1
|
Zhong XL, Huang Y, Du Y, He LZ, Chen YW, Cheng Y, Liu H. Unlocking the Therapeutic Potential of Exosomes Derived From Nasal Olfactory Mucosal Mesenchymal Stem Cells: Restoring Synaptic Plasticity, Neurogenesis, and Neuroinflammation in Schizophrenia. Schizophr Bull 2024; 50:600-614. [PMID: 38086528 PMCID: PMC11059802 DOI: 10.1093/schbul/sbad172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SCZ) is a multifaceted mental disorder marked by a spectrum of symptoms, including hallucinations, delusions, cognitive deficits, and negative symptoms. Its etiology involves intricate interactions between genetic and environmental factors, posing significant challenges for effective treatment. We hypothesized that intranasal administration of exosomes derived from nasal olfactory mucosal mesenchymal stem cells (OM-MSCs-exos) could alleviate SCZ-like behaviors in a murine model induced by methylazoxymethanol (MAM). STUDY DESIGN We conducted a comprehensive investigation to assess the impact of intranasally delivered OM-MSC-exos on SCZ-like behaviors in MAM-induced mice. This study encompassed behavioral assessments, neuroinflammatory markers, glial activation, synaptic protein expression, and neurogenesis within the hippocampus. STUDY RESULTS Our findings demonstrated that intranasal administration of OM-MSC-exos effectively ameliorated SCZ-like behaviors, specifically addressing social withdrawal and sensory gating deficits in the MAM-induced murine model. Furthermore, OM-MSC-exos intervention yielded a reduction in neuroinflammatory markers and a suppression of microglial activation within the hippocampus. Simultaneously, we observed an upregulation of key synaptic protein expression, including PSD95 and TH, the rate-limiting enzyme for dopamine biosynthesis. CONCLUSIONS Our study underscores the therapeutic potential of OM-MSC-exos in mitigating SCZ-like behavior. The OM-MSC-exos have the capacity to modulate glial cell activation, diminish neuroinflammation, and promote BDNF-associated synaptic plasticity and neurogenesis, thus ameliorating SCZ-like behaviors. In summary, intranasal administration of OM-MSC-exos offers a multifaceted approach to address SCZ mechanisms, promising innovative treatments for this intricate disorder.
Collapse
Affiliation(s)
- Xiao-Lin Zhong
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
- First Clinical Department, Changsha Medical University, Changsha, Hunan 410219, P.R.China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Li-Zheng He
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yue-wen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Hua Liu
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| |
Collapse
|
2
|
Pan C, Cheng S, Liu L, Chen Y, Meng P, Yang X, Li C, Zhang J, Zhang Z, Zhang H, Cheng B, Wen Y, Jia Y, Zhang F. Identification of novel rare variants for anxiety: an exome-wide association study in the UK Biobank. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110928. [PMID: 38154517 DOI: 10.1016/j.pnpbp.2023.110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Rare variants are believed to play a substantial role in the genetic architecture of mental disorders, particularly in coding regions. However, limited evidence supports the impact of rare variants on anxiety. METHODS Using whole-exome sequencing data from 200,643 participants in the UK Biobank, we investigated the contribution of rare variants to anxiety. Firstly, we computed genetic risk score (GRS) of anxiety utilizing genotype data and summary data from a genome-wide association study (GWAS) on anxiety disorder. Subsequently, we identified individuals within the lowest 50% GRS, a subgroup more likely to carry pathogenic rare variants. Within this subgroup, we classified individuals with the highest 10% 7-item Generalized Anxiety Disorder scale (GAD-7) score as cases (N = 1869), and those with the lowest 10% GAD-7 score were designated as controls (N = 1869). Finally, we conducted gene-based burden tests and single-variant association analyses to assess the relationship between rare variants and anxiety. RESULTS Totally, 47,800 variants with MAF ≤0.01 were annotated as non-benign coding variants, consisting of 42,698 nonsynonymous SNVs, 489 nonframeshift substitution, 236 frameshift substitution, 617 stop-gain and 40 stop-loss variants. After variation aggregation, 5066 genes were included in gene-based association analysis. Totally, 11 candidate genes were detected in burden test, such as RNF123 (PBonferroni adjusted = 3.40 × 10-6), MOAP1(PBonferroni adjusted = 4.35 × 10-4), CCDC110 (PBonferroni adjusted = 5.83 × 10-4). Single-variant test detected 9 rare variants, such as rs35726701(RNF123)(PBonferroni adjusted = 3.16 × 10-10) and rs16942615(CAMTA2) (PBonferroni adjusted = 4.04 × 10-4). Notably, RNF123, CCDC110, DNAH2, and CSKMT gene were identified in both tests. CONCLUSIONS Our study identified novel candidate genes for anxiety in protein-coding regions, revealing the contribution of rare variants to anxiety.
Collapse
Affiliation(s)
- Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.
| |
Collapse
|
3
|
Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao YN, Su BW, Gao P, Man ZY, Luo YY, Li CJ, Xiang ZX, Wang B, Luan ZL. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 2024; 39:147-171. [PMID: 37542622 DOI: 10.1007/s11011-023-01271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chong Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zi-Yue Man
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central hospital of Dalian University of Technology, Dalian, 116000, China.
