1
|
Singh P, Crossman DK, Cheng C, Trainor PJ, Sharafeldin N, Wang X, Zhou L, Hageman L, Armenian SH, Balis FM, Hawkins DS, Keller FG, Hudson MM, Neglia JP, Ginsberg JP, Landier W, Bhatia S. Alternative mRNA splicing in anthracycline-induced cardiomyopathy - a COG-ALTE03N1 report. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:47. [PMID: 40382596 PMCID: PMC12084991 DOI: 10.1186/s40959-025-00345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Anthracycline-induced cardiomyopathy is a well-established adverse consequence in childhood cancer survivors. Altered mRNA expression in the peripheral blood has been found at the level of genes and pathways among anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. However, the role of aberrant alternative splicing in anthracycline-induced cardiomyopathy remains unexplored. The present study examined if transcript-specific events, due to alternative splicing occur in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. METHODS Participants were anthracycline-exposed childhood cancer survivors with cardiomyopathy (cases) matched with anthracycline-exposed childhood cancer survivors without cardiomyopathy (controls; matched on primary cancer diagnosis, year of diagnosis, and race/ethnicity). mRNA sequencing was performed on total RNA from peripheral blood in 32 cases and 32 matched controls. Event-level splicing tool, rMATS (replicate Multivariate Analysis of Transcript Splicing) was used for quantitative profiling of alternative splicing events. RESULTS A total of 45 alternative splicing events in 36 genes were identified. Using a prioritization strategy to filter the alternative splicing events, intron retention in RPS24 and skipped exon of PFND5 showed differential expression of altered transcripts. CONCLUSIONS We identified specific alternative splicing events in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Our findings suggest that differential alternative splicing events can provide additional insight into the peripheral blood transcriptomic landscape of anthracycline-induced cardiomyopathy.
Collapse
Affiliation(s)
- Purnima Singh
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changde Cheng
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick J Trainor
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Noha Sharafeldin
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xuexia Wang
- Department of Biostatistics, Florida International University, Miami, FL, USA
| | - Liting Zhou
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saro H Armenian
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Frank M Balis
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Frank G Keller
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph P Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jill P Ginsberg
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| |
Collapse
|
2
|
Joyce W, He K, Zhang M, Ogunsola S, Wu X, Joseph KT, Bogomolny D, Yu W, Springer MS, Xie J, Signore AV, Campbell KL. Genetic excision of the regulatory cardiac troponin I extension in high-heart rate mammal clades. Science 2024; 385:1466-1471. [PMID: 39325895 DOI: 10.1126/science.adi8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024]
Abstract
Mammalian cardiac troponin I (cTnI) contains a highly conserved amino-terminal extension harboring protein kinase A targets [serine-23 and -24 (Ser23/24)] that are phosphorylated during β-adrenergic stimulation to defend diastolic filling by means of an increased cardiomyocyte relaxation rate. In this work, we show that the Ser23/24-encoding exon 3 of TNNI3 was pseudoexonized multiple times in shrews and moles to mimic Ser23/24 phosphorylation without adrenergic stimulation, facilitating the evolution of exceptionally high resting heart rates (~1000 beats per minute). We further reveal alternative exon 3 splicing in distantly related bat families and confirm that both cTnI splice variants are incorporated into cardiac myofibrils. Because exon 3 of human TNNI3 exhibits a relatively low splice strength score, our findings offer an evolutionarily informed strategy to excise this exon to improve diastolic function during heart failure.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mengdie Zhang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Samuel Ogunsola
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xini Wu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Kelvin T Joseph
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David Bogomolny
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wenhua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Anthony V Signore
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
4
|
Song XW, Su T, Li B, Huang YJ, He WX, Jiang LL, Li CJ, Huang SQ, Li SH, Guo ZF, Wu H, Zhang BL. Abnormal expression of PRKAG2-AS results in dysfunction of cardiomyocytes through regulating PRKAG2 transcription by interacting with PPARG. Clin Epigenetics 2023; 15:178. [PMID: 37932845 PMCID: PMC10629191 DOI: 10.1186/s13148-023-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
The role of PRKAG2 in the maintenance of heart function is well established, but little is known about how PRKAG2 is regulated in cardiomyocytes. In this study, we investigated the role of the lncRNA PRKAG2-AS, which is present at the PRKAG2 promoter, in the regulation of PRKAG2 expression. PRKAG2-AS expression was predominantly nuclear, as determined by RNA nucleoplasmic separation and fluorescence in situ hybridization. Knockdown of PRKAG2-AS in the nucleus, but not the cytoplasm, significantly decreased the expression of PRKAG2b and PRKAG2d. Interestingly, we found that PRKAG2-AS and its target genes, PRKAG2b and PRKAG2d, were reduced in the hearts of patients with ischemic cardiomyopathy, suggesting a potential role for PRKAG2-AS in myocardial ischemia. Indeed, knockdown of PRKAG2-AS in the nucleus resulted in apoptosis of cardiomyocytes. We further elucidated the mechanism by which PRKAG2-AS regulates PRKAG2 transcription by identifying 58 PRKAG2-AS interacting proteins. Among them, PPARG was selected for further investigation based on its correlation and potential interaction with PRKAG2-AS in regulating transcription. Overexpression of PPARG, or its activation with rosiglitazone, led to a significant increase in the expression of PRKAG2b and PRKAG2d in cardiomyocytes, which could be attenuated by PRKAG2-AS knockdown. This finding suggests that PRKAG2-AS mediates, at least partially, the protective effects of rosiglitazone on hypoxia-induced apoptosis. However, given the risk of rosiglitazone in heart failure, we also examined the involvement of PRKAG2-AS in this condition and found that PRKAG2-AS, as well as PRKAG2b and PRKAG2d, was elevated in hearts with dilated cardiomyopathy (DCM) and that overexpression of PRKAG2-AS led to a significant increase in PRKAG2b and PRKAG2d expression, indicating that up-regulation of PRKAG2-AS may contribute to the mechanism of heart failure by promoting transcription of PRKAG2. Consequently, proper expression of PRKAG2-AS is essential for maintaining cardiomyocyte function, and aberrant PRKAG2-AS expression induced by hypoxia or other stimuli may cause cardiac dysfunction.
Collapse
Grants
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
- 82000283, 82070419, 82170275 and 82170233 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Xiao-Wei Song
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Ting Su
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Bo Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yun-Jie Huang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Wen-Xia He
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Li-Li Jiang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Chang-Jin Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Song-Qun Huang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Song-Hua Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhi-Fu Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Bi-Li Zhang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Schmeing S, Amrahova G, Bigler K, Chang JY, Openy J, Pal S, Posada L, Gasper R, 't Hart P. Rationally designed stapled peptides allosterically inhibit PTBP1-RNA-binding. Chem Sci 2023; 14:8269-8278. [PMID: 37564416 PMCID: PMC10411625 DOI: 10.1039/d3sc00985h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
The diverse role of the splicing factor PTBP1 in human cells has been widely studied and was found to be a driver for several diseases. PTBP1 binds RNA through its RNA-recognition motifs which lack obvious pockets for inhibition. A unique transient helix has been described to be part of its first RNA-recognition motif and to be important for RNA binding. In this study, we further confirmed the role of this helix and envisioned its dynamic nature as a unique opportunity to develop stapled peptide inhibitors of PTBP1. The peptides were found to be able to inhibit RNA binding via fluorescence polarization assays and directly occupy the helix binding site as observed by protein crystallography. These cell-permeable inhibitors were validated in cellulo to alter the regulation of alternative splicing events regulated by PTBP1. Our study demonstrates transient secondary structures of a protein can be mimicked by stapled peptides to inhibit allosteric mechanisms.
Collapse
Affiliation(s)
- Stefan Schmeing
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Gulshan Amrahova
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Katrin Bigler
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Jen-Yao Chang
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Joseph Openy
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Sunit Pal
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Laura Posada
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Raphael Gasper
- Crystallography and Biophysics Unit, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
6
|
Dhat R, Mongad D, Raji S, Arkat S, Mahapatra NR, Singhal N, Sitasawad SL. Epigenetic modifier alpha-ketoglutarate modulates aberrant gene body methylation and hydroxymethylation marks in diabetic heart. Epigenetics Chromatin 2023; 16:12. [PMID: 37101286 PMCID: PMC10134649 DOI: 10.1186/s13072-023-00489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Hyperglycemic myocardial microenvironment significantly alters chromatin architecture and the transcriptome, resulting in aberrant activation of signaling pathways in a diabetic heart. Epigenetic marks play vital roles in transcriptional reprogramming during the development of DCM. The current study is aimed to profile genome-wide DNA (hydroxy)methylation patterns in the hearts of control and streptozotocin (STZ)-induced diabetic rats and decipher the effect of modulation of DNA methylation by alpha-ketoglutarate (AKG), a TET enzyme cofactor, on the progression of DCM. METHODS Diabetes was induced in male adult Wistar rats with an intraperitoneal injection of STZ. Diabetic and vehicle control animals were randomly divided into groups with/without AKG treatment. Cardiac function was monitored by performing cardiac catheterization. Global methylation (5mC) and hydroxymethylation (5hmC) patterns were mapped in the Left ventricular tissue of control and diabetic rats with the help of an enrichment-based (h)MEDIP-sequencing technique by using antibodies specific for 5mC and 5hmC. Sequencing data were validated by performing (h)MEDIP-qPCR analysis at the gene-specific level, and gene expression was analyzed by qPCR. The mRNA and protein expression of enzymes involved in the DNA methylation and demethylation cycle were analyzed by qPCR and western blotting. Global 5mC and 5hmC levels were also assessed in high glucose-treated DNMT3B knockdown H9c2 cells. RESULTS We found the increased expression of DNMT3B, MBD2, and MeCP2 with a concomitant accumulation of 5mC and 5hmC, specifically in gene body regions of diabetic rat hearts compared to the control. Calcium signaling was the most significantly affected pathway by cytosine modifications in the diabetic heart. Additionally, hypermethylated gene body regions were associated with Rap1, apelin, and phosphatidyl inositol signaling, while metabolic pathways were most affected by hyperhydroxymethylation. AKG supplementation in diabetic rats reversed aberrant methylation patterns and restored cardiac function. Hyperglycemia also increased 5mC and 5hmC levels in H9c2 cells, which was normalized by DNMT3B knockdown or AKG supplementation. CONCLUSION This study demonstrates that reverting hyperglycemic damage to cardiac tissue might be possible by erasing adverse epigenetic signatures by supplementing epigenetic modulators such as AKG along with an existing antidiabetic treatment regimen.
