. Iron in Frontotemporal Lobar Degeneration: A New Subcortical Pathological Pathway? NEURODEGENER DIS 2015; 16:172-8. [PMID: 26613252 DOI: 10.1159/000440843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Brain iron homeostasis dysregulation has been widely related to neurodegeneration. In particular, human haemochromatosis protein (HFE) is involved in iron metabolism, and HFE H63D polymorphism has been related to the risk of amyotrophic lateral sclerosis and Alzheimer's disease. Recently, iron accumulation in the basal ganglia of frontotemporal lobar degeneration (FTLD) patients has been described. OBJECTIVE To explore the relationship between HFE genetic variation and demographic, clinical and imaging characteristics in a large cohort of FTLD patients. METHODS A total of 110 FTLD patients underwent neuropsychological and imaging evaluation and blood sampling for HFE polymorphism determination. HFE H63D polymorphism was considered in the present study. Two imaging approaches were applied to evaluate the effect of HFE genetic variation on brain atrophy, namely voxel-based morphometry and region of interest-based probabilistic approach (SPM8; Wellcome Trust Centre for Neuroimaging). RESULTS FTLD patients carrying the D* genotype (H/D or D/D) showed greater atrophy in the basal ganglia, bilaterally, compared to H/H carriers (x, y, z: -22, -4, 0; T = 3.45; cluster size: 33 voxels, x, y, z: 24, 4, -2; T = 3.38; cluster size: 36 voxels). The former group had even more pronounced behavioural symptoms, as defined by the Frontal Behavioural Inventory total scores. CONCLUSIONS Our data suggest that H63D polymorphism could represent a disease-modifying gene in FTLD, fostering iron deposition in the basal ganglia. This suggests a new possible mechanism of FTLD-associated neurodegeneration.
Collapse
Affiliation(s)
- Stefano Gazzina
- Neurology Unit, Centre for Ageing Brain and Neurodegenerative Disorders, Spedali Civili, University of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, Liu C, Chen K, Yan F. Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping. Hum Brain Mapp 2015; 36:4407-20. [PMID: 26249218 DOI: 10.1002/hbm.22928] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 02/06/2023] Open
Abstract
In Parkinson's disease (PD), iron elevation in specific brain regions as well as selective loss of dopaminergic neurons is a major pathologic feature. A reliable quantitative measure of iron deposition is a potential biomarker for PD and may contribute to the investigation of iron-mediated PD. The primary purpose of this study is to assess iron variations in multiple deep grey matter nuclei in early PD with a novel MRI technique, quantitative susceptibility mapping (QSM). The inter-group differences of susceptibility and R2* value in deep grey matter nuclei, namely head of caudate nucleus (CN), putamen (PUT), global pallidus (GP), substantia nigra (SN), and red nucleus (RN), and the correlations between regional iron deposition and the clinical features were explored in forty-four early PD patients and 35 gender and age-matched healthy controls. Susceptibility values were found to be elevated within bilateral SN and RN contralateral to the most affected limb in early PD compared with healthy controls (HCs). The finding of increased susceptibility in bilateral SN is consistent with work on a subgroup of patients at the earliest clinical detectable state (Hoehn and Yahr [1967]: Neurology 17:427-442; Stage I). However, increased R2* values were only seen within SN contralateral to the most affected limb in the PD group when compared with controls. Furthermore, bilateral SN magnetic susceptibility positively correlated with disease duration and UPDRS-III scores in early PD. This finding supports the potential value of QSM as a non-invasive quantitative biomarker of early PD.
Collapse
Affiliation(s)
- Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huawei Ling
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- MR Research, GE Healthcare, Shanghai, China
| | | | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Kemin Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 2015; 9:124. [PMID: 25914621 PMCID: PMC4392704 DOI: 10.3389/fncel.2015.00124] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.
Collapse
|
30
|
Ortega R, Carmona A, Roudeau S, Perrin L, Dučić T, Carboni E, Bohic S, Cloetens P, Lingor P. α-Synuclein Over-Expression Induces Increased Iron Accumulation and Redistribution in Iron-Exposed Neurons. Mol Neurobiol 2015; 53:1925-1934. [DOI: 10.1007/s12035-015-9146-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/18/2015] [Indexed: 12/16/2022]
|
31
|
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014; 13:1045-60. [PMID: 25231526 DOI: 10.1016/s1474-4422(14)70117-6] [Citation(s) in RCA: 1260] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMMARY In the CNS, iron in several proteins is involved in many important processes such as oxygen transportation, oxidative phosphorylation, myelin production, and the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation and modification of lipids, proteins, carbohydrates, and DNA. During ageing, different iron complexes accumulate in brain regions associated with motor and cognitive impairment. In various neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, changes in iron homoeostasis result in altered cellular iron distribution and accumulation. MRI can often identify these changes, thus providing a potential diagnostic biomarker of neurodegenerative diseases. An important avenue to reduce iron accumulation is the use of iron chelators that are able to cross the blood-brain barrier, penetrate cells, and reduce excessive iron accumulation, thereby affording neuroprotection.
