1
|
Liu Q, Tian W. Association of human-specific expanded short tandem repeats with neuron-specific regulatory features. SCIENCE ADVANCES 2025; 11:eadp9707. [PMID: 40446031 PMCID: PMC12124357 DOI: 10.1126/sciadv.adp9707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/24/2025] [Indexed: 06/02/2025]
Abstract
Short tandem repeats (STRs), characterized by high-copy number mutations, represent one of the fastest-evolving genomic elements. However, human-specific expanded STRs (heSTRs) have lacked comprehensive genome-wide characterization. Leveraging 148 human and 26 nonhuman primate haploid genomes, we identified 8813 heSTRs with robust expansions in copy number distributions. Our analysis revealed notable associations between heSTRs and brain- and neuron-specific distal regulatory signals. Potential target genes regulated by heSTRs, identified by incorporating distal regulations, are enriched with neuronal development-related functions and disorders, displaying neuron-specific expression enhancement in humans. Moreover, heSTRs are associated with enhanced chromatin accessibility specifically in human neurons. In addition, heSTRs show substantial association with pathogenic STR loci exhibiting abnormal copy number variations, as reported by cohort studies on schizophrenia and autism. This study underscores the role of heSTRs in both human evolution and disorders, offering valuable insights for future research on STRs from an evolutionary perspective.
Collapse
Affiliation(s)
- Qiming Liu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Weidong Tian
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
- Children’s Hospital of Fudan University, Shanghai, China
- Children’s Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Ballester Roig MN, Roy PG, Hannou L, Delignat-Lavaud B, Sully Guerrier TA, Bélanger-Nelson E, Dufort-Gervais J, Mongrain V. Transcriptional regulation of the mouse EphA4, Ephrin-B2 and Ephrin-A3 genes by the circadian clock machinery. Chronobiol Int 2023; 40:983-1003. [PMID: 37551686 DOI: 10.1080/07420528.2023.2237580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Circadian rhythms originate from molecular feedback loops. In mammals, the transcription factors CLOCK and BMAL1 act on regulatory elements (i.e. E-boxes) to shape biological functions in a rhythmic manner. The EPHA4 receptor and its ligands Ephrins (EFN) are cell adhesion molecules regulating neurotransmission and neuronal morphology. Previous studies showed the presence of E-boxes in the genes of EphA4 and specific Ephrins, and that EphA4 knockout mice have an altered circadian rhythm of locomotor activity. We thus hypothesized that the core clock machinery regulates the gene expression of EphA4, EfnB2 and EfnA3. CLOCK and BMAL1 (or NPAS2 and BMAL2) were found to have transcriptional activity on distal and proximal regions of EphA4, EfnB2 and EfnA3 putative promoters. A constitutively active form of glycogen synthase kinase 3β (GSK3β; a negative regulator of CLOCK and BMAL1) blocked the transcriptional induction. Mutating the E-boxes of EphA4 distal promoter sequence reduced transcriptional induction. EPHA4 and EFNB2 protein levels did not show circadian variations in the mouse suprachiasmatic nucleus or prefrontal cortex. The findings uncover that core circadian transcription factors can regulate the gene expression of elements of the Eph/Ephrin system, which might contribute to circadian rhythmicity in biological processes in the brain or peripheral tissues.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| | - Pierre-Gabriel Roy
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Teo L, Boghdadi AG, Homman-Ludiye J, Mundinano IC, Kwan WC, Bourne JA. Replicating infant-specific reactive astrocyte functions in the injured adult brain. Prog Neurobiol 2021; 204:102108. [PMID: 34147584 DOI: 10.1016/j.pneurobio.2021.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Infants and adults respond differently to brain injuries. Specifically, improved neuronal sparing along with reduced astrogliosis and glial scarring often observed earlier in life, likely contributes to improved long-term outcomes. Understanding the underlying mechanisms could enable the recapitulation of neuroprotective effects, observed in infants, to benefit adults after brain injuries. We reveal that in primates, Eph/ ephrin signaling contributes to age-dependent reactive astrocyte behavior. Ephrin-A5 expression on astrocytes was more protracted in adults, whereas ephrin-A1 was only expressed on infant astrocytes. Furthermore, ephrin-A5 exacerbated major hallmarks of astrocyte reactivity via EphA2 and EphA4 receptors, which was subsequently alleviated by ephrin-A1. Rather than suppressing reactivity, ephrin-A1 signaling shifted astrocytes towards GAP43+ neuroprotection, accounting for improved neuronal sparing in infants. Reintroducing ephrin-A1 after middle-aged focal ischemic injury significantly attenuated glial scarring, improved neuronal sparing and preserved circuitry. Therefore, beneficial infant mechanisms can be recapitulated in adults to improve outcomes after CNS injuries.