Collapse
Affiliation(s)
- Rohini Dhat
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Dattatray Mongad
- NCMR-National Centre for Cell Science (NCCS), Pune, Maharashtra, 411007, India
| | - Sivarupa Raji
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Silpa Arkat
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nishant Singhal
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Sandhya L Sitasawad
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
7
|
Zanini G, Selleri V, De Gaetano A, Gibellini L, Malerba M, Mattioli AV, Nasi M, Apostolova N, Pinti M. Differential Expression of Lonp1 Isoforms in Cancer Cells. Cells 2022; 11:cells11233940. [PMID: 36497197 PMCID: PMC9739308 DOI: 10.3390/cells11233940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lonp1 is a mitochondrial protease that degrades oxidized and damaged proteins, assists protein folding, and contributes to the maintenance of mitochondrial DNA. A higher expression of LonP1 has been associated with higher tumour aggressiveness. Besides the full-length isoform (ISO1), we identified two other isoforms of Lonp1 in humans, resulting from alternative splicing: Isoform-2 (ISO2) lacking aa 42-105 and isoform-3 (ISO3) lacking aa 1-196. An inspection of the public database TSVdb showed that ISO1 was upregulated in lung, bladder, prostate, and breast cancer, ISO2 in all the cancers analysed (including rectum, colon, cervical, bladder, prostate, breast, head, and neck), ISO3 did not show significant changes between cancer and normal tissue. We overexpressed ISO1, ISO2, and ISO3 in SW620 cells and found that the ISO1 isoform was exclusively mitochondrial, ISO2 was present in the organelle and in the cytoplasm, and ISO3 was exclusively cytoplasmatic. The overexpression of ISO1 and, at a letter extent, of ISO2 enhanced basal, ATP-linked, and maximal respiration without altering the mitochondria number or network, mtDNA amount. or mitochondrial dynamics. A higher extracellular acidification rate was observed in ISO1 and ISO2, overexpressing cells, suggesting an increase in glycolysis. Cells overexpressing the different isoforms did not show a difference in the proliferation rate but showed a great increase in anchorage-independent growth. ISO1 and ISO2, but not ISO3, determined an upregulation of EMT-related proteins, which appeared unrelated to higher mitochondrial ROS production, nor due to the activation of the MEK ERK pathway, but rather to global metabolic reprogramming of cells.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Mara Malerba
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Milena Nasi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Nadezda Apostolova
- Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-059-205-5386
| |
Collapse
|
8
|
A Case of Severe Left-Ventricular Noncompaction Associated with Splicing Altering Variant in the FHOD3 Gene. Genes (Basel) 2022; 13:genes13020309. [PMID: 35205353 PMCID: PMC8872028 DOI: 10.3390/genes13020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Left ventricular noncompaction (LVNC) is a highly heterogeneous primary disorder of the myocardium. Its clinical features and genetic spectrum strongly overlap with other types of primary cardiomyopathies, in particular, hypertrophic cardiomyopathy. Study and the accumulation of genotype–phenotype correlations are the way to improve the precision of our diagnostics. We present a familial case of LVNC with arrhythmic and thrombotic complications, myocardial fibrosis and heart failure, cosegregating with the splicing variant in the FHOD3 gene. This is the first description of FHOD3-dependent LVNC to our knowledge. We also revise the assumed mechanism of pathogenesis in the case of FHOD3 splicing alterations.
Collapse
|
9
|
Narykov O, Johnson NT, Korkin D. Predicting protein interaction network perturbation by alternative splicing with semi-supervised learning. Cell Rep 2021; 37:110045. [PMID: 34818539 DOI: 10.1016/j.celrep.2021.110045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
Alternative splicing introduces an additional layer of protein diversity and complexity in regulating cellular functions that can be specific to the tissue and cell type, physiological state of a cell, or disease phenotype. Recent high-throughput experimental studies have illuminated the functional role of splicing events through rewiring protein-protein interactions; however, the extent to which the macromolecular interactions are affected by alternative splicing has yet to be fully understood. In silico methods provide a fast and cheap alternative to interrogating functional characteristics of thousands of alternatively spliced isoforms. Here, we develop an accurate feature-based machine learning approach that predicts whether a protein-protein interaction carried out by a reference isoform is perturbed by an alternatively spliced isoform. Our method, called the alternatively spliced interactions prediction (ALT-IN) tool, is compared with the state-of-the-art PPI prediction tools and shows superior performance, achieving 0.92 in precision and recall values.
Collapse
Affiliation(s)
- Oleksandr Narykov
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Nathan T Johnson
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA; Harvard Program in Therapeutic Sciences, Harvard Medical School, and Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dmitry Korkin
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
10
|
Wang S, Xu G, Chao F, Zhang C, Han D, Chen G. HNRNPC Promotes Proliferation, Metastasis and Predicts Prognosis in Prostate Cancer. Cancer Manag Res 2021; 13:7263-7276. [PMID: 34584453 PMCID: PMC8464311 DOI: 10.2147/cmar.s330713] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The incidence of prostate cancer remains high worldwide, while exploring new therapeutic targets for prostate cancer is essential. Heterogeneous nuclear ribonucleoproteins have been proved to regulate tumorigeneses in various cancers. This study aimed to explore the role of HNRNPC in prostate cancer progression. METHODS HNRNPC expression and its correlation with clinical features and immune infiltration were analyzed by bioinformatics analysis. The effects of HNRNPC on prostate cell proliferation, migration, and invasion were accessed by EdU, colony formation, transwell, and wound-healing assays. RESULTS The expression level of HNRNPC was significantly increased in prostate cancer tissues and was correlated with the T stage, N stage, Gleason score, PSA level, residual tumors, overall survival, disease-specific survival, and progression-free interval of prostate cancer patients. Silencing HNRNPC inhibited the proliferation and metastasis of prostate cancer cells. The expression of HNRNPC was negatively correlated with the infiltration level of most immune cells in prostate cancer. Mechanistically, HNRNPC may function through regulating gene expression at the posttranscriptional level. CONCLUSION HNRNPC could be a potential marker for the treatment and prognosis prediction of prostate cancer.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
11
|
Dumont AA, Dumont L, Zhou D, Giguère H, Pileggi C, Harper ME, Blondin DP, Scott MS, Auger-Messier M. Cardiomyocyte-specific Srsf3 deletion reveals a mitochondrial regulatory role. FASEB J 2021; 35:e21544. [PMID: 33819356 DOI: 10.1096/fj.202002293rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/11/2022]
Abstract
Serine-rich splicing factor 3 (SRSF3) was recently reported as being necessary to preserve RNA stability via an mTOR mechanism in a cardiac mouse model in adulthood. Here, we demonstrate the link between Srsf3 and mitochondrial integrity in an embryonic cardiomyocyte-specific Srsf3 conditional knockout (cKO) mouse model. Fifteen-day-old Srsf3 cKO mice showed dramatically reduced (below 50%) survival and reduced the left ventricular systolic performance, and histological analysis of these hearts revealed a significant increase in cardiomyocyte size, confirming the severe remodeling induced by Srsf3 deletion. RNA-seq analysis of the hearts of 5-day-old Srsf3 cKO mice revealed early changes in expression levels and alternative splicing of several transcripts related to mitochondrial integrity and oxidative phosphorylation. Likewise, the levels of several protein complexes of the electron transport chain decreased, and mitochondrial complex I-driven respiration of permeabilized cardiac muscle fibers from the left ventricle was impaired. Furthermore, transmission electron microscopy analysis showed disordered mitochondrial length and cristae structure. Together with its indispensable role in the physiological maintenance of mouse hearts, these results highlight the previously unrecognized function of Srsf3 in regulating the mitochondrial integrity.