Collapse
Affiliation(s)
- Roberta J Ward
- Centre for Neuroinflammation and Neurodegeneration, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK; Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Robert R Crichton
- Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
32
|
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014. [PMID: 25231526 DOI: 10.1016/s1474-4422(14)70117-6.(] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In the CNS, iron in several proteins is involved in many important processes such as oxygen transportation, oxidative phosphorylation, myelin production, and the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation and modification of lipids, proteins, carbohydrates, and DNA. During ageing, different iron complexes accumulate in brain regions associated with motor and cognitive impairment. In various neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, changes in iron homoeostasis result in altered cellular iron distribution and accumulation. MRI can often identify these changes, thus providing a potential diagnostic biomarker of neurodegenerative diseases. An important avenue to reduce iron accumulation is the use of iron chelators that are able to cross the blood-brain barrier, penetrate cells, and reduce excessive iron accumulation, thereby affording neuroprotection.
Collapse
Affiliation(s)
- Roberta J Ward
- Centre for Neuroinflammation and Neurodegeneration, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK; Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Robert R Crichton
- Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
33
|
Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:581256. [PMID: 24527451 PMCID: PMC3914334 DOI: 10.1155/2014/581256] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits accompanying degeneration of substantia nigra pars compactor (SNc) neurons. Although familial forms of the disease exist, the cause of sporadic PD is unknown. Symptomatic treatments are available for PD, but there are no disease modifying therapies. While the neurodegenerative processes in PD may be multifactorial, this paper will review the evidence that prooxidant iron elevation in the SNc is an invariable feature of sporadic and familial PD forms, participates in the disease mechanism, and presents as a tractable target for a disease modifying therapy.
Collapse
|
34
|
Abstract
Parkinson's disease (PD) is a chronic, progressive, disabling neurodegenerative disorder that begins in mid to late life and is characterized by motor impairment, autonomic dysfunction, and, in many, psychological and cognitive changes. Recent advances have helped delineate pathogenetic mechanisms, yet the cause of PD in most individuals is unknown. Although at least 15 genes and genetic loci have been associated with PD, identified genetic causes are responsible for only a few percent of cases. Epidemiologic studies have found increased risk of PD associated with exposure to environmental toxicants such as pesticides, solvents, metals, and other pollutants, and many of these compounds recapitulate PD pathology in animal models. This review summarizes the environmental toxicology of PD, highlighting the consistency of observations across cellular, animal, and human studies of PD pathogenesis.
Collapse
|
35
|
Weinreb O, Mandel S, Youdim MBH, Amit T. Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic Biol Med 2013; 62:52-64. [PMID: 23376471 DOI: 10.1016/j.freeradbiomed.2013.01.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Brain iron accumulation has been implicated in a host of chronic neurological diseases, including Parkinson's disease (PD). The elevated iron levels observed in the substantia nigra of PD subjects have been suggested to incite the generation of reactive oxygen species and intracellular α-synuclein aggregation, terminating in the oxidative neuronal destruction of this brain area. Thus, elucidation of the molecular mechanisms involved in iron dysregulation and oxidative stress-induced neurodegeneration is a crucial step in deciphering PD pathology and in developing novel iron-complexing compounds aimed at restoring brain iron homeostasis and attenuating neurodegeneration. This review discusses the involvement of dysregulation of brain iron homeostasis in PD pathology, with an emphasis on the potential effectiveness of naturally occurring compounds and novel iron-chelating/antioxidant therapeutic hybrid molecules, exerting a spectrum of neuroprotective interrelated activities: antioxidant/monoamine oxidase inhibition, activation of the hypoxia-inducible factor (HIF)-1 signaling pathway, induction of HIF-1 target iron-regulatory and antioxidative genes, and inhibition of α-synuclein accumulation and aggregation.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Silvia Mandel
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
36
|
Funke C, Schneider SA, Berg D, Kell DB. Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int 2013; 62:637-52. [DOI: 10.1016/j.neuint.2012.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
|
37
|
|