1
|
Wang ML, Song YL, Wu DY, Li H, Li ZM, Xiong XX, Hu NY, Hu J, Li JT, Wang YX, Li XW, Yang JM, Chen YH, Gao TM. Astrocytic connexin43 in the medial prefrontal cortex regulates depressive- and anxiety-like behaviors via ATP release. Pharmacol Res 2025:107798. [PMID: 40449814 DOI: 10.1016/j.phrs.2025.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/11/2025] [Accepted: 05/22/2025] [Indexed: 06/03/2025]
Abstract
Major depressive disorder (MDD) affects 17% of the global population and is highly comorbid with anxiety disorders. Emerging evidence indicates that dysregulation of astrocytic ATP contributes to the pathophysiology of depression. However, the molecular substrates underlying the stress-induced reduction in ATP release remain poorly understood, and the basis for the comorbidity of depression and anxiety disorders is still unknown. Here, we showed that Cx43 expression and extracellular ATP levels were significantly reduced in the medial prefrontal cortex (mPFC) of chronic social defeat stress (CSDS)-susceptible mice. Astrocyte-specific knockout or knockdown of Cx43 in the mPFC induced depressive-like behaviors--including anhedonia and despair-like behavio--and anxiety-like behaviors, alongside a reduction in ATP release, whereas neuronal knockout of Cx43 showed no effects on these behaviors. Notably, exogenous ATPγS administration reversed these behavioral deficits. Furthermore, overexpression of astrocytic Cx43 in the mPFC rescued both ATP levels and emotion-related behaviors in CSDS-susceptible mice. Taken together, our study provided the first evidence that astrocytic Cx43 reduction was sufficient to induce depressive- and anxiety-like behaviors and identified a novel ATP-mediated mechanism linking astrocytic Cx43 to both depression and anxiety pathogenesis. These findings open up promising therapeutic targets for treating these comorbid disorders.
Collapse
Affiliation(s)
- Meng-Ling Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yun-Long Song
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ding-Yu Wu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi-Ming Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xing-Xing Xiong
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Neng-Yuan Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing-Ting Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue-Xin Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Hua Chen
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Tian-Ming Gao
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Xie W, Li Y, Wang X, Blokhina E, Krupitsky E, Vetrova M, Hu J, Yuan T, Chen J, Wang H, Chen X. GABA B Receptor: Structure, Biological Functions, and Therapy for Diseases. MedComm (Beijing) 2025; 6:e70163. [PMID: 40242161 PMCID: PMC12000685 DOI: 10.1002/mco2.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 04/18/2025] Open
Abstract
Gamma-aminobutyric acid (GABA) B receptors (GABABRs) that acts slowly and maintains the inhibitory tone are versatile regulators in the complex nervous behaviors and their involvement in various neuropsychiatric disorders, such as anxiety, epilepsy, pain, drug addiction, and Alzheimer's disease. Additional study advances have implied the crucial roles of GABABRs in regulating feeding-related behaviors, yet their therapeutic potential in addressing the neuropsychiatric disorders, binge eating, and feeding-related disorders remains underutilized. This general review summarized the physiological structure and functions of GABABR, explored the regulation in various psychiatric disorders, feeding behaviors, binge eating, and metabolism disorders, and fully discussed the potential of targeting GABABRs and its regulator-binding sites for the treatment of different psychiatric disorders, binge eating and even obesity. While agonists that directly bind to GABABR1 have some negative side effects, positive allosteric modulators (PAMs) that bind to GABABR2 demonstrate excellent therapeutic efficacy and tolerability and have better safety and therapeutic indexes. Moreover, phosphorylation sites of downstream GABABRs regulators may be novel therapeutic targets for psychiatric disorders, binge eating, and obesity. Further studies, clinical trials in particular, will be essential for confirming the therapeutic value of PAMs and other agents targeting the GABABR pathways in a clinical setting.