Collapse
Affiliation(s)
- Leon Teo
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Anthony G Boghdadi
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Inaki-Carril Mundinano
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - William C Kwan
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia.
| |
Collapse
|
4
|
Shen W, Ba R, Su Y, Ni Y, Chen D, Xie W, Pleasure SJ, Zhao C. Foxg1 Regulates the Postnatal Development of Cortical Interneurons. Cereb Cortex 2020; 29:1547-1560. [PMID: 29912324 DOI: 10.1093/cercor/bhy051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Abnormalities in cortical interneurons are closely associated with neurological diseases. Most patients with Foxg1 syndrome experience seizures, suggesting a possible role of Foxg1 in the cortical interneuron development. Here, by conditional deletion of Foxg1, which was achieved by crossing Foxg1fl/fl with the Gad2-CreER line, we found the postnatal distributions of somatostatin-, calretinin-, and neuropeptide Y-positive interneurons in the cortex were impaired. Further investigations revealed an enhanced dendritic complexity and decreased migration capacity of Foxg1-deficient interneurons, accompanied by remarkable downregulation of Dlx1 and CXCR4. Overexpression of Dlx1 or knock down its downstream Pak3 rescued the differentiation detects, demonstrated that Foxg1 functioned upstream of Dlx1-Pak3 signal pathway to regulate the postnatal development of cortical interneurons. Due to the imbalanced neural circuit, Foxg1 mutants showed increased seizure susceptibility. These findings will improve our understanding of the postnatal development of interneurons and help to elucidate the mechanisms underlying seizure in patients carrying Foxg1 mutations.
Collapse
Affiliation(s)
- Wei Shen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yang Ni
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Dongsheng Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, P. R. China
| | - Samuel J Pleasure
- Department of Neurology, Weill Institute for Neuroscience, Programs in Neuroscience and Developmental Stem Cell Biology, UCSF, San Francisco, CA, USA
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China.,Center of Depression, Beijing Institute for Brain Disorders, Beijing 100069, People's Republic of China
| |
Collapse
|
5
|
Guo Y, He X, Zhao L, Liu L, Song H, Wang X, Xu J, Ju X, Guo W, Zhu X. Gβ2 Regulates the Multipolar-Bipolar Transition of Newborn Neurons in the Developing Neocortex. Cereb Cortex 2018; 27:3414-3426. [PMID: 28334111 DOI: 10.1093/cercor/bhx042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 01/14/2023] Open
Abstract
Proper neuronal migration is critical for the formation of the six-layered neocortex in the mammalian brain. However, the precise control of neuronal migration is not well understood. Heterotrimeric guanine nucleotide binding proteins (G proteins), composed of Gα and Gβγ, transduce signals from G protein-coupled receptors to downstream effectors and play crucial roles in brain development. However, the functions of individual subunits of G proteins in prenatal brain development remain unclear. Here, we report that Gβ2 is expressed in the embryonic neocortex, with abundant expression in the intermediate zone, and is significantly upregulated in differentiated neurons. Perturbation of Gβ2 expression impairs the morphogenetic transformation of migrating neurons from multipolar to bipolar and subsequently delays neuronal migration. Moreover, Gβ2 acts as a scaffold protein to organize the MP1-MEK1-ERK1/2 complex and mediates the phosphorylation of ERK1/2. Importantly, expression of a constitutively active variant of MEK1 rescues the migration defects that are caused by the loss of Gβ2. In conclusion, our findings reveal that Gβ2 regulates proper neuronal migration during neocortex development by activating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Ye Guo
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xiaoxiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Lu Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Lin Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Huifang Song
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xudong Wang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Jiahui Xu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xingda Ju
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Fukuda T, Yanagi S. Psychiatric behaviors associated with cytoskeletal defects in radial neuronal migration. Cell Mol Life Sci 2017; 74:3533-3552. [PMID: 28516224 PMCID: PMC11107632 DOI: 10.1007/s00018-017-2539-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
Abstract
Normal development of the cerebral cortex is an important process for higher brain functions, such as language, and cognitive and social functions. Psychiatric disorders, such as schizophrenia and autism, are thought to develop owing to various dysfunctions occurring during the development of the cerebral cortex. Radial neuronal migration in the embryonic cerebral cortex is a complex process, which is achieved by strict control of cytoskeletal dynamics, and impairments in this process are suggested to cause various psychiatric disorders. Our recent findings indicate that radial neuronal migration as well as psychiatric behaviors is rescued by controlling microtubule stability during the embryonic stage. In this review, we outline the relationship between psychiatric disorders, such as schizophrenia and autism, and radial neuronal migration in the cerebral cortex by focusing on the cytoskeleton and centrosomes. New treatment strategies for psychiatric disorders will be discussed.