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Xie W, Xing N, Qu J, Liu D, Pang Q. The Physiological Function of nNOS-Associated CAPON Proteins and the Roles of CAPON in Diseases. Int J Mol Sci 2023; 24:15808. [PMID: 37958792 PMCID: PMC10647562 DOI: 10.3390/ijms242115808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this review, the structure, isoform, and physiological role of the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) are summarized. There are three isoforms of CAPON in humans, including long CAPON protein (CAPON-L), short CAPON protein (CAPON-S), and CAPON-S' protein. CAPON-L includes three functional regions: a C-terminal PDZ-binding motif, carboxypeptidase (CPE)-binding region, and N-terminal phosphotyrosine (PTB) structural domain. Both CAPON-S and CAPON-S' only contain the C-terminal PDZ-binding motif. The C-terminal PDZ-binding motif of CAPON can bind with neuronal nitric oxide synthase (nNOS) and participates in regulating NO production and neuronal development. An overview is given on the relationship between CAPON and heart diseases, diabetes, psychiatric disorders, and tumors. This review will clarify future research directions on the signal pathways related to CAPON, which will be helpful for studying the regulatory mechanism of CAPON. CAPON may be used as a drug target, which will provide new ideas and solutions for treating human diseases.
Collapse
Affiliation(s)
| | | | | | - Dongwu Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| | - Qiuxiang Pang
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| |
Collapse
|
5
|
Yi X, Li M, He G, Du H, Li X, Cao D, Wang L, Wu X, Yang F, Chen X, He L, Ping Y, Zhou D. Genetic and functional analysis reveals TENM4 contributes to schizophrenia. iScience 2021; 24:103063. [PMID: 34568788 PMCID: PMC8449235 DOI: 10.1016/j.isci.2021.103063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/23/2021] [Accepted: 08/26/2021] [Indexed: 12/09/2022] Open
Abstract
TENM4, encoding a member of the teneurin protein family, is a risk gene shared by many types of mental diseases and is implicated in neuronal plasticity and signaling. However, the role and the mechanisms of TENM4 in schizophrenia (SCZ) remain unclear. We identified possible pathogenic mutations in the TENM4 gene through target sequencing of TENM4 in 68 SCZ families. We further demonstrated that aberrant expression of Ten-m leads to lower learning ability, sleep reduction, and increased aggressiveness in animal models. RNA sequencing showed that aberrant expression of Ten-m was related to stimulus perception and metabolic process, and Gene Ontology enrichment terms were neurogenesis and ATPase activity. This study provides strong evidence that TENM4 contributes to SCZ, and its functional mutations might be responsible for the impaired neural circuits and behaviors observed in SCZ. Possible pathogenic rare missense mutations in TENM4 gene contribute to SCZ Aberrant expression of Ten-m leads to behavioral disturbances related to SCZ symptoms Ten-m affects stimulation, metabolic process, neurogenesis, and ATPase activity
Collapse
Affiliation(s)
- Xin Yi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Minzhe Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Xu Chen
- Department of Neurology, Shanghai Eighth People's Hospital, Shanghai Sixth People's Hospital Xuhui Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daizhan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| |
Collapse
|
6
|
Priya I, Sharma I, Sharma S, Gupta S, Arora M, Bhat GR, Mahajan R, Kapoor N. Genetic association of DISC1 variant rs3738401 with susceptibility to Schizophrenia risk in North Indian population. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
7
|
Reduced Firing of Nucleus Accumbens Parvalbumin Interneurons Impairs Risk Avoidance in DISC1 Transgenic Mice. Neurosci Bull 2021; 37:1325-1338. [PMID: 34143365 PMCID: PMC8423984 DOI: 10.1007/s12264-021-00731-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
A strong animal survival instinct is to approach objects and situations that are of benefit and to avoid risk. In humans, a large proportion of mental disorders are accompanied by impairments in risk avoidance. One of the most important genes involved in mental disorders is disrupted-in-schizophrenia-1 (DISC1), and animal models in which this gene has some level of dysfunction show emotion-related impairments. However, it is not known whether DISC1 mouse models have an impairment in avoiding potential risks. In the present study, we used DISC1-N terminal truncation (DISC1-NTM) mice to investigate risk avoidance and found that these mice were impaired in risk avoidance on the elevated plus maze (EPM) and showed reduced social preference in a three-chamber social interaction test. Following EPM tests, c-Fos expression levels indicated that the nucleus accumbens (NAc) was associated with risk-avoidance behavior in DISC1-NTM mice. In addition, in vivo electrophysiological recordings following tamoxifen administration showed that the firing rates of fast-spiking neurons (FS) in the NAc were significantly lower in DISC1-NTM mice than in wild-type (WT) mice. In addition, in vitro patch clamp recording revealed that the frequency of action potentials stimulated by current injection was lower in parvalbumin (PV) neurons in the NAc of DISC1-NTM mice than in WT controls. The impairment of risk avoidance in DISC1-NTM mice was rescued using optogenetic tools that activated NAcPV neurons. Finally, inhibition of the activity of NAcPV neurons in PV-Cre mice mimicked the risk-avoidance impairment found in DISC1-NTM mice during tests on the elevated zero maze. Taken together, our findings confirm an impairment in risk avoidance in DISC1-NTM mice and suggest that reduced excitability of NAcPV neurons is responsible.