Collapse
Affiliation(s)
- Audrey-Ann Dumont
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Delong Zhou
- Département de microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Denis P Blondin
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Boeckel JN, Möbius-Winkler M, Müller M, Rebs S, Eger N, Schoppe L, Tappu R, Kokot KE, Kneuer JM, Gaul S, Bordalo DM, Lai A, Haas J, Ghanbari M, Drewe-Boss P, Liss M, Katus HA, Ohler U, Gotthardt M, Laufs U, Streckfuss-Bömeke K, Meder B. SLM2 Is A Novel Cardiac Splicing Factor Involved in Heart Failure due to Dilated Cardiomyopathy. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:129-146. [PMID: 34273561 PMCID: PMC9510876 DOI: 10.1016/j.gpb.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Alternative mRNA splicing is a fundamental process to increase the versatility of the genome. In humans, cardiac mRNA splicing is involved in the pathophysiology of heart failure. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) cause severe forms of cardiomyopathy. To identify novel cardiomyopathy-associated splicing factors, RNA-seq and tissue-enrichment analyses were performed, which identified up-regulated expression of Sam68-Like mammalian protein 2 (SLM2) in the left ventricle of dilated cardiomyopathy (DCM) patients. In the human heart, SLM2 binds to important transcripts of sarcomere constituents, such as those encoding myosin light chain 2 (MYL2), troponin I3 (TNNI3), troponin T2 (TNNT2), tropomyosin 1/2 (TPM1/2), and titin (TTN). Mechanistically, SLM2 mediates intron retention, prevents exon exclusion, and thereby mediates alternative splicing of the mRNA regions encoding the variable proline-, glutamate-, valine-, and lysine-rich (PEVK) domain and another part of the I-band region of titin. In summary, SLM2 is a novel cardiac splicing regulator with essential functions for maintaining cardiomyocyte integrity by binding to and processing the mRNAs of essential cardiac constituents such as titin.
Collapse
Affiliation(s)
- Jes-Niels Boeckel
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | | | - Marion Müller
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen 32545, Germany
| | - Sabine Rebs
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Nicole Eger
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Laura Schoppe
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Rewati Tappu
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Karoline E Kokot
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Diana M Bordalo
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Alan Lai
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Jan Haas
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Mahsa Ghanbari
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Philipp Drewe-Boss
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Benjamin Meder
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Stanford Genome Technology Center, Department of Genetics, Stanford Medical School, Palo Alto, CA 94304, USA.
| |
Collapse
|
13
|
Zhu C, Wu J, Sun H, Briganti F, Meder B, Wei W, Steinmetz LM. Single-molecule, full-length transcript isoform sequencing reveals disease-associated RNA isoforms in cardiomyocytes. Nat Commun 2021; 12:4203. [PMID: 34244519 PMCID: PMC8270901 DOI: 10.1038/s41467-021-24484-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
Alternative splicing generates differing RNA isoforms that govern phenotypic complexity of eukaryotes. Its malfunction underlies many diseases, including cancer and cardiovascular diseases. Comparative analysis of RNA isoforms at the genome-wide scale has been difficult. Here, we establish an experimental and computational pipeline that performs de novo transcript annotation and accurately quantifies transcript isoforms from cDNA sequences with a full-length isoform detection accuracy of 97.6%. We generate a searchable, quantitative human transcriptome annotation with 31,025 known and 5,740 novel transcript isoforms ( http://steinmetzlab.embl.de/iBrowser/ ). By analyzing the isoforms in the presence of RNA Binding Motif Protein 20 (RBM20) mutations associated with aggressive dilated cardiomyopathy (DCM), we identify 121 differentially expressed transcript isoforms in 107 cardiac genes. Our approach enables quantitative dissection of complex transcript architecture instead of mere identification of inclusion or exclusion of individual exons, as exemplified by the discovery of IMMT isoforms mis-spliced by RBM20 mutations. Thereby we achieve a path to direct differential expression testing independent of an existing annotation of transcript isoforms, providing more immediate biological interpretation and higher resolution transcriptome comparisons.
Collapse
Affiliation(s)
- Chenchen Zhu
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Jingyan Wu
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Han Sun
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Francesca Briganti
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, USA
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Benjamin Meder
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Stanford Genome Technology Center, Stanford University, Palo Alto, USA.
| | - Lars M Steinmetz
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA.
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, USA.
- Stanford Genome Technology Center, Stanford University, Palo Alto, USA.
- DZHK (German Center for Cardiovascular Research), partner site EMBL Heidelberg, Heidelberg, Germany.
| |
Collapse
|
14
|
Yuan J, Wang JM, Li ZW, Zhang CS, Cheng B, Yang SH, Liu BT, Zhu LJ, Cai DJ, Yu SG. Full-length transcriptome analysis reveals the mechanism of acupuncture at PC6 improves cardiac function in myocardial ischemia model. Chin Med 2021; 16:55. [PMID: 34238326 PMCID: PMC8268520 DOI: 10.1186/s13020-021-00465-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022] Open
Abstract
Background The pathological process of myocardial ischemia (MI) is very complicated. Acupuncture at PC6 has been proved to be effective against MI injury, but the mechanism remains unclear. This study investigated the mechanism that underlies the effect of acupuncture on MI through full-length transcriptome. Methods Adult male C57/BL6 mice were randomly divided into control, MI, and PC6 groups. Mice in MI and PC6 group generated MI model by ligating the left anterior descending (LAD) coronary artery. The samples were collected 5 days after acupuncture treatment. Results The results showed that treatment by acupuncture improved cardiac function, decreased myocardial infraction area, and reduced the levels of cTnT and cTnI. Based on full-length transcriptome sequencing, 5083 differential expression genes (DEGs) and 324 DEGs were identified in the MI group and PC6 group, respectively. These genes regulated by acupuncture were mainly enriched in the inflammatory response pathway. Alternative splicing (AS) is a post-transcriptional action that contributes to the diversity of protein. In all samples, 8237 AS events associated with 1994 genes were found. Some differential AS-involved genes were enriched in the pathway related to heart disease. We also identified 602 new genes, 4 of which may the novel targets of acupuncture in MI. Conclusions Our findings suggest that the effect of acupuncture on MI may be based on the multi-level regulation of the transcriptome. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00465-8.
Collapse
Affiliation(s)
- Jing Yuan
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jun-Meng Wang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Zhi-Wei Li
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Bin Cheng
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Su-Hao Yang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Bai-Tong Liu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Li-Juan Zhu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ding-Jun Cai
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| | - Shu-Guang Yu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
15
|
Oh J, Pradella D, Kim Y, Shao C, Li H, Choi N, Ha J, Di Matteo A, Fu XD, Zheng X, Ghigna C, Shen H. Global Alternative Splicing Defects in Human Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13123071. [PMID: 34202984 PMCID: PMC8235023 DOI: 10.3390/cancers13123071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Aberrant alternative splicing (AS) regulation plays a pivotal role in breast cancer development, progression, and resistance to therapeutical interventions. Indeed, cancer cells can adapt their own transcriptome by changing different AS programs, thus generating cancer-specific AS isoforms involved in every hallmark of cancer. Here, we investigated global AS errors occurring in human breast cancer cells by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing. Our results identified several dysregulated AS events potentially relevant for breast cancer-related biological processes and that provide a better comprehension of the molecular mechanisms that orchestrate the malignant transformation. Abstract Breast cancer is the most frequently occurred cancer type and the second cause of death in women worldwide. Alternative splicing (AS) is the process that generates more than one mRNA isoform from a single gene, and it plays a major role in expanding the human protein diversity. Aberrant AS contributes to breast cancer metastasis and resistance to chemotherapeutic interventions. Therefore, identifying cancer-specific isoforms is the prerequisite for therapeutic interventions intended to correct aberrantly expressed AS events. Here, we performed RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq) in breast cancer cells, to identify global breast cancer-specific AS defects. By RT-PCR validation, we demonstrate the high accuracy of RASL-seq results. In addition, we analyzed identified AS events using the Cancer Genome Atlas (TCGA) database in a large number of non-pathological and breast tumor specimens and validated them in normal and breast cancer samples. Interestingly, aberrantly regulated AS cassette exons in cancer tissues do not encode for known functional domains but instead encode for amino acids constituting regions of intrinsically disordered protein portions characterized by high flexibility and prone to be subjected to post-translational modifications. Collectively, our results reveal novel AS errors occurring in human breast cancer, potentially affecting breast cancer-related biological processes.
Collapse
Affiliation(s)
- Jagyeong Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Davide Pradella
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
| | - Yoonseong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Namjeong Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Jiyeon Ha
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Anna Di Matteo
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Claudia Ghigna
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +82-62-715-2484 (H.S.)