Collapse
Affiliation(s)
- Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health CenterTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinyue Wang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Elena Blokhina
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Evgeny Krupitsky
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
- Bekhterev National Medical Research Center for Psychiatry and NeurologySt. PetersburgRussia
| | - Marina Vetrova
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Ji Hu
- ShanghaiTech UniversityShanghaiChina
| | - Ti‐Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Jue Chen
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Hua Wang
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiangfang Chen
- Department of EndocrinologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Zhang S, Xia J, He W, Zou Y, Liu W, Li L, Huang Z, Li Q, Qi Z, Liu W. From energy metabolism to mood regulation: The rise of lactate as a therapeutic target. J Adv Res 2025:S2090-1232(25)00262-0. [PMID: 40262720 DOI: 10.1016/j.jare.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Disruption of cerebral energy metabolism is increasingly recognized as a key factor in the pathophysiology of mood disorders. Lactate, beyond its role as a metabolic byproduct, is now understood to be a critical player in brain energy homeostasis and a modulator of neuronal function. Recent advances in understanding lactate shuttling between astrocytes and neurons have opened new avenues for exploring its multifaceted roles in mood regulation. Exercise, known to modulate brain lactate levels, further underscores the potential of lactate as a therapeutic target in mood disorders. AIM OF REVIEW This review delves into the alterations in cerebral lactate associated with mood disorders, emphasizing their implications for brain energy dynamics and signaling pathways. Additionally, we discuss the therapeutic potential of lactate in mood disorders, particularly through its capacity to remodel cerebral function. We conclude by assessing the promise of exercise-induced lactate production as a novel strategy for mood disorder treatment. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Alterations in brain lactate may contribute to the pathogenesis of mood disorders. In several studies, lactate is not only a substrate for brain energy metabolism, but also a molecule that triggers signaling cascades. Specifically, lactate is involved in the regulation of neurogenesis, neuroplasticity, endothelial cell function, and microglia lysosomal acidification, therefore improving mood disorders. Meanwhile, exercise as a low-risk intervention strategy can improve mood disorders through lactate regulation. Thus, the evidence from this review supports that lactate could be a potential therapeutic target for mood disorder, contributing to a deeper understanding of mood disorder pathogenesis and intervention.
Collapse
Affiliation(s)
- Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yong Zou
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; School of Physical Education, Shanxi University, Taiyuan, China
| | - Lingxia Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhuochun Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Qing Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Chen C, Bao W, Wang R, Qin W, Zhang B, on behalf of REST-meta-MDD Consortium. Regional Gene Expression Patterns are Associated with Functional Connectivity Alterations in Major Depressive Disorder with Anxiety Symptoms. ALPHA PSYCHIATRY 2025; 26:39865. [PMID: 40352081 PMCID: PMC12059726 DOI: 10.31083/ap39865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 05/14/2025]
Abstract
Background Understanding gene expression and functional connectivity (FC) changes in depressed patients with anxiety can help develop personalized therapies. Herein we examine the link between transcriptome data and FC differences in patients with major depressive disorder with significant anxiety (MDD/ANX+) and patients with major depressive disorder without significant anxiety (MDD/ANX-). Methods We compared the FC between the MDD/ANX+ group (n = 294) and the MDD/ANX- group (n = 218) to identify FC differences at both edge-based and network levels. Using the Allen Human Brain Atlas, we performed partial least squares regression analysis to identify genes associated with the observed FC disparities, followed by a functional enrichment analysis. Results The results from both edge-based and network-level FC analyses consistently indicated significantly increased FC between the subcortical network (SC) and visual network, as well as between the SC and dorsal attention network, in the MDD/ANX+ group compared with the MDD/ANX- group. Additionally, transcriptome-neuroimaging correlation analysis revealed that the expression of 1066 genes was spatially correlated with the FC differences between the MDD/ANX+ and MDD/ANX- groups. These genes were enriched in translation at synapses and adenosine triphosphate (ATP) generation. Conclusions Our results indicate that gene expression variations in synaptic translation and ATP generation may affect FC and anxiety risk in MDD patients.
Collapse
Affiliation(s)
- Chengfeng Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 510370 Guangzhou, Guangdong, China
- Department of Psychiatry, Guangzhou Medical University, 511436 Guangzhou, Guangdong, China
| | - Wuyou Bao
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, 300222 Tianjin, China
| | - Runhua Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 510370 Guangzhou, Guangdong, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300070 Tianjin, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, 300222 Tianjin, China
- Mental Health Center of Tianjin University, Tianjin Anding Hospital, 300210 Tianjin, China
| | | |
Collapse
|
5
|
Gonçalves-Ribeiro J, Vaz SH. The IP3R2 Knockout Mice in Behavior: A Blessing or a Curse? J Neurochem 2025; 169:e70062. [PMID: 40172184 DOI: 10.1111/jnc.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025]
Abstract
The inositol 1,4,5-triphosphate receptor type 2 (IP3R2) plays a critical role in intracellular calcium (Ca2+) signaling, particularly in astrocytes, where it mediates Ca2+ release from the endoplasmic reticulum. This mechanism is vital for astrocytic modulation of neuronal networks, impacting synaptic transmission and broader neural circuit functions. The IP3R2 knockout (IP3R2KO) mouse model has been instrumental in unraveling the nuances of astrocytic somatic Ca2+ dynamics and their implications for brain function. Despite early findings suggesting no significant behavioral or synaptic transmission changes in IP3R2KO mice, further research highlights the model's benefit in exploring cognitive, emotional, and neurodevelopmental processes. IP3R2KO mice revealed key insights into astrocytic Ca2+ signaling diversity, encompassing bulk somatic events and localized microdomain responses, which exhibit temporal and spatial variability. These animals retain alternative Ca2+ mechanisms, likely explaining the absence of severe phenotypes in some contexts. Nevertheless, IP3R2KO mice exhibit impairments in long-term memory retention, working memory, and fear memory, alongside age-related preservation of spatial memory, linking astrocytic IP3R2 signaling to higher-order cognitive functions. Additionally, studies suggest a connection between IP3R2 pathways and depression-like behaviors, with alterations in Brain-Derived Neurotrophic Factor (BDNF) levels and GABAergic signaling, highlighting its relevance to psychiatric conditions. Despite its limitations, such as residual astrocytic Ca2+ activity and inconsistent findings, the IP3R2KO model remains a valuable tool for studying astrocytic contributions to synaptic plasticity and brain function. This underscores the importance of integrating, rather than dismissing, the IP3R2KO model in the development of new methodologies for studying astrocytic Ca2+ dynamics. The use of this model will continue to elucidate the complex interplay between astrocytes and neuronal circuits, fostering advances in understanding astrocytic Ca2+ signaling's role in health and disease.
Collapse
Affiliation(s)
- Joana Gonçalves-Ribeiro
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisboa, Portugal
- Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| | - Sandra H Vaz
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisboa, Portugal
- Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| |
Collapse
|
6
|
Allemeier AM, Drummond C, Tiefenthaler B, Dvorak TC, Holz FN, Hume C, Kreger RB, Koulibali CI, Khan HA, Best AL, Gee T, Pedersen GD, Glover K, Ganu D, Martin J, Hill MN, Epps SA. Endocannabinoid involvement in beneficial effects of caloric restriction in a rodent model of comorbid depression and epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111212. [PMID: 39645180 DOI: 10.1016/j.pnpbp.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Clinically, patients with depression are at a heightened risk for developing epilepsy, and vice versa, suggesting shared mechanisms for this bidirectional comorbidity. Unfortunately, comorbid depression and epilepsy is associated with worsened quality of life and treatment refractoriness, highlighting the need for novel treatment targets and nonpharmacologic supplements to existing therapies. The present study used the Swim-Low Active rat, a well-validated model of depression and epilepsy comorbidity that was selectively bred based on forced swim test behavior, to assess the safety and efficacy of caloric restriction in treating this comorbidity. The study also investigated the role of endocannabinoids in the effects of caloric restriction on the behavioral endpoints and to determine whether there were any sex differences in these effects. Male rats restricted to approximately 80 % of their daily food intake for an acute 24-h period showed elevated struggling behavior in the Porsolt (Forced) Swim Test and increased latency to pilocarpine-induced seizure; this same caloric restriction yielded a significant increase in hippocampal anandamide levels compared to ad lib rats. These effects were not seen in female rats, although female rats did show anticonvulsant effects of chronic caloric restriction. Administration of 1 mg/kg SR141716 alongside an acute caloric restriction in male rats blocked the antidepressant-like effects of caloric restriction but did not affect seizure responses. Combined, these results suggest caloric restriction may be both safe and modestly effective in benefitting depression- and epilepsy-related behaviors in male SwLo rats, and that the endocannabinoid system may be a promising target for treating this comorbidity.