Collapse
|
8
|
Mizuki Y, Sakamoto S, Okahisa Y, Yada Y, Hashimoto N, Takaki M, Yamada N. Mechanisms Underlying the Comorbidity of Schizophrenia and Type 2 Diabetes Mellitus. Int J Neuropsychopharmacol 2021; 24:367-382. [PMID: 33315097 PMCID: PMC8130204 DOI: 10.1093/ijnp/pyaa097] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The mortality rate of patients with schizophrenia is high, and life expectancy is shorter by 10 to 20 years. Metabolic abnormalities including type 2 diabetes mellitus (T2DM) are among the main reasons. The prevalence of T2DM in patients with schizophrenia may be epidemiologically frequent because antipsychotics induce weight gain as a side effect and the cognitive dysfunction of patients with schizophrenia relates to a disordered lifestyle, poor diet, and low socioeconomic status. Apart from these common risk factors and risk factors unique to schizophrenia, accumulating evidence suggests the existence of common susceptibility genes between schizophrenia and T2DM. Functional proteins translated from common genetic susceptibility genes are known to regulate neuronal development in the brain and insulin in the pancreas through several common cascades. In this review, we discuss common susceptibility genes, functional cascades, and the relationship between schizophrenia and T2DM. Many genetic and epidemiological studies have reliably associated the comorbidity of schizophrenia and T2DM, and it is probably safe to think that common cascades and mechanisms suspected from common genes' functions are related to the onset of both schizophrenia and T2DM. On the other hand, even when genetic analyses are performed on a relatively large number of comorbid patients, the results are sometimes inconsistent, and susceptibility genes may carry only a low or moderate risk. We anticipate future directions in this field.
Collapse
Affiliation(s)
- Yutaka Mizuki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Shimonoseki Hospital
| | - Shinji Sakamoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuji Yada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Okayama Psychiatric Medical Center
| | - Nozomu Hashimoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- Okayama Psychiatric Medical Center
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
9
|
SNPs associated with Schizophrenia: Evidence from Iranian patients. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Gilabert-Juan J, López-Campos G, Sebastiá-Ortega N, Guara-Ciurana S, Ruso-Julve F, Prieto C, Crespo-Facorro B, Sanjuán J, Moltó MD. Time dependent expression of the blood biomarkers EIF2D and TOX in patients with schizophrenia. Brain Behav Immun 2019; 80:909-915. [PMID: 31078689 DOI: 10.1016/j.bbi.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND During last years, there has been an intensive search for blood biomarkers in schizophrenia to assist in diagnosis, prognosis and clinical management of the disease. METHODS In this study, we first conducted a weighted gene coexpression network analysis to address differentially expressed genes in peripheral blood from patients with chronic schizophrenia (n = 30) and healthy controls (n = 15). The discriminating performance of the candidate genes was further tested in an independent cohort of patients with first-episode schizophrenia (n = 124) and healthy controls (n = 54), and in postmortem brain samples (cingulate and prefrontal cortices) from patients with schizophrenia (n = 34) and healthy controls (n = 35). RESULTS The expression of the Eukaryotic Translation Initiation Factor 2D (EIF2D) gene, which is involved in protein synthesis regulation, was increased in the chronic patients of schizophrenia. On the contrary, the expression of the Thymocyte Selection-Associated High Mobility Group Box (TOX) gene, involved in immune function, was reduced. EIF2D expression was also altered in first-episode schizophrenia patients, but showing reduced levels. Any of the postmortem brain areas studied did not show differences of expression of both genes. CONCLUSIONS EIF2D and TOX are putative blood markers of chronic patients of schizophrenia, which expression change from the onset to the chronic disease, unraveling new biological pathways that can be used for the development of new intervention strategies in the diagnosis and prognosis of schizophrenia disease.
Collapse
Affiliation(s)
- Javier Gilabert-Juan
- Department of Genetics, Universitat de València, Valencia, Spain; Neurobiology Unit, Cell Biology Department, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain.
| | | | - Noelia Sebastiá-Ortega
- Department of Genetics, Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain
| | | | - Fulgencio Ruso-Julve
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Carlos Prieto
- Servicio de Bioinformática, Nucleus, Universidad de Salamanca, Salamanca, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Julio Sanjuán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain; Unit of Psychiatry, Universitat de València, Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain
| |
Collapse
|
11
|
Integrating genome-wide association study with regulatory SNP annotation information identified candidate genes and pathways for schizophrenia. Aging (Albany NY) 2019; 11:3704-3715. [PMID: 31175266 PMCID: PMC6594824 DOI: 10.18632/aging.102008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder. The genetic mechanism of schizophrenia remains elusive now. METHODS We conducted a large-scale integrative analysis of two genome-wide association studies of schizophrenia with functional annotation datasets of regulatory single-nucleotide polymorphism (rSNP). The significant SNPs identified by the two genome-wide association studies were first annotated to obtain schizophrenia associated rSNPs and their target genes and proteins, respectively. We then compared the integrative analysis results to identify the common rSNPs and their target regulatory genes and proteins, shared by the two genome-wide association studies of schizophrenia. Finally, DAVID tool was used to conduct gene ontology and pathway enrichment analysis of the identified targets genes and proteins. RESULTS We detected 53 schizophrenia-associated target genes for rSNP, such as FOS (P value = 2.18×10-20), ATXN1 (P value = 5.22×10-21) and HLA-DQA1 (P value = 1.98×10-10). Pathway enrichment analysis identified 24 pathways for transcription factors binding regions, chromatin interacting regions, long non-coding RNAs, topologically associated domains, circular RNAs and post-translational modifications, such as hsa05034:Alcoholism (P value = 2.57×10-7) and hsa04612:Antigen processing and presentation (P value = 6.82×10-8). CONCLUSION We detected multiple candidate genes, gene ontology terms and pathways for schizophrenia, supporting the functional importance of rSNPs, and providing novel clues for understanding the genetic architecture of schizophrenia.
Collapse
|
12
|
Hsiung A, Naya FJ, Chen X, Shiang R. A schizophrenia associated CMYA5 allele displays differential binding with desmin. J Psychiatr Res 2019; 111:8-15. [PMID: 30658136 PMCID: PMC6467702 DOI: 10.1016/j.jpsychires.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/28/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022]
Abstract
CMYA5 is a candidate gene for schizophrenia because of the genetic association of variant rs10043986 (C > T) to this severe mental disorder. Studies of CMYA5 and its gene product, myospryn, in the brain and neuronal cells have not been previously reported. The SNP rs10043986 changes the 4,063rd amino acid from Pro to Leu, which is likely to alter protein function. To understand its potential role in the brain, we examined the neuronal expression of myospryn and its binding partner, desmin, an intermediate filament (IF) protein, and investigated how the two alleles of myospryn affect its binding to desmin. Myospryn and desmin are shown to be expressed in the brain and myospryn is shown to localize to the cytoplasm and nucleus of myoblast, neuroblastoma, and glioblastoma cell lines. Peripherin and vimentin, known brain IF proteins, have high protein similarity to desmin but were found not to interact with myospryn using yeast two-hybrid (Y2H). Using a quantitative Y2H assay and surface plasmon resonance, the T allele (Leu) of rs10043986 was found to have stronger binding to desmin than the C allele (Pro). Based on findings described in this report, we hypothesize that the interaction between myospryn to IF provides structural support and efficient rearrangement of the cytoskeleton network during early neuritogenesis.
Collapse
Affiliation(s)
- Anting Hsiung
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0033, USA.
| | - Francisco J Naya
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| | - Xiangning Chen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0033, USA; Department of Psychiatry, Virginia Commonwealth University, 1200 East Broad Street, Richmond, VA, 23298-0710, USA; Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV, 89154-4009, USA.
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0033, USA.
| |
Collapse
|
13
|
Zhuo C, Wang D, Zhou C, Chen C, Li J, Tian H, Li S, Ji F, Liu C, Chen M, Zhang L. Double-Edged Sword of Tumour Suppressor Genes in Schizophrenia. Front Mol Neurosci 2019; 12:1. [PMID: 30809121 PMCID: PMC6379290 DOI: 10.3389/fnmol.2019.00001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia (SCZ) is a common psychiatric disorder with polygenetic pathogenesis. Among the many identified candidate genes and loci, the group of tumour suppressor genes has drawn our interest. In this mini-review article, we describe evidence of a correlation between major tumour suppressor genes and SCZ development. Genetic mutations ranging from single nucleotide polymorphisms to large structural alterations have been found in tumour-related genes in patients with SCZ. Epigenetic mechanisms, including DNA methylation/acetylation and microRNA regulation of tumour suppressor genes, have also been implicated in SCZ. Beyond genetic correlations, we hope to establish causal relationships between tumour suppressor gene function and SCZ risk. Accumulating evidence shows that tumour suppressor genes may mediate cell survival and neural development, both of which contribute to SCZ aetiology. Moreover, converging intracellular signalling pathways indicate a role of tumour suppressor genes in SCZ pathogenesis. Tumour suppressor gene function may mediate a direct link between neural development and function and psychiatric disorders, including SCZ. A deeper understanding of how neural cell development is affected by tumour suppressors may lead to improved anti-psychotic drugs.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Dawei Wang
- Department of Neuroimaging Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Chunhua Zhou
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Jie Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Hongjun Tian
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Shen Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China
| | - Feng Ji
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Chuanxin Liu
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Min Chen
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Piluso G, Monteleone P, Galderisi S, Giugliano T, Bertolino A, Rocca P, Rossi A, Mucci A, Aguglia E, Andriola I, Bellomo A, Comparelli A, Gambi F, Fagiolini A, Marchesi C, Roncone R, Sacchetti E, Santonastaso P, Siracusano A, Stratta P, Tortorella A, Steardo L, Bucci P, Nigro V, Maj M. Assessment of de novo copy-number variations in Italian patients with schizophrenia: Detection of putative mutations involving regulatory enhancer elements. World J Biol Psychiatry 2019; 20:126-136. [PMID: 29069978 DOI: 10.1080/15622975.2017.1395072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Variants appearing de novo in genes regulating key neurodevelopmental processes and/or in non-coding cis-regulatory elements (CREs), as enhancers, may increase the risk for schizophrenia. However, CREs involvement in schizophrenia needs to be explored more deeply. METHODS We investigated de novo copy-number variations (CNVs) in the whole-genomic DNA obtained from 46 family trios of schizophrenia probands by using the Enhancer Chip, a customised array CGH able to investigate the whole genome with a 300-kb resolution, specific disease loci at a ten-fold higher resolution, and which was highly enriched in probes in more than 1,250 enhancer elements selected from Vista Enhancer Browser. RESULTS In seven patients, we found de novo CNVs, two of which overlapped VISTA enhancer elements. De novo CNVs encompass genes (CNTNAP2, MAGI1, TSPAN7 and MET) involved in brain development, while that involving the enhancer element hs1043, also includes ZIC1, which plays a role in neural development and is responsible of behavioural abnormalities in Zic mutant mice. CONCLUSIONS These findings provide further evidence for the involvement of de novo CNVs in the pathogenesis of schizophrenia and suggest that CNVs affecting regulatory enhancer elements could contribute to the genetic vulnerability to the disorder.
Collapse
Affiliation(s)
- Giulio Piluso
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Palmiero Monteleone
- b Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Neuroscience , University of Salerno , Salerno , Italy
| | - Silvana Galderisi
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Teresa Giugliano
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Alessandro Bertolino
- d Department of Neurological and Psychiatric Sciences , University of Bari , Bari , Italy
| | - Paola Rocca
- e Department of Neuroscience, Section of Psychiatry , University of Turin , Turin , Italy
| | - Alessandro Rossi
- f Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry , University of L'Aquila , L'Aquila , Italy
| | - Armida Mucci
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Eugenio Aguglia
- g Department of Clinical and Molecular Biomedicine, Psychiatry Unit , University of Catania , Catania , Italy
| | - Ileana Andriola
- d Department of Neurological and Psychiatric Sciences , University of Bari , Bari , Italy
| | - Antonello Bellomo
- h Department of Medical Sciences, Psychiatry Unit , University of Foggia , Foggia , Italy
| | - Anna Comparelli
- i Department of Neurosciences, Mental Health and Sensory Organs , S. Andrea Hospital, Sapienza University of Rome , Rome , Italy
| | - Francesco Gambi
- j Department of Neuroscience and Imaging, Chair of Psychiatry , G. D'Annunzio University , Chieti , Italy
| | - Andrea Fagiolini
- k Department of Molecular Medicine and Clinical Department of Mental Health , University of Siena , Siena , Italy
| | - Carlo Marchesi
- l Department of Neuroscience, Psychiatry Unit , University of Parma , Parma , Italy
| | - Rita Roncone
- m Department of Life, Health and Environmental Sciences, Unit of Psychiatry , University of L'Aquila , L'Aquila , Italy
| | - Emilio Sacchetti
- n Psychiatric Unit, School of Medicine, Department of Mental Health , University of Brescia and Spedali Civili Hospital , Brescia , Italy
| | - Paolo Santonastaso
- o Psychiatric Clinic, Department of Neurosciences , University of Padua , Padua , Italy
| | - Alberto Siracusano
- p Department of Systems Medicine, Chair of Psychiatry , Tor Vergata University of Rome , Rome , Italy
| | - Paolo Stratta
- f Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry , University of L'Aquila , L'Aquila , Italy
| | | | - Luca Steardo
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Paola Bucci
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Vincenzo Nigro
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Mario Maj
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | | |
Collapse
|
15
|
Solana C, Pereira D, Tarazona R. Early Senescence and Leukocyte Telomere Shortening in SCHIZOPHRENIA: A Role for Cytomegalovirus Infection? Brain Sci 2018; 8:brainsci8100188. [PMID: 30340343 PMCID: PMC6210638 DOI: 10.3390/brainsci8100188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a severe, chronic mental disorder characterized by delusions and hallucinations. Several evidences support the link of schizophrenia with accelerated telomeres shortening and accelerated aging. Thus, schizophrenia patients show higher mortality compared to age-matched healthy donors. The etiology of schizophrenia is multifactorial, involving genetic and environmental factors. Telomere erosion has been shown to be accelerated by different factors including environmental factors such as cigarette smoking and chronic alcohol consumption or by psychosocial stress such as childhood maltreatment. In humans, telomere studies have mainly relied on measurements of leukocyte telomere length and it is generally accepted that individuals with short leukocyte telomere length are considered biologically older than those with longer ones. A dysregulation of both innate and adaptive immune systems has been described in schizophrenia patients and other mental diseases supporting the contribution of the immune system to disease symptoms. Thus, it has been suggested that abnormal immune activation with high pro-inflammatory cytokine production in response to still undefined environmental agents such as herpesviruses infections can be involved in the pathogenesis and pathophysiology of schizophrenia. It has been proposed that chronic inflammation and oxidative stress are involved in the course of schizophrenia illness, early onset of cardiovascular disease, accelerated aging, and premature mortality in schizophrenia. Prenatal or neonatal exposures to neurotropic pathogens such as Cytomegalovirus or Toxoplasma gondii have been proposed as environmental risk factors for schizophrenia in individuals with a risk genetic background. Thus, pro-inflammatory cytokines and microglia activation, together with genetic vulnerability, are considered etiological factors for schizophrenia, and support that inflammation status is involved in the course of illness in schizophrenia.
Collapse
Affiliation(s)
- Corona Solana
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Diana Pereira
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Raquel Tarazona
- Immunology Unit, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
16
|
Liu F, Tian H, Li J, Li S, Zhuo C. Altered voxel-wise gray matter structural brain networks in schizophrenia: Association with brain genetic expression pattern. Brain Imaging Behav 2018; 13:493-502. [DOI: 10.1007/s11682-018-9880-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Abstract
Imaging genetics is a research methodology studying the effect of genetic variation on brain structure, function, behavior, and risk for psychopathology. Since the early 2000s, imaging genetics has been increasingly used in the research of schizophrenia (SZ). SZ is a severe mental disorder with no precise knowledge of its underlying neurobiology, however, new genetic and neurobiological data generate a climate for new avenues. The accumulating data of genome wide association studies (GWAS) continuously decode SZ risk genes. Global neuroimaging consortia produce collections of brain phenotypes from tens of thousands of people. In this context, imaging genetics will be strategically important both for the validation and discovery of SZ related findings. Thus, the study of GWAS supported risk variants as candidate genes to validate by neuroimaging is one trend. The study of epigenetic differences in relation to variations of brain phenotypes and the study of large scale multivariate analysis of genome wide and brain wide associations are other trends. While these studies hold a big potential for understanding the neurobiology of SZ, the problem of reproducibility appears as a major challenge, which requires standardizations in study designs and compensations of methodological limitations such as sensitivity and specificity. On the other hand, advancements of neuroimaging, optical and electron microscopy along with the use of genetically encoded fluorescent probes and robust statistical approaches will not only catalyze integrative methodologies but also will help better design the imaging genetics studies. In this invited paper, I will discuss the current perspective of imaging genetics and emerging opportunities of SZ research.
Collapse
Affiliation(s)
- Ayla Arslan
- Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina; Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey.
| |
Collapse
|
18
|
Porcelli S, Lee SJ, Han C, Patkar AA, Albani D, Jun TY, Pae CU, Serretti A. Hot Genes in Schizophrenia: How Clinical Datasets Could Help to Refine their Role. J Mol Neurosci 2017; 64:273-286. [DOI: 10.1007/s12031-017-1016-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
|
19
|
Zhuo C, Hou W, Lin C, Hu L, Li J. Potential Value of Genomic Copy Number Variations in Schizophrenia. Front Mol Neurosci 2017; 10:204. [PMID: 28680393 PMCID: PMC5478687 DOI: 10.3389/fnmol.2017.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting approximately 1% of the global population, and the disease has imposed a considerable burden on families and society. Although, the exact cause of schizophrenia remains unknown, several lines of scientific evidence have revealed that genetic variants are strongly correlated with the development and early onset of the disease. In fact, the heritability among patients suffering from schizophrenia is as high as 80%. Genomic copy number variations (CNVs) are one of the main forms of genomic variations, ubiquitously occurring in the human genome. An increasing number of studies have shown that CNVs account for population diversity and genetically related diseases, including schizophrenia. The last decade has witnessed rapid advances in the development of novel genomic technologies, which have led to the identification of schizophrenia-associated CNVs, insight into the roles of the affected genes in their intervals in schizophrenia, and successful manipulation of the target CNVs. In this review, we focus on the recent discoveries of important CNVs that are associated with schizophrenia and outline the potential values that the study of CNVs will bring to the areas of schizophrenia research, diagnosis, and therapy. Furthermore, with the help of the novel genetic tool known as the Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9) system, the pathogenic CNVs as genomic defects could be corrected. In conclusion, the recent novel findings of schizophrenia-associated CNVs offer an exciting opportunity for schizophrenia research to decipher the pathological mechanisms underlying the onset and development of schizophrenia as well as to provide potential clinical applications in genetic counseling, diagnosis, and therapy for this complex mental disease.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychological Medicine, Wenzhou Seventh People's HospitalWenzhou, China.,Department of Psychological Medicine, Tianjin Anding HospitalTianjin, China
| | - Weihong Hou
- Department of Biology, University of North Carolina at CharlotteCharlotte, NC, United States.,Department of Biochemistry and Molecular Biology, Zhengzhou UniversityZhengzhou, China
| | - Chongguang Lin
- Department of Psychological Medicine, Wenzhou Seventh People's HospitalWenzhou, China
| | - Lirong Hu
- Department of Psychological Medicine, Wenzhou Seventh People's HospitalWenzhou, China
| | - Jie Li
- Department of Psychological Medicine, Tianjin Anding HospitalTianjin, China
| |
Collapse
|
20
|
Yu S, Yu CL, Huang YC, Tu HP, Lan CC. Risk of developing psoriasis in patients with schizophrenia: a nationwide retrospective cohort study. J Eur Acad Dermatol Venereol 2017; 31:1497-1504. [DOI: 10.1111/jdv.14303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Affiliation(s)
- S. Yu
- Graduate Institute of Clinical Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; Kaohsiung Municipal Ta-Tung Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
| | - C.-L. Yu
- Taipei Cancer Center; Taipei Medical University Hospital; Taipei Medical University; Taipei Taiwan
| | - Y.-C. Huang
- Graduate Institute of Clinical Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Psychiatry; Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - H.-P. Tu
- Department of Public Health and Environmental Medicine; School of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Medical Research; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
| | - C.-C.E. Lan
- Department of Dermatology; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
21
|
|
22
|
Romme IAC, de Reus MA, Ophoff RA, Kahn RS, van den Heuvel MP. Connectome Disconnectivity and Cortical Gene Expression in Patients With Schizophrenia. Biol Psychiatry 2017; 81:495-502. [PMID: 27720199 DOI: 10.1016/j.biopsych.2016.07.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genome-wide association studies have identified several common risk loci for schizophrenia (SCZ). In parallel, neuroimaging studies have shown consistent findings of widespread white matter disconnectivity in patients with SCZ. METHODS We examined the role of genes in brain connectivity in patients with SCZ by combining transcriptional profiles of 43 SCZ risk genes identified by the recent genome-wide association study of the Schizophrenia Working Group of the Psychiatric Genomics Consortium with data on macroscale connectivity reductions in patients with SCZ. Expression profiles of 43 Psychiatric Genomics Consortium SCZ risk genes were extracted from the Allen Human Brain Atlas, and their average profile across the cortex was correlated to the pattern of cortical disconnectivity as derived from diffusion-weighted magnetic resonance imaging data of patients with SCZ (n = 48) and matched healthy controls (n = 43). RESULTS The expression profile of SCZ risk genes across cortical regions was significantly correlated with the regional macroscale disconnectivity (r = .588; p = .017). In addition, effects were found to be potentially specific to SCZ, with transcriptional profiles not related to cortical disconnectivity in patients with bipolar I disorder (diffusion-weighted magnetic resonance imaging data; 216 patients, 144 controls). Further examination of correlations across all 20,737 genes present in the Allen Human Brain Atlas showed the set of top 100 strongest correlating genes to display significant enrichment for the disorder, potentially identifying new genes involved in the pathophysiology of SCZ. CONCLUSIONS Our results suggest that under disease conditions, cortical areas with pronounced expression of risk genes implicated in SCZ form central areas for white matter disconnectivity.
Collapse
Affiliation(s)
- Ingrid A C Romme
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A de Reus
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands; Center for Neurobehavioral Genetics and Department of Human Genetics , University of California Los Angeles, Los Angeles, California
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Flaherty EK, Brennand KJ. Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Res 2017; 1655:283-293. [PMID: 26581337 PMCID: PMC4865445 DOI: 10.1016/j.brainres.2015.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a neuropsychological disorder with a strong heritable component; genetic risk for schizophrenia is conferred by both common variants of relatively small effect and rare variants with high penetrance. Genetically engineered mouse models can recapitulate rare variants, displaying some behavioral defects associated with schizophrenia; however, these mouse models cannot recapitulate the full genetic architecture underlying the disorder. Patient-derived human induced pluripotent stem cells (hiPSCs) present an alternative approach for studying rare variants, in the context of all other risk alleles. Genome editing technologies, such as CRISPR-Cas9, enable the generation of isogenic hiPSC lines with which to examine the functional contribution of single variants within any genetic background. Studies of these rare variants using hiPSCs have the potential to identify commonly disrupted pathways in schizophrenia and allow for the identification of new therapeutic targets. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Erin K Flaherty
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1425 Madison Ave, New York, NY 10029, United States
| | - Kristen J Brennand
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1425 Madison Ave, New York, NY 10029, United States.
| |
Collapse
|
24
|
Santoro ML, Moretti PN, Pellegrino R, Gadelha A, Abílio VC, Hayashi MAF, Belangero SI, Hakonarson H. A current snapshot of common genomic variants contribution in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2016; 171:997-1005. [PMID: 27486013 DOI: 10.1002/ajmg.b.32475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022]
Abstract
In the past decade, numerous advances were achieved in psychiatric genetics. Particularly, the genome wide association studies (GWAS) have contributed to uncovering new genes and pathways associated to psychiatric disorders (PDs). At the same time, with increasing sample sizes in the GWAS, the polygenic risk score (PRS) promoted an additional tool for identification and evaluation the genetic risk quantitatively in PDs. This concept review presents the state of the art GWAS analysis and PRS focusing on the genetic underpinnings of PDs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marcos L Santoro
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Genetics Division, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Patricia N Moretti
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Genetics Division, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ary Gadelha
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Vanessa C Abílio
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Department of Pharmacology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Mirian A F Hayashi
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Department of Pharmacology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Sintia I Belangero
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
- Genetics Division, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Hopes and Expectations Regarding Genetic Testing for Schizophrenia Among Young Adults at Clinical High-Risk for Psychosis. J Psychiatr Pract 2016; 22:442-449. [PMID: 27824776 PMCID: PMC5111622 DOI: 10.1097/pra.0000000000000188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genetic tests for schizophrenia could introduce both risks and benefits. Little is known about the hopes and expectations of young adults at clinical high-risk for psychosis concerning genetic testing for schizophrenia, despite the fact that these youth could be among those highly affected by such tests. We conducted semistructured interviews with 15 young adults at clinical high-risk for psychosis to ask about their interest, expectations, and hopes regarding genetic testing for schizophrenia. Most participants reported a high level of interest in genetic testing for schizophrenia, and the majority said they would take such a test immediately if it were available. Some expressed far-reaching expectations for a genetic test, such as predicting symptom severity and the timing of symptom onset. Several assumed that genetic testing would be accompanied by interventions to prevent schizophrenia. Participants anticipated mixed reactions on finding out they had a genetic risk for schizophrenia, suggesting that they might feel both a sense of relief and a sense of hopelessness. We suggest that genetic counseling could play an important role in counteracting a culture of genetic over-optimism and helping young adults at clinical high-risk for psychosis understand the limitations of genetic testing. Counseling sessions could also invite individuals to explore how receiving genetic risk information might impact their well-being, as early evidence suggests that some psychological factors help individuals cope, whereas others heighten distress related to genetic test results.
Collapse
|
26
|
Nascimento JM, Garcia S, Saia-Cereda VM, Santana AG, Brandao-Teles C, Zuccoli GS, Junqueira DG, Reis-de-Oliveira G, Baldasso PA, Cassoli JS, Martins-de-Souza D. Proteomics and molecular tools for unveiling missing links in the biochemical understanding of schizophrenia. Proteomics Clin Appl 2016; 10:1148-1158. [DOI: 10.1002/prca.201600021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Juliana M. Nascimento
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Sheila Garcia
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Verônica M. Saia-Cereda
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Aline G. Santana
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Caroline Brandao-Teles
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Giuliana S. Zuccoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Danielle G. Junqueira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Guilherme Reis-de-Oliveira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Paulo A. Baldasso
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Juliana S. Cassoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| |
Collapse
|
27
|
Wang J, Jin L, Zhu Y, Zhou X, Yu R, Gao S. Research progress in NOS1AP in neurological and psychiatric diseases. Brain Res Bull 2016; 125:99-105. [PMID: 27237129 DOI: 10.1016/j.brainresbull.2016.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022]
Abstract
Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP, previously named CAPON) was firstly identified in rat brain in 1998. Structurally, NOS1AP consists of a phosphotyrosine-binding (PTB) domain at its N-terminal and a PDZ (PSD-95/discs-large/ZO-1) ligand motif at its C-terminal. The PTB domain of NOS1AP mediates the interactions with Dexras1, scribble, and synapsins. The PDZ ligand motif of NOS1AP binds to the PDZ domain of NOS1, the enzyme responsible for nitric oxide synthesis in the nervous system. NOS1AP is implicated in Dexras1 activation, neuronal nitric oxide production, Hippo pathway signaling, and dendritic development through the association with these important partners. An increasing body of evidence is pointing to the significant roles of NOS1AP in excitotoxic neuronal damage, traumatic nervous system injury, bipolar disorder, and schizophrenia. However, the study progress in NOS1AP in neurological or psychiatric diseases, has not been systematically reviewed. Here we introduce the expression, structure, and isoforms of NOS1AP, then summarize the physiological roles of NOS1AP, and discuss the relationships between NOS1AP alterations and the pathophysiology of some neurological and psychiatric disorders. The review will promote the further investigation of NOS1AP in brain disorders and the development of drugs targeting the NOS1AP PTB domain or PDZ-binding motif in the future.
Collapse
Affiliation(s)
- Jie Wang
- The Graduate School, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Lei Jin
- The Graduate School, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yufu Zhu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, People's Republic of China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China; Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, People's Republic of China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China; Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, People's Republic of China.
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China; Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
No association between ApoE and schizophrenia: Evidence of systematic review and updated meta-analysis. Schizophr Res 2015; 169:355-368. [PMID: 26372448 DOI: 10.1016/j.schres.2015.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Schizophrenia affects between 0.3% and 2% of the worldwide population. A genetic contribution has been postulated in the development of this disorder. Genes such as ApoE have been implicated in the neurodevelopment associated with schizophrenia in case-control and meta-analysis studies, but the results remain inconclusive. Due to this, the aim of the present study was to explore the association between ApoE and schizophrenia through a meta-analysis. MATERIAL AND METHODS We collected all relevant studies by searching PubMed and EBSCO databases. The pooled odds ratios with 95% confidence intervals were calculated to estimate the association. The following models were evaluated: A) ε4 vs ε3, B) ε4 vs ε2, C) ε4 vs ε3+ε2, D) Caucasian population and E) Asian population. Statistical analyses were performed using EPIDAT 3.1 software. RESULTS The meta-analyses comprised 28 association studies, which included 4703 controls and 3452 subjects with schizophrenia. A significant protective effect was found for allele ε3 in the Asian population (OR=0.73, 95% CI=0.54-0.98). No significant associations were observed in the other models and populations analyzed. CONCLUSIONS Our meta-analysis suggests a protective association between ApoE allele ε3 and schizophrenia in the Asian population.
Collapse
|
29
|
Li L. An update on research and approaches in biological psychiatry. Neurosci Bull 2015; 31:1-3. [PMID: 25652813 DOI: 10.1007/s12264-014-1496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Lingjiang Li
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, 410011, China,
| |
Collapse
|