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +82-62-715-2484 (H.S.)
| |
Collapse
|
16
|
Vancheri C, Morini E, Prandi FR, Alkhoury E, Celotto R, Romeo F, Novelli G, Amati F. Two RECK Splice Variants (Long and Short) Are Differentially Expressed in Patients with Stable and Unstable Coronary Artery Disease: A Pilot Study. Genes (Basel) 2021; 12:genes12060939. [PMID: 34205376 PMCID: PMC8234100 DOI: 10.3390/genes12060939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Primary prevention is crucial for coronary heart disease (CAD) and the identification of new reliable biomarkers might help risk stratification or predict adverse coronary events. Alternative splicing (AS) is a less investigated genetic factors implicated in CAD etiology. We performed an RNA-seq study on PBMCs from CAD patients and control subjects (CTR) and observed 113 differentially regulated AS events (24 up and 89 downregulated) in 86 genes. The RECK (Reversion-inducing-cysteine-rich protein with Kazal motifs) gene was further analyzed in a larger case study (24 CTR subjects, 72 CAD and 32 AMI patients) for its Splicing-Index FC (FC = −2.64; p = 0.0217), the AS event involving an exon (exon 18), and its role in vascular inflammation and remodeling. We observed a significant downregulation of Long RECK splice variant (containing exon 18) in PBMCs of AMI compared to CTR subjects (FC = −3.3; p < 0.005). Interestingly, the Short RECK splice variant (lacking exon 18) was under-expressed in AMI compared to both CTR (FC = −4.5; p < 0.0001) and CAD patients (FC = −4.2; p < 0.0001). A ROC curve, constructed combining Long and Short RECK expression data, shows an AUC = 0.81 (p < 0.001) to distinguish AMI from stable CAD patients. A significant negative correlation between Long RECK and triglycerides in CTR group and a positive correlation in the AMI group was found. The combined evaluation of Long and Short RECK expression levels is a potential genomic biomarker for the discrimination of AMI from CAD patients. Our results underline the relevance of deeper studies on the expression of these two splice variants to elucidate their functional role in CAD development and progression.
Collapse
Affiliation(s)
- Chiara Vancheri
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Elena Morini
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Francesca Romana Prandi
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Elie Alkhoury
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Roberto Celotto
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Francesco Romeo
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
- Unicamillus International Medical University, 00131 Rome, Italy
| | - Giuseppe Novelli
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Medical Genetics Laboratories, Tor Vergata University Hospital, PTV, 00133 Rome, Italy
- Neuromed IRCCS Institute, 86077 Pozzilli, Italy
- School of Medicine, Reno University of Nevada, Reno, NV 1664, USA
| | - Francesca Amati
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Department for the Promotion of Human Science and Quality of Life, University San Raffaele, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther 2021; 6:78. [PMID: 33623018 PMCID: PMC7902610 DOI: 10.1038/s41392-021-00486-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/31/2023] Open
Abstract
The abnormal regulation of alternative splicing is usually accompanied by the occurrence and development of tumors, which would produce multiple different isoforms and diversify protein expression. The aim of the present study was to conduct a systematic review in order to describe the regulatory mechanisms of alternative splicing, as well as its functions in tumor cells, from proliferation and apoptosis to invasion and metastasis, and from angiogenesis to metabolism. The abnormal splicing events contributed to tumor progression as oncogenic drivers and/or bystander factors. The alterations in splicing factors detected in tumors and other mis-splicing events (i.e., long non-coding and circular RNAs) in tumorigenesis were also included. The findings of recent therapeutic approaches targeting splicing catalysis and splicing regulatory proteins to modulate pathogenically spliced events (including tumor-specific neo-antigens for cancer immunotherapy) were introduced. The emerging RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms were also discussed. However, further studies are still required to address the association between alternative splicing and cancer in more detail.
Collapse
Affiliation(s)
- Yuanjiao Zhang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
18
|
Rau CD, Gonzales NM, Bloom JS, Park D, Ayroles J, Palmer AA, Lusis AJ, Zaitlen N. Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for "polygenic epistasis". PLoS Genet 2020; 16:e1009165. [PMID: 33104702 PMCID: PMC7644088 DOI: 10.1371/journal.pgen.1009165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/05/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background The majority of quantitative genetic models used to map complex traits assume that alleles have similar effects across all individuals. Significant evidence suggests, however, that epistatic interactions modulate the impact of many alleles. Nevertheless, identifying epistatic interactions remains computationally and statistically challenging. In this work, we address some of these challenges by developing a statistical test for polygenic epistasis that determines whether the effect of an allele is altered by the global genetic ancestry proportion from distinct progenitors. Results We applied our method to data from mice and yeast. For the mice, we observed 49 significant genotype-by-ancestry interaction associations across 14 phenotypes as well as over 1,400 Bonferroni-corrected genotype-by-ancestry interaction associations for mouse gene expression data. For the yeast, we observed 92 significant genotype-by-ancestry interactions across 38 phenotypes. Given this evidence of epistasis, we test for and observe evidence of rapid selection pressure on ancestry specific polymorphisms within one of the cohorts, consistent with epistatic selection. Conclusions Unlike our prior work in human populations, we observe widespread evidence of ancestry-modified SNP effects, perhaps reflecting the greater divergence present in crosses using mice and yeast. Many statistical tests which link genetic markers in the genome to differences in traits rely on the assumption that the same polymorphism will have identical effects in different individuals. However, there is substantial evidence indicating that this is not the case. Epistasis is the phenomenon in which multiple polymorphisms interact with one another to amplify or negate each other’s effects on a trait. We hypothesized that individual SNP effects could be changed in a polygenic manner, such that the proportion of as genetic ancestry, rather than specific markers, might be used to capture epistatic interactions. Motivated by this possibility, we develop a new statistical test that allowed us to examine the genome to identify polymorphisms which have different effects depending on the ancestral makeup of each individual. We use our test in two different populations of inbred mice and a yeast panel and demonstrate that these sorts of variable effect polymorphisms exist in 14 different physical traits in mice and 38 phenotypes in yeast as well as in murine gene expression. We use the term “polygenic epistasis” to distinguish these interactions from the more conventional two- or multi-locus interactions.
Collapse
Affiliation(s)
- Christoph D. Rau
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Natalia M. Gonzales
- Department of Human Genetics, University of Chicago, Chicago, IL, United States of America
| | - Joshua S. Bloom
- Department of Human Genetics, UCLA, Los Angeles, CA, United States of America
| | - Danny Park
- Department of Medicine, UCSF, San Francisco, CA, United States of America
| | - Julien Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States of America
| | - Abraham A. Palmer
- Department of Psychiatry, and Institute for Genomic Medicine, UCSD, San Diego, CA, United States of America
| | - Aldons J. Lusis
- Department of Human Genetics, UCLA, Los Angeles, CA, United States of America
| | - Noah Zaitlen
- Department of Neurology, UCLA, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Rodriguez JM, Pozo F, di Domenico T, Vazquez J, Tress ML. An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput Biol 2020; 16:e1008287. [PMID: 33017396 PMCID: PMC7561204 DOI: 10.1371/journal.pcbi.1008287] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/15/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023] Open
Abstract
The role of alternative splicing is one of the great unanswered questions in cellular biology. There is strong evidence for alternative splicing at the transcript level, and transcriptomics experiments show that many splice events are tissue specific. It has been suggested that alternative splicing evolved in order to remodel tissue-specific protein-protein networks. Here we investigated the evidence for tissue-specific splicing among splice isoforms detected in a large-scale proteomics analysis. Although the data supporting alternative splicing is limited at the protein level, clear patterns emerged among the small numbers of alternative splice events that we could detect in the proteomics data. More than a third of these splice events were tissue-specific and most were ancient: over 95% of splice events that were tissue-specific in both proteomics and RNAseq analyses evolved prior to the ancestors of lobe-finned fish, at least 400 million years ago. By way of contrast, three in four alternative exons in the human gene set arose in the primate lineage, so our results cannot be extrapolated to the whole genome. Tissue-specific alternative protein forms in the proteomics analysis were particularly abundant in nervous and muscle tissues and their genes had roles related to the cytoskeleton and either the structure of muscle fibres or cell-cell connections. Our results suggest that this conserved tissue-specific alternative splicing may have played a role in the development of the vertebrate brain and heart. We manually curated a set of 255 splice events detected in a large-scale tissue-based proteomics experiment and found that more than a third had evidence of significant tissue-specific differences. Events that were significantly tissue-specific at the protein level were highly conserved; almost 75% evolved over 400 million years ago. The tissues in which we found most evidence for tissue-specific splicing were nervous tissues and cardiac tissues. Genes with tissue-specific events in these two tissues had functions related to important cellular structures in brain and heart tissues. These splice events may have been essential for the development of vertebrate heart and muscle. However, our data set may not be representative of alternative exons as a whole. We found that most tissue specific splicing was strongly conserved, but just 5% of annotated alternative exons in the human gene set are ancient. More than three quarters of alternative exons are primate-derived. Although the analysis does not provide a definitive answer to the question of the functional role of alternative splicing, our results do indicate that alternative splice variants may have played a significant part in the evolution of brain and heart tissues in vertebrates.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernandez, Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
| | - Tomas di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
| | - Jesus Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernandez, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Michael L. Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
El-Dessouky SH, Issa MY, Aboulghar MM, Gaafar HM, Elarab AE, Ateya MI, Omar HH, Beetz C, Zaki MS. Prenatal delineation of a distinct lethal fetal syndrome caused by a homozygous truncating KIDINS220 variant. Am J Med Genet A 2020; 182:2867-2876. [PMID: 32909676 DOI: 10.1002/ajmg.a.61858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/19/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023]
Abstract
Kinase D-interacting substrate of 220 kDa (KIDINS220) is a transmembrane protein playing integral role in growth mediating pathways in the nervous and cardiovascular systems. KIDINS220 heterozygous truncating variants that affect the protein's C-terminus have been associated with a phenotype, so far described only in few unrelated children, including spastic paraplegia, intellectual disability, nystagmus, and obesity. More recently, a homozygous, more N-terminal truncating variant in KIDINS220 gene was suggested to be associated with enlarged cerebral ventricles and limb contractures in three fetuses from a consanguineous family. We confirm the latter finding by presenting the first detailed prenatal identification of a fetal phenotype associated with novel homozygous deleterious frameshift variant in KIDINS220 gene in a consanguineous healthy Egyptian couple. History of unexplained seven miscarriages and a similar stillbirth were recorded. Prenatal ultrasonography revealed limb contractions and ventriculomegaly; in addition to previously unreported cerebellar anomalies, cardiac anomalies and hydrops fetalis. These findings represent an expansion of clinical and molecular spectrum associated with KIDINS220 variants and broaden our understanding of genotype-phenotype relationships in lethal congenital contractures syndromes and associated severe abnormal embryological development. More generally, our study adds KIDINS220 to the rare group of genes which may cause disease by either of two distinct mutational mechanisms.