Collapse
Affiliation(s)
- Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
7
|
Freyburger M, Poirier G, Carrier J, Mongrain V. Shorter duration of non-rapid eye movement sleep slow waves in EphA4 knockout mice. J Sleep Res 2017; 26:539-546. [PMID: 28488395 DOI: 10.1111/jsr.12532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/24/2017] [Indexed: 11/27/2022]
Abstract
Slow waves occurring during non-rapid eye movement sleep have been associated with neurobehavioural performance and memory. In addition, the duration of previous wakefulness and sleep impacts characteristics of these slow waves. However, molecular mechanisms regulating the dynamics of slow-wave characteristics remain poorly understood. The EphA4 receptor regulates glutamatergic transmission and synaptic plasticity, which have both been linked to sleep slow waves. To investigate if EphA4 regulates slow-wave characteristics during non-rapid eye movement sleep, we compared individual parameters of slow waves between EphA4 knockout mice and wild-type littermates under baseline conditions and after a 6-h sleep deprivation. We observed that, compared with wild-type mice, knockout mice display a shorter duration of positive and negative phases of slow waves under baseline conditions and after sleep deprivation. However, the mutation did not change slow-wave density, amplitude and slope, and did not affect the sleep deprivation-dependent changes in slow-wave characteristics, suggesting that EphA4 is not involved in the response to elevated sleep pressure. Our present findings suggest a role for EphA4 in shaping cortical oscillations during sleep that is independent from sleep need.
Collapse
Affiliation(s)
- Marlène Freyburger
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Gaétan Poirier
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
8
|
Poitz DM, Ende G, Stütz B, Augstein A, Friedrichs J, Brunssen C, Werner C, Strasser RH, Jellinghaus S. EphrinB2/EphA4-mediated activation of endothelial cells increases monocyte adhesion. Mol Immunol 2015; 68:648-56. [PMID: 26552760 DOI: 10.1016/j.molimm.2015.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 11/15/2022]
Abstract
The membrane anchored ligand ephrinB2 belongs to the broad Eph/ephrin system and is able to activate different Eph receptors. The Eph receptors belong to the huge group of receptor-tyrosine kinases. Eph receptors as well as their corresponding ephrin ligands are cell-membrane attached proteins. Therefore, direct cell-cell contact is essentially for interaction. It is known that ephrinB2 plays a pivotal role in developmental and in tumour angiogenesis. Previous studies point to a crucial role of the EphA4-receptor in the process of monocyte adhesion. Since ephrinB2 is known as an interaction partner of EphA4, the aim of the present study was to investigate a possible interplay of EphA4-receptor with ephrinB2 during monocyte adhesion to the endothelium. As verified by bulk adhesion assays and atomic-force microscopy based single-cell force spectroscopy, temporary stimulation of endothelial cells from different sources with the soluble ligand ephrinB2 increased monocyte adhesion to endothelial cells. The proadhesive effect of ephrinB2 was independent of an active transcription, but is mediated via the Rho signaling pathway with subsequent modulation of the actin cytoskeleton. Furthermore, ephrinB2 mediated its impact on monocyte adhesion via the receptor EphA4 as shown by siRNA-mediated silencing. Interestingly, ephrinB2 was induced by TNF-α treatment. Silencing of ephrinB2 led to a lowering of the TNF-α mediated monocyte adhesion to endothelial cells. Furthermore, immunohistochemical staining of human atherosclerotic plaque revealed expression of ephrinB2 in macrophages. The results of the present study point to a crucial role of ephrinB2 induced EphA4 forward signaling in the context of monocyte adhesion to endothelial cells. This transcription-independent effect is mediated by Rho signaling induced actin-filament polymerization.
Collapse
Affiliation(s)
- David M Poitz
- Department of Internal Medicine and Cardiology, TU Dresden, Germany.
| | - Georg Ende
- Department of Internal Medicine and Cardiology, TU Dresden, Germany
| | - Beryl Stütz
- Department of Internal Medicine and Cardiology, TU Dresden, Germany
| | - Antje Augstein
- Department of Internal Medicine and Cardiology, TU Dresden, Germany
| | - Jens Friedrichs
- Institute for Biofunctional Polymer Materials Dresden, Leibniz Institute of Polymer Research, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, TU Dresden, Germany
| | - Carsten Werner
- Institute for Biofunctional Polymer Materials Dresden, Leibniz Institute of Polymer Research, Germany
| | - Ruth H Strasser
- Department of Internal Medicine and Cardiology, TU Dresden, Germany
| | | |
Collapse
|
9
|
EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS One 2015; 10:e0126942. [PMID: 25978062 PMCID: PMC4433105 DOI: 10.1371/journal.pone.0126942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022] Open
Abstract
In mouse cerebral corticogenesis, neurons are generated from radial glial cells (RGCs) or from their immediate progeny, intermediate neuronal precursors (INPs). The balance between self-renewal of these neuronal precursors and specification of cell fate is critical for proper cortical development, but the signaling mechanisms that regulate this progression are poorly understood. EphA4, a member of the receptor tyrosine kinase superfamily, is expressed in RGCs during embryogenesis. To illuminate the function of EphA4 in RGC cell fate determination during early corticogenesis, we deleted Epha4 in cortical cells at E11.5 or E13.5. Loss of EphA4 at both stages led to precocious in vivo RGC differentiation toward neurogenesis. Cortical cells isolated at E14.5 and E15.5 from both deletion mutants showed reduced capacity for neurosphere formation with greater differentiation toward neurons. They also exhibited lower phosphorylation of ERK and FRS2α in the presence of FGF. The size of the cerebral cortex at P0 was smaller than that of controls when Epha4 was deleted at E11.5 but not when it was deleted at E13.5, although the cortical layers were formed normally in both mutants. The number of PAX6-positive RGCs decreased at later developmental stages only in the E11.5 Epha4 deletion mutant. These results suggest that EphA4, in cooperation with an FGF signal, contributes to the maintenance of RGC self-renewal and repression of RGC differentiation through the neuronal lineage. This function of EphA4 is especially critical and uncompensated in early stages of corticogenesis, and thus deletion at E11.5 reduces the size of the neonatal cortex.
Collapse
|
10
|
Cissé M, Checler F. Eph receptors: new players in Alzheimer's disease pathogenesis. Neurobiol Dis 2014; 73:137-49. [PMID: 25193466 DOI: 10.1016/j.nbd.2014.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is devastating and leads to permanent losses of memory and other cognitive functions. Although recent genetic evidences strongly argue for a causative role of Aβ in AD onset and progression (Jonsson et al., 2012), its role in AD etiology remains a matter of debate. However, even if not the sole culprit or pathological trigger, genetic and anatomical evidences in conjunction with numerous pharmacological studies, suggest that Aβ peptides, at least contribute to the disease. How Aβ contributes to memory loss remains largely unknown. Soluble Aβ species referred to as Aβ oligomers have been shown to be neurotoxic and induce network failure and cognitive deficits in animal models of the disease. In recent years, several proteins were described as potential Aβ oligomers receptors, amongst which are the receptor tyrosine kinases of Eph family. These receptors together with their natural ligands referred to as ephrins have been involved in a plethora of physiological and pathological processes, including embryonic neurogenesis, learning and memory, diabetes, cancers and anxiety. Here we review recent discoveries on Eph receptors-mediated protection against Aβ oligomers neurotoxicity as well as their potential as therapeutic targets in AD pathogenesis.
Collapse
Affiliation(s)
- Moustapha Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| |
Collapse
|