Collapse
Affiliation(s)
- Ashley M Allemeier
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Christine Drummond
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Bradley Tiefenthaler
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Tierney C Dvorak
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Faith N Holz
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Catherine Hume
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | - Rachelle B Kreger
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Chauncella I Koulibali
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Humza A Khan
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Alexa L Best
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Timothy Gee
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Grace D Pedersen
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Kevin Glover
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Dollar Ganu
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Julie Martin
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | - S Alisha Epps
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| |
Collapse
|
7
|
Chen YH, Lin S, Jin SY, Gao TM. Extracellular ATP Is a Homeostatic Messenger That Mediates Cell-Cell Communication in Physiological Processes and Psychiatric Diseases. Biol Psychiatry 2025; 97:41-53. [PMID: 38679359 DOI: 10.1016/j.biopsych.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Neuronal activity is the basis of information encoding and processing in the brain. During neuronal activation, intracellular ATP (adenosine triphosphate) is generated to meet the high-energy demands. Simultaneously, ATP is secreted, increasing the extracellular ATP concentration and acting as a homeostatic messenger that mediates cell-cell communication to prevent aberrant hyperexcitability of the nervous system. In addition to the confined release and fast synaptic signaling of classic neurotransmitters within synaptic clefts, ATP can be released by all brain cells, diffuses widely, and targets different types of purinergic receptors on neurons and glial cells, making it possible to orchestrate brain neuronal activity and participate in various physiological processes, such as sleep and wakefulness, learning and memory, and feeding. Dysregulation of extracellular ATP leads to a destabilizing effect on the neural network, as found in the etiopathology of many psychiatric diseases, including depression, anxiety, schizophrenia, and autism spectrum disorder. In this review, we summarize advances in the understanding of the mechanisms by which extracellular ATP serves as an intercellular signaling molecule to regulate neural activity, with a focus on how it maintains the homeostasis of neural networks. In particular, we also focus on neural activity issues that result from dysregulation of extracellular ATP and propose that aberrant levels of extracellular ATP may play a role in the etiopathology of some psychiatric diseases, highlighting the potential therapeutic targets of ATP signaling in the treatment of these psychiatric diseases. Finally, we suggest potential avenues to further elucidate the role of extracellular ATP in intercellular communication and psychiatric diseases.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Zhang Z, Zhang W, Fang Y, Wang N, Liu G, Zou N, Song Z, Liu H, Wang L, Xiao Q, Zhao J, Wang Y, Lei T, Zhang C, Liu X, Zhang B, Luo F, Xia J, He C, Hu Z, Ren S, Zhao H. A potentiation of REM sleep-active neurons in the lateral habenula may be responsible for the sleep disturbance in depression. Curr Biol 2024; 34:3287-3300.e6. [PMID: 38944036 DOI: 10.1016/j.cub.2024.05.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 07/01/2024]
Abstract
Psychiatric disorders with dysfunction of the lateral habenula (LHb) show sleep disturbance, especially a disinhibition of rapid eye movement (REM) sleep in major depression. However, the role of LHb in physiological sleep control and how LHb contributes to sleep disturbance in major depression remain elusive. Here, we found that functional manipulations of LHb glutamatergic neurons bidirectionally modulated both non-REM (NREM) sleep and REM sleep. Activity recording revealed heterogeneous activity patterns of LHb neurons across sleep/wakefulness cycles, but LHb neurons were preferentially active during REM sleep. Using an activity-dependent tagging method, we selectively labeled a population of REM sleep-active LHb neurons and demonstrated that these neurons specifically promoted REM sleep. Neural circuit studies showed that LHb neurons regulated REM sleep via projections to the ventral tegmental area but not to the rostromedial tegmental nucleus. Furthermore, we found that the increased REM sleep in a depression mouse model was associated with a potentiation of REM sleep-active LHb neurons, including an increased proportion, elevated spike firing, and altered activity mode. Importantly, inhibition of REM sleep-active LHb neurons not only attenuated the increased REM sleep but also alleviated depressive-like behaviors in a depression mouse model. Thus, our results demonstrated that REM sleep-active LHb neurons selectively promoted REM sleep, and a potentiation of these neurons contributed to depression-associated sleep disturbance.
Collapse
Affiliation(s)
- Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yuanyuan Fang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Na Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Guoying Liu
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Nan Zou
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hanshu Liu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Longshuo Wang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Qin Xiao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Juanjuan Zhao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ting Lei
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Cai Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Xiaofeng Liu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Deng J, Tong X, Huang Y, Du Z, Sun R, Zheng Y, Ma R, Ding W, Zhang Y, Li J, Sun Y, Chen C, Zhang JC, Song L, Liu B, Lin S. Prophylactic nicotinamide mononucleotide (NMN) mitigates CSDS-induced depressive-like behaviors in mice via preserving of ATP level in the mPFC. Biomed Pharmacother 2024; 176:116850. [PMID: 38834006 DOI: 10.1016/j.biopha.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD+) biosynthesis and extracellular ATP levels in the mPFC. Moreover, both the 2-week intraperitoneal (i.p.) injection and 3-week oral gavage of NMN prior to exposure to CSDS effectively prevented the development of depressive-like behavior in mice. These protective effects were accompanied with the preservation of both NAD+ biosynthesis and extracellular ATP level in the mPFC. Furthermore, catalyzing ATP hydrolysis by mPFC injection of the ATPase apyrase negated the prophylactic effects of NMN on CSDS-induced depressive-like behaviors. Prophylactic NMN treatment also prevented the reduction in GABAergic inhibition and the increase in excitability in mPFC neurons projecting to the lateral habenula (LHb). Collectively, these findings demonstrate that the prophylactic effects of NMN on depressive-like behaviors are mediated by preventing extracellular ATP loss in the mPFC, which highlights the potential of NMN supplementation as a novel approach for protecting and preventing stress-induced depression in susceptible individuals.
Collapse
Affiliation(s)
- Jialin Deng
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaohan Tong
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yanhua Huang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zean Du
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ruizhe Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yantao Zheng
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ruijia Ma
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wanzhao Ding
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Zhang
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junfeng Li
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chunxiao Chen
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ji-Chun Zhang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Li Song
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Bin Liu
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024; 16:804-840. [PMID: 38916735 PMCID: PMC11964445 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
11
|
Iyer SH, Yeh MY, Netzel L, Lindsey MG, Wallace M, Simeone KA, Simeone TA. Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence. Nutrients 2024; 16:553. [PMID: 38398876 PMCID: PMC10893388 DOI: 10.3390/nu16040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Epilepsy often occurs with other neurological disorders, such as autism, affective disorders, and cognitive impairment. Research indicates that many neurological disorders share a common pathophysiology of dysfunctional energy metabolism, neuroinflammation, oxidative stress, and gut dysbiosis. The past decade has witnessed a growing interest in the use of metabolic therapies for these disorders with or without the context of epilepsy. Over one hundred years ago, the high-fat, low-carbohydrate ketogenic diet (KD) was formulated as a treatment for epilepsy. For those who cannot tolerate the KD, other diets have been developed to provide similar seizure control, presumably through similar mechanisms. These include, but are not limited to, the medium-chain triglyceride diet, low glycemic index diet, and calorie restriction. In addition, dietary supplementation with ketone bodies, polyunsaturated fatty acids, or triheptanoin may also be beneficial. The proposed mechanisms through which these diets and supplements work to reduce neuronal hyperexcitability involve normalization of aberrant energy metabolism, dampening of inflammation, promotion of endogenous antioxidants, and reduction of gut dysbiosis. This raises the possibility that these dietary and metabolic therapies may not only exert anti-seizure effects, but also reduce comorbid disorders in people with epilepsy. Here, we explore this possibility and review the clinical and preclinical evidence where available.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Timothy A. Simeone
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (S.H.I.); (K.A.S.)
| |
Collapse
|
12
|
Wang K, Huang S, Fu D, Yang X, Ma L, Zhang T, Zhao W, Deng D, Ding Y, Zhang Y, Huang L, Chen X. The neurobiological mechanisms and therapeutic prospect of extracellular ATP in depression. CNS Neurosci Ther 2024; 30:e14536. [PMID: 38375982 PMCID: PMC10877668 DOI: 10.1111/cns.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| |
Collapse
|
13
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
14
|
Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022; 220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses worldwide which impairs the social functioning of the afflicted patients. Astrocytes promote homeostasis of the CNS and provide defense against various types of harmful influences. Increasing evidence suggests that the number, morphology and function of astrocytes are deteriorated in the depressed brain and the malfunction of the astrocytic purinergic system appears to participate in the pathophysiology of MDD. Adenosine 5'-triphosphate (ATP) released from astrocytes modulates depressive-like behavior in animal models and probably also clinical depression in patients. Astrocytes possess purinergic receptors, such as adenosine A2A receptors (Rs), and P2X7, P2Y1, and P2Y11Rs, which mediate neuroinflammation, neuro(glio)transmission, and synaptic plasticity in depression-relevant areas of the brain (e.g. medial prefrontal cortex, hippocampus, amygdala nuclei). By contrast, astrocytic A1Rs are neuroprotective and immunosuppressive. In the present review, we shall discuss the release of purines from astrocytes, and the expression/function of astrocytic purinergic receptors. Subsequently, we shall review in more detail novel evidence indicating that the dysregulation of astrocytic purinergic signaling actively contributes to the pathophysiology of depression and shall discuss possible therapeutic options based on knowledge recently acquired in this field.
Collapse
Affiliation(s)
- Y F Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - A Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT, 01102, Vilnius, Lithuania
| | - Y Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - P Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
15
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|