Collapse
Affiliation(s)
- Sara H El-Dessouky
- Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mona M Aboulghar
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, Cairo University, Cairo, Egypt
| | - Hassan M Gaafar
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, Cairo University, Cairo, Egypt
| | - Ahmed Ezz Elarab
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, Cairo University, Cairo, Egypt
| | - Mohamed I Ateya
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, Cairo University, Cairo, Egypt
| | - Heba H Omar
- Diagnostic and Research Department, Centogene AG, Rostock, Germany
| | - Christian Beetz
- Diagnostic and Research Department, Centogene AG, Rostock, Germany
| | - Maha Saad Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
21
|
Dissecting the role of alternative splicing in the regulation of autophagy: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Giblin SP, Schwenzer A, Midwood KS. Alternative splicing controls cell lineage-specific responses to endogenous innate immune triggers within the extracellular matrix. Matrix Biol 2020; 93:95-114. [PMID: 32599145 DOI: 10.1016/j.matbio.2020.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023]
Abstract
The identification of barely more than 20,000 human genes was amongst the most surprising outcomes of the human genome project. Alternative splicing provides an essential means of expanding the proteome, enabling a single gene to encode multiple, distinct isoforms by selective inclusion or exclusion of exons from mature mRNA. However, mis-regulation of this process is associated with most human diseases. Here, we examine the impact of post-transcriptional processing on extracellular matrix function, focusing on the complex alternative splicing patterns of tenascin-C, a molecule that can exist in as many as 500 different isoforms. We demonstrate that the pro-inflammatory activity of this endogenous innate immune trigger is controlled by inclusion or exclusion of a novel immunomodulatory site located within domains AD2AD1, identifying this as a mechanism that prevents unnecessary inflammation in healthy tissues but enables rapid immune cell mobilization and activation upon tissue damage, and defining how this goes awry in autoimmune disease.
Collapse
Affiliation(s)
- Sean P Giblin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
23
|
Fochi S, Lorenzi P, Galasso M, Stefani C, Trabetti E, Zipeto D, Romanelli MG. The Emerging Role of the RBM20 and PTBP1 Ribonucleoproteins in Heart Development and Cardiovascular Diseases. Genes (Basel) 2020; 11:genes11040402. [PMID: 32276354 PMCID: PMC7230170 DOI: 10.3390/genes11040402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a regulatory mechanism essential for cell differentiation and tissue organization. More than 90% of human genes are regulated by alternative splicing events, which participate in cell fate determination. The general mechanisms of splicing events are well known, whereas only recently have deep-sequencing, high throughput analyses and animal models provided novel information on the network of functionally coordinated, tissue-specific, alternatively spliced exons. Heart development and cardiac tissue differentiation require thoroughly regulated splicing events. The ribonucleoprotein RBM20 is a key regulator of the alternative splicing events required for functional and structural heart properties, such as the expression of TTN isoforms. Recently, the polypyrimidine tract-binding protein PTBP1 has been demonstrated to participate with RBM20 in regulating splicing events. In this review, we summarize the updated knowledge relative to RBM20 and PTBP1 structure and molecular function; their role in alternative splicing mechanisms involved in the heart development and function; RBM20 mutations associated with idiopathic dilated cardiovascular disease (DCM); and the consequences of RBM20-altered expression or dysfunction. Furthermore, we discuss the possible application of targeting RBM20 in new approaches in heart therapies.
Collapse
|
24
|
Martí-Gómez C, Lara-Pezzi E, Sánchez-Cabo F. dSreg: a Bayesian model to integrate changes in splicing and RNA-binding protein activity. Bioinformatics 2020; 36:2134-2141. [PMID: 31834368 PMCID: PMC7141860 DOI: 10.1093/bioinformatics/btz915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/09/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION Alternative splicing (AS) is an important mechanism in the generation of transcript diversity across mammals. AS patterns are dynamically regulated during development and in response to environmental changes. Defects or perturbations in its regulation may lead to cancer or neurological disorders, among other pathological conditions. The regulatory mechanisms controlling AS in a given biological context are typically inferred using a two-step framework: differential AS analysis followed by enrichment methods. These strategies require setting rather arbitrary thresholds and are prone to error propagation along the analysis. RESULTS To overcome these limitations, we propose dSreg, a Bayesian model that integrates RNA-seq with data from regulatory features, e.g. binding sites of RNA-binding proteins. dSreg identifies the key underlying regulators controlling AS changes and quantifies their activity while simultaneously estimating the changes in exon inclusion rates. dSreg increased both the sensitivity and the specificity of the identified AS changes in simulated data, even at low read coverage. dSreg also showed improved performance when analyzing a collection of knock-down RNA-binding proteins' experiments from ENCODE, as opposed to traditional enrichment methods, such as over-representation analysis and gene set enrichment analysis. dSreg opens the possibility to integrate a large amount of readily available RNA-seq datasets at low coverage for AS analysis and allows more cost-effective RNA-seq experiments. AVAILABILITY AND IMPLEMENTATION dSreg was implemented in python using stan and is freely available to the community at https://bitbucket.org/cmartiga/dsreg. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Carlos Martí-Gómez
- Molecular Regulation of Heart Failure (CMG and ELP); Bioinformatics Unit (FSC), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Enrique Lara-Pezzi
- Molecular Regulation of Heart Failure (CMG and ELP); Bioinformatics Unit (FSC), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Fátima Sánchez-Cabo
- Molecular Regulation of Heart Failure (CMG and ELP); Bioinformatics Unit (FSC), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| |
Collapse
|
25
|
Angiotensin II Influences Pre-mRNA Splicing Regulation by Enhancing RBM20 Transcription Through Activation of the MAPK/ELK1 Signaling Pathway. Int J Mol Sci 2019; 20:ijms20205059. [PMID: 31614708 PMCID: PMC6829565 DOI: 10.3390/ijms20205059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022] Open
Abstract
RNA binding motif 20 (RBM20) is a key regulator of pre-mRNA splicing of titin and other genes that are associated with cardiac diseases. Hormones, like insulin, triiodothyronine (T3), and angiotensin II (Ang II), can regulate gene-splicing through RBM20, but the detailed mechanism remains unclear. This study was aimed at investigating the signaling mechanism by which hormones regulate pre-mRNA splicing through RBM20. We first examined the role of RBM20 in Z-, I-, and M-band titin splicing at different ages in wild type (WT) and RBM20 knockout (KO) rats using RT-PCR; we found that RBM20 is the predominant regulator of I-band titin splicing at all ages. Then we treated rats with propylthiouracil (PTU), T3, streptozotocin (STZ), and Ang II and evaluated the impact of these hormones on the splicing of titin, LIM domain binding 3 (Ldb3), calcium/calmodulin-dependent protein kinase II gamma (Camk2g), and triadin (Trdn). We determined the activation of mitogen-activated protein kinase (MAPK) signaling in primary cardiomyocytes treated with insulin, T3, and Ang II using western blotting; MAPK signaling was activated and RBM20 expression increased after treatment. Two downstream transcriptional factors c-jun and ETS Transcription Factor (ELK1) can bind the promoter of RBM20. A dual-luciferase activity assay revealed that Ang II, but not insulin and T3, can trigger ELK1 and thus promote transcription of RBM20. This study revealed that Ang II can trigger ELK1 through activation of MAPK signaling by enhancing RBM20 expression which regulates pre-mRNA splicing. Our study provides a potential therapeutic target for the treatment of cardiac diseases in RBM20-mediated pre-mRNA splicing.
Collapse
|
26
|
Tabish AM, Arif M, Song T, Elbeck Z, Becker RC, Knöll R, Sadayappan S. Association of intronic DNA methylation and hydroxymethylation alterations in the epigenetic etiology of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 317:H168-H180. [PMID: 31026178 PMCID: PMC6692731 DOI: 10.1152/ajpheart.00758.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023]
Abstract
In this study, we investigated the role of DNA methylation [5-methylcytosine (5mC)] and 5-hydroxymethylcytosine (5hmC), epigenetic modifications that regulate gene activity, in dilated cardiomyopathy (DCM). A MYBPC3 mutant mouse model of DCM was compared with wild type and used to profile genomic 5mC and 5hmC changes by Chip-seq, and gene expression levels were analyzed by RNA-seq. Both 5mC-altered genes (957) and 5hmC-altered genes (2,022) were identified in DCM hearts. Diverse gene ontology and KEGG pathways were enriched for DCM phenotypes, such as inflammation, tissue fibrosis, cell death, cardiac remodeling, cardiomyocyte growth, and differentiation, as well as sarcomere structure. Hierarchical clustering of mapped genes affected by 5mC and 5hmC clearly differentiated DCM from wild-type phenotype. Based on these data, we propose that genomewide 5mC and 5hmC contents may play a major role in DCM pathogenesis. NEW & NOTEWORTHY Our data demonstrate that development of dilated cardiomyopathy in mice is associated with significant epigenetic changes, specifically in intronic regions, which, when combined with gene expression profiling data, highlight key signaling pathways involved in pathological cardiac remodeling and heart contractile dysfunction.
Collapse
Affiliation(s)
- Ali M Tabish
- Integrated Cardio-Metabolic Centre, Karolinska Institutet , Stockholm , Sweden
| | - Mohammed Arif
- Heart, Lung, Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Taejeong Song
- Heart, Lung, Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Zaher Elbeck
- Integrated Cardio-Metabolic Centre, Karolinska Institutet , Stockholm , Sweden
| | - Richard C Becker
- Heart, Lung, Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Ralph Knöll
- Integrated Cardio-Metabolic Centre, Karolinska Institutet , Stockholm , Sweden
- Cardiovascular and Metabolic Disease Innovative Medicines and Early Development Unit, AstraZeneca R&D, Gothenburg , Sweden
| | - Sakthivel Sadayappan
- Heart, Lung, Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
27
|
Xiao J, Li F, Yang Q, Zeng X, Ke Z. Co‐expression analysis provides important module and pathways of human dilated cardiomyopathy. J Cell Physiol 2019; 235:494-503. [PMID: 31236962 DOI: 10.1002/jcp.28989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Junhui Xiao
- Department of Cardiology, Huadu District People's Hospital Southern Medical University Guangzhou China
| | - Fang Li
- Department of Cardiology, Huadu District People's Hospital Southern Medical University Guangzhou China
| | - Qianzhao Yang
- Department of Cardiology, Huadu District People's Hospital Southern Medical University Guangzhou China
| | | | - Zun‐Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai Fudan University Shanghai China
| |
Collapse
|
28
|
Mirtschink P, Bischof C, Pham MD, Sharma R, Khadayate S, Rossi G, Fankhauser N, Traub S, Sossalla S, Hagag E, Berthonneche C, Sarre A, Stehr SN, Grote P, Pedrazzini T, Dimmeler S, Krek W, Krishnan J. Inhibition of the Hypoxia-Inducible Factor 1α-Induced Cardiospecific HERNA1 Enhance-Templated RNA Protects From Heart Disease. Circulation 2019; 139:2778-2792. [PMID: 30922078 PMCID: PMC6571183 DOI: 10.1161/circulationaha.118.036769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Enhancers are genomic regulatory elements conferring spatiotemporal and signal-dependent control of gene expression. Recent evidence suggests that enhancers can generate noncoding enhancer RNAs, but their (patho)biological functions remain largely elusive. Methods: We performed chromatin immunoprecipitation–coupled sequencing of histone marks combined with RNA sequencing of left ventricular biopsies from experimental and genetic mouse models of human cardiac hypertrophy to identify transcripts revealing enhancer localization, conservation with the human genome, and hypoxia-inducible factor 1α dependence. The most promising candidate, hypoxia-inducible enhancer RNA (HERNA)1, was further examined by investigating its capacity to modulate neighboring coding gene expression by binding to their gene promoters by using chromatin isolation by RNA purification and λN–BoxB tethering–based reporter assays. The role of HERNA1 and its neighboring genes for pathological stress–induced growth and contractile dysfunction, and the therapeutic potential of HERNA1 inhibition was studied in gapmer-mediated loss-of-function studies in vitro using human induced pluripotent stem cell–derived cardiomyocytes and various in vivo models of human pathological cardiac hypertrophy. Results: HERNA1 is robustly induced on pathological stress. Production of HERNA1 is initiated by direct hypoxia-inducible factor 1α binding to a hypoxia-response element in the histoneH3-lysine27acetylation marks–enriched promoter of the enhancer and confers hypoxia responsiveness to nearby genes including synaptotagmin XVII, a member of the family of membrane-trafficking and Ca2+-sensing proteins and SMG1, encoding a phosphatidylinositol 3-kinase–related kinase. Consequently, a substrate of SMG1, ATP-dependent RNA helicase upframeshift 1, is hyperphoshorylated in a HERNA1- and SMG1-dependent manner. In vitro and in vivo inactivation of SMG1 and SYT17 revealed overlapping and distinct roles in modulating cardiac hypertrophy. Finally, in vivo administration of antisense oligonucleotides targeting HERNA1 protected mice from stress-induced pathological hypertrophy. The inhibition of HERNA1 postdisease development reversed left ventricular growth and dysfunction, resulting in increased overall survival. Conclusions: HERNA1 is a novel heart-specific noncoding RNA with key regulatory functions in modulating the growth, metabolic, and contractile gene program in disease, and reveals a molecular target amenable to therapeutic exploitation.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/prevention & control
- Case-Control Studies
- Disease Models, Animal
- HEK293 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/deficiency
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oligonucleotides, Antisense/administration & dosage
- Promoter Regions, Genetic
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Signal Transduction
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
Collapse
Affiliation(s)
- Peter Mirtschink
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland (P.M., G.R., N.F., S.T., W.K.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Germany (P.M., E.H.)
| | - Corinne Bischof
- MRC Clinical Sciences Centre, Imperial College London, United Kingdom (C.B., S.K., J.K.)
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Germany (C.B., M.-D.P., R.S., P.G., S.D., J.K.)
| | - Minh-Duc Pham
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Germany (C.B., M.-D.P., R.S., P.G., S.D., J.K.)
| | - Rahul Sharma
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Germany (C.B., M.-D.P., R.S., P.G., S.D., J.K.)
| | - Sanjay Khadayate
- MRC Clinical Sciences Centre, Imperial College London, United Kingdom (C.B., S.K., J.K.)
| | - Geetha Rossi
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland (P.M., G.R., N.F., S.T., W.K.)
| | - Niklaus Fankhauser
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland (P.M., G.R., N.F., S.T., W.K.)
| | - Shuyang Traub
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland (P.M., G.R., N.F., S.T., W.K.)
| | - Samuel Sossalla
- Department of Internal Medicine III: Cardiology and Angiology, University of Kiel, Germany (S.S.)
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Goettingen and DZHK (German Centre for Cardiovascular Research) (S.S.)
| | - Eman Hagag
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Germany (P.M., E.H.)
| | - Corinne Berthonneche
- Cardiovascular Assessment Facility, University of Lausanne and CHUV, Switzerland (C.B., A.S.)
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne and CHUV, Switzerland (C.B., A.S.)
| | - Sebastian. N. Stehr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, and Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Germany (S.N.S.)
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Germany (C.B., M.-D.P., R.S., P.G., S.D., J.K.)
| | - Thierry Pedrazzini
- Department of Medicine, University of Lausanne Medical School, Switzerland (T.P.)
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Germany (C.B., M.-D.P., R.S., P.G., S.D., J.K.)
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland (P.M., G.R., N.F., S.T., W.K.)
| | - Jaya Krishnan
- MRC Clinical Sciences Centre, Imperial College London, United Kingdom (C.B., S.K., J.K.)
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Germany (C.B., M.-D.P., R.S., P.G., S.D., J.K.)
| |
Collapse
|
29
|
Lorenzi P, Sangalli A, Fochi S, Dal Molin A, Malerba G, Zipeto D, Romanelli MG. RNA-binding proteins RBM20 and PTBP1 regulate the alternative splicing of FHOD3. Int J Biochem Cell Biol 2018; 106:74-83. [PMID: 30468920 DOI: 10.1016/j.biocel.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Regulation of alternative splicing events is an essential step required for the expression of functional cytoskeleton and sarcomere proteins in cardiomyocytes. About 3% of idiopathic dilated cardiomyopathy cases present mutations in the RNA binding protein RBM20, a tissue specific regulator of alternative splicing. Transcripts expressed preferentially in skeletal and cardiac muscle, including TTN, CAMK2D, LDB3, LMO7, PDLIM3, RTN4, and RYR2, are RBM20-dependent splice variants. In the present study, we investigated the RBM20 involvement in post-transcriptional regulation of splicing variants expressed by Formin homology 2 domain containing 3 (FHOD3) gene. FHOD3 is a sarcomeric protein highly expressed in the cardiac tissue and required for the assembly of the contractile apparatus. Recently, FHOD3 mutations have been found associated with heart diseases. We identified novel FHOD3 splicing variants differentially expressed in human tissues and provided evidences that FHOD3 transcripts are specific RBM20 and PTBP1 targets. Furthermore, we demonstrated that the expression of RBM20 and PTBP1 promoted the alternative shift, from inclusion to exclusion, of selected FHOD3 exons. These results indicate that RBM20 and PTBP1 play a role in the actin filament functional organization mediated by FHOD3 isoforms and suggest their possible involvement in heart diseases.
Collapse
Affiliation(s)
- P Lorenzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - A Sangalli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - S Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - A Dal Molin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - G Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - D Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| |
Collapse
|
30
|
RNA binding protein 24 deletion disrupts global alternative splicing and causes dilated cardiomyopathy. Protein Cell 2018; 10:405-416. [PMID: 30267374 PMCID: PMC6538757 DOI: 10.1007/s13238-018-0578-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023] Open
Abstract
RNA splicing contributes to a broad spectrum of post-transcriptional gene regulation during normal development, as well as pathological manifestation of heart diseases. However, the functional role and regulation of splicing in heart failure remain poorly understood. RNA binding protein (RBP), a major component of the splicing machinery, is a critical factor in this process. RNA binding motif protein 24 (RBM24) is a tissue-specific RBP which is highly expressed in human and mouse heart. Previous studies demonstrated the functional role of RBM24 in the embryonic heart development. However, the role of RBM24 in postnatal heart development and heart disease has not been investigated. In this paper, using conditional RBM24 knockout mice, we demonstrated that ablation of RBM24 in postnatal heart led to rapidly progressive dilated cardiomyopathy (DCM), heart failure, and postnatal lethality. Global splicing profiling revealed that RBM24 regulated a network of genes related to cardiac function and diseases. Knockout of RBM24 resulted in misregulation of these splicing transitions which contributed to the subsequent development of cardiomyopathy. Notably, our analysis identified RBM24 as a splice factor that determined the splicing switch of a subset of genes in the sacomeric Z-disc complex, including Titin, the major disease gene of DCM and heart failure. Together, this study identifies regulation of RNA splicing by RBM24 as a potent player in remodeling of heart during postnatal development, and provides novel mechanistic insights to the pathogenesis of DCM.
Collapse
|
31
|
van den Hoogenhof MM, Beqqali A, Amin AS, van der Made I, Aufiero S, Khan MA, Schumacher CA, Jansweijer JA, van Spaendonck-Zwarts KY, Remme CA, Backs J, Verkerk AO, Baartscheer A, Pinto YM, Creemers EE. RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy Related to Disturbed Calcium Handling. Circulation 2018; 138:1330-1342. [DOI: 10.1161/circulationaha.117.031947] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Mutations in RBM20 (RNA-binding motif protein 20) cause a clinically aggressive form of dilated cardiomyopathy, with an increased risk of malignant ventricular arrhythmias. RBM20 is a splicing factor that targets multiple pivotal cardiac genes, such as Titin (TTN) and CAMK2D (calcium/calmodulin-dependent kinase II delta). Aberrant TTN splicing is thought to be the main determinant of RBM20-induced dilated cardiomyopathy, but is not likely to explain the increased risk of arrhythmias. Here, we investigated the extent to which RBM20 mutation carriers have an increased risk of arrhythmias and explore the underlying molecular mechanism.
Methods:
We compared clinical characteristics of RBM20 and TTN mutation carriers and used our previously generated Rbm20 knockout (KO) mice to investigate downstream effects of Rbm20-dependent splicing. Cellular electrophysiology and Ca
2+
measurements were performed on isolated cardiomyocytes from Rbm20 KO mice to determine the intracellular consequences of reduced Rbm20 levels.
Results:
Sustained ventricular arrhythmias were more frequent in human RBM20 mutation carriers than in TTN mutation carriers (44% versus 5%, respectively,
P
=0.006). Splicing events that affected Ca
2+
- and ion-handling genes were enriched in Rbm20 KO mice, most notably in the genes CamkIIδ and RyR2. Aberrant splicing of CamkIIδ in Rbm20 KO mice resulted in a remarkable shift of CamkIIδ toward the δ-A isoform that is known to activate the L-type Ca
2+
current (
I
Ca,L
). In line with this, we found an increased
I
Ca,L
, intracellular Ca
2+
overload and increased sarcoplasmic reticulum Ca
2+
content in Rbm20 KO myocytes. In addition, not only complete loss of Rbm20, but also heterozygous loss of Rbm20 increased spontaneous sarcoplasmic reticulum Ca
2+
releases, which could be attenuated by treatment with the
I
Ca,L
antagonist verapamil.
Conclusions:
We show that loss of Rbm20 disturbs Ca
2+
handling and leads to more proarrhythmic Ca
2+
releases from the sarcoplasmic reticulum. Patients that carry a pathogenic RBM20 mutation have more ventricular arrhythmias despite a similar left ventricular function, in comparison with patients with a TTN mutation. Our experimental data suggest that RBM20 mutation carriers may benefit from treatment with an
I
Ca,L
blocker to reduce their arrhythmia burden.
Collapse
Affiliation(s)
- Maarten M.G. van den Hoogenhof
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Abdelaziz Beqqali
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ahmad S. Amin
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Simona Aufiero
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (S.A., M.A.F.K.), Academic Medical Center, Amsterdam, The Netherlands
| | - Mohsin A.F. Khan
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (S.A., M.A.F.K.), Academic Medical Center, Amsterdam, The Netherlands
| | - Cees A. Schumacher
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Joeri A. Jansweijer
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | | | - Carol Ann Remme
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Germany (J.B.)
| | - Arie O. Verkerk
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology (A.o.V.), Academic Medical Center, Amsterdam, The Netherlands
| | - Antonius Baartscheer
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
32
|
van den Hoogenhof MMG, van der Made I, de Groot NE, Damanafshan A, van Amersfoorth SCM, Zentilin L, Giacca M, Pinto YM, Creemers EE. AAV9-mediated Rbm24 overexpression induces fibrosis in the mouse heart. Sci Rep 2018; 8:11696. [PMID: 30076363 PMCID: PMC6076270 DOI: 10.1038/s41598-018-29552-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
The RNA-binding protein Rbm24 has recently been identified as a pivotal splicing factor in the developing heart. Loss of Rbm24 in mice disrupts cardiac development by governing a large number of muscle-specific splicing events. Since Rbm24 knockout mice are embryonically lethal, the role of Rbm24 in the adult heart remained unexplored. Here, we used adeno-associated viruses (AAV9) to investigate the effect of increased Rbm24 levels in adult mouse heart. Using high-resolution microarrays, we found 893 differentially expressed genes and 1102 differential splicing events in 714 genes in hearts overexpressing Rbm24. We found splicing differences in cardiac genes, such as PDZ and Lim domain 5, Phospholamban, and Titin, but did not find splicing differences in previously identified embryonic splicing targets of Rbm24, such as skNAC, αNAC, and Coro6. Gene ontology enrichment analysis demonstrated increased expression of extracellular matrix (ECM)-related and immune response genes. Moreover, we found increased expression of Tgfβ-signaling genes, suggesting enhanced Tgfβ-signaling in these hearts. Ultimately, this increased activation of cardiac fibroblasts, as evidenced by robust expression of Periostin in the heart, and induced extensive cardiac fibrosis. These results indicate that Rbm24 may function as a regulator of cardiac fibrosis, potentially through the regulation of TgfβR1 and TgfβR2 expression.
Collapse
Affiliation(s)
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Nina E de Groot
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Amin Damanafshan
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | | | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Yigal M Pinto
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Abstract
Alternative splicing is an important mechanism used by the cell to generate greater transcriptomic and proteomic diversity from the genome. In the heart, alternative splicing is increasingly being recognised as an important layer of post-transcriptional gene regulation. Driven by rapidly evolving technologies in next-generation sequencing, alternative splicing has emerged as a crucial process governing complex biological processes during cardiac development and disease. The recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and 24, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the factors controlling cardiac alternative splicing and their role in cardiomyopathies and subsequent heart failure.
Collapse
|
34
|
|
35
|
Abstract
Recently, genome-wide association studies (GWAS) have identified 11 loci associated with adipose-related traits across different populations. However, their functional roles still remain largely unknown. In this study, we aimed to explore the splicing regulation of these GWAS signals in a tissue-specific fashion. For adipose-related GWAS signals, we selected six adipose-related tissues (adipose subcutaneous, artery tibial, blood, heart left ventricle, muscle-skeletal, and thyroid) with the sample size greater than 80 for splicing quantitative trait loci (QTL) analysis using GTEx released datasets. We integrated GWAS summary statistics of nine adipose-related traits (an average of 2.6 million SNPs per GWAS), and splicing QTLs from 6 GTEx tissues with an average of 337,900 splicing QTL SNPs, and 684,859 junctions. Our filtering process generated an average of 86,549 SNPs and 162,841 exon-exon links (junctions) for each tissue. A total of seven exon-exon junctions in four genes (AKTIP, DTNBP1, FTO and UBE2E1) were found to be significantly associated with four SNPs that showed genome-wide significance with body fat distribution (rs17817288, rs7206790, rs11710420 and rs2237199). These splicing events might contribute to the causal effect on the regulation of ectopic-fat, which warrants further experimental validation.
Collapse
|
36
|
Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20. Genes (Basel) 2018; 9:genes9010018. [PMID: 29304022 PMCID: PMC5793171 DOI: 10.3390/genes9010018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 11/17/2022] Open
Abstract
Alternative splicing is an essential post-transcriptional process to generate multiple functional RNAs or proteins from a single transcript. Progress in RNA biology has led to a better understanding of muscle-specific RNA splicing in heart disease. The recent discovery of the muscle-specific splicing factor RNA-binding motif 20 (RBM20) not only provided great insights into the general alternative splicing mechanism but also demonstrated molecular mechanism of how this splicing factor is associated with dilated cardiomyopathy. Here, we review our current knowledge of muscle-specific splicing factors and heart disease, with an emphasis on RBM20 and its targets, RBM20-dependent alternative splicing mechanism, RBM20 disease origin in induced Pluripotent Stem Cells (iPSCs), and RBM20 mutations in dilated cardiomyopathy. In the end, we will discuss the multifunctional role of RBM20 and manipulation of RBM20 as a potential therapeutic target for heart disease.
Collapse
|
37
|
Liu TY, Chen YC, Jong YJ, Tsai HJ, Lee CC, Chang YS, Chang JG, Chang YF. Muscle developmental defects in heterogeneous nuclear Ribonucleoprotein A1 knockout mice. Open Biol 2017; 7:rsob.160303. [PMID: 28077597 PMCID: PMC5303281 DOI: 10.1098/rsob.160303] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/05/2016] [Indexed: 01/18/2023] Open
Abstract
Heterogeneous ribonucleoprotein A1 (hnRNP A1) is crucial for regulating alternative splicing. Its integrated function within an organism has not, however, been identified. We generated hnRNP A1 knockout mice to study the role of hnRNP A1 in vivo. The knockout mice, hnRNP A1−/−, showed embryonic lethality because of muscle developmental defects. The blood pressure and heart rate of the heterozygous mice were higher than those of the wild-type mice, indicating heart function defects. We performed mouse exon arrays to study the muscle development mechanism. The processes regulated by hnRNP A1 included cell adhesion and muscle contraction. The expression levels of muscle development-related genes in hnRNP A1+/− mice were significantly different from those in wild-type mice, as detected using qRT-PCR. We further confirmed the alternative splicing patterns of muscle development-related genes including mef2c, lrrfip1, usp28 and abcc9. Alternative mRNA isoforms of these genes were increased in hnRNP A1+/− mice compared with wild-type mice. Furthermore, we revealed that the functionally similar hnRNP A2/B1 did not compensate for the expression of hnRNP A1 in organisms. In summary, our study demonstrated that hnRNP A1 plays a critical and irreplaceable role in embryonic muscle development by regulating the expression and alternative splicing of muscle-related genes.
Collapse
Affiliation(s)
- Ting-Yuan Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Yu-Chia Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Yuh-Jyh Jong
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.,Departments of Pediatrics and Clinical Laboratory, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China.,Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan, Republic of China
| | - Chien-Chin Lee
- Epigenome Research Center, China Medical University, Taichung, Taiwan, Republic of China
| | - Ya-Sian Chang
- Epigenome Research Center, China Medical University, Taichung, Taiwan, Republic of China.,Department of Laboratory Medicine, China Medical University, Taichung, Taiwan, Republic of China.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, Republic of China
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University, Taichung, Taiwan, Republic of China .,Department of Laboratory Medicine, China Medical University, Taichung, Taiwan, Republic of China.,School of Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
38
|
Varga ZV, Pipicz M, Baán JA, Baranyai T, Koncsos G, Leszek P, Kuśmierczyk M, Sánchez-Cabo F, García-Pavía P, Brenner GJ, Giricz Z, Csont T, Mendler L, Lara-Pezzi E, Pacher P, Ferdinandy P. Alternative Splicing of NOX4 in the Failing Human Heart. Front Physiol 2017; 8:935. [PMID: 29204124 PMCID: PMC5698687 DOI: 10.3389/fphys.2017.00935] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Increased oxidative stress is a major contributor to the development and progression of heart failure, however, our knowledge on the role of the distinct NADPH oxidase (NOX) isoenzymes, especially on NOX4 is controversial. Therefore, we aimed to characterize NOX4 expression in human samples from healthy and failing hearts. Explanted human heart samples (left and right ventricular, and septal regions) were obtained from patients suffering from heart failure of ischemic or dilated origin. Control samples were obtained from donor hearts that were not used for transplantation. Deep RNA sequencing of the cardiac transcriptome indicated extensive alternative splicing of the NOX4 gene in heart failure as compared to samples from healthy donor hearts. Long distance PCR analysis with a universal 5'-3' end primer pair, allowing amplification of different splice variants, confirmed the presence of the splice variants. To assess translation of the alternatively spliced transcripts we determined protein expression of NOX4 by using a specific antibody recognizing a conserved region in all variants. Western blot analysis showed up-regulation of the full-length NOX4 in ischemic cardiomyopathy samples and confirmed presence of shorter isoforms both in control and failing samples with disease-associated expression pattern. We describe here for the first time that NOX4 undergoes extensive alternative splicing in human hearts which gives rise to the expression of different enzyme isoforms. The full length NOX4 is significantly upregulated in ischemic cardiomyopathy suggesting a role for NOX4 in ROS production during heart failure.
Collapse
Affiliation(s)
- Zoltán V. Varga
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Márton Pipicz
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Júlia A. Baán
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Baranyai
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Gábor Koncsos
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Mariusz Kuśmierczyk
- Department of Cardiac Surgery and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardioavsculares Carlos III, Madrid, Spain
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Gábor J. Brenner
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Luca Mendler
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | | | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Péter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Paediatric cardiomyopathy is a rare disease with a genetic basis. The purpose of this review is to discuss the current status of genetic findings in the paediatric cardiomyopathy population and present recent progress in utilizing this information for management and therapy. RECENT FINDINGS With increased clinical genetic testing, an understanding of the genetic causes of cardiomyopathy is improving and novel causes are identified at a rapid rate. Recent progress in identifying the scope of genetic variation in large population datasets has led to reassessment and refinement of our understanding of the significance of rare genetic variation. As a result, the stringency of variant interpretation has increased, at times leading to revision of previous mutation results. Transcriptome and epigenome studies are elucidating important pathways for disease progression and highlight similarities and differences in pathogenesis from adult cardiomyopathy. Therapy targeted towards the underlying cause of cardiomyopathy is emerging for a number of rare syndromes such as Pompe and Noonan syndromes, and genome editing and induced pluripotent stem cells provide promise for additional precision medicine approaches. SUMMARY Genetics is moving at a rapid pace in paediatric cardiomyopathy. Genetic testing is increasingly being incorporated into clinical care. Although interpretation of rare genetic variation remains challenging, the opportunity to provide management and therapy targeted towards the underlying genetic cause is beginning to be realized.
Collapse
Affiliation(s)
- Stephanie M. Ware
- Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
40
|
da Costa PJ, Menezes J, Romão L. The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease. Int J Biochem Cell Biol 2017; 91:168-175. [PMID: 28743674 DOI: 10.1016/j.biocel.2017.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022]
Abstract
Alternative pre-mRNA splicing (AS) affects gene expression as it generates proteome diversity. Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature translation-termination codons (PTCs), preventing the production of truncated proteins that could result in disease. Several studies have also implicated NMD in the regulation of steady-state levels of physiological mRNAs. In addition, it is known that several regulated AS events do not lead to generation of protein products, as they lead to transcripts that carry PTCs and thus, they are committed to NMD. Indeed, an estimated one-third of naturally occurring, alternatively spliced mRNAs is targeted for NMD, being AS coupled to NMD (AS-NMD) an efficient strategy to regulate gene expression. In this review, we will focus on how AS mechanism operates and how can be coupled to NMD to fine-tune gene expression levels. Furthermore, we will demonstrate the physiological significance of the interplay among AS and NMD in human disease, such as cancer and neurological disorders. The understanding of how AS-NMD orchestrates expression of vital genes is of utmost importance for the advance in diagnosis, prognosis and treatment of many human disorders.
Collapse
Affiliation(s)
- Paulo J da Costa
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Juliane Menezes
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
41
|
Insulin regulates titin pre-mRNA splicing through the PI3K-Akt-mTOR kinase axis in a RBM20-dependent manner. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2363-2371. [PMID: 28676430 DOI: 10.1016/j.bbadis.2017.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/25/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
Abstract
Titin, a giant sarcomeric protein, is largely responsible for the diastolic properties of the heart. It has two major isoforms, N2B and N2BA due to pre-mRNA splicing regulated mainly by a splicing factor RNA binding motif 20 (RBM20). Mis-splicing of titin pre-mRNA in response to external stimuli may lead to altered ratio of N2B to N2BA, and thus, impaired cardiac contractile function. However, little is known about titin alternative splicing in response to external stimuli. Here, we reported the detailed mechanisms of titin alternative splicing in response to insulin. Insulin treatment in cultured neonatal rat cardiomyocytes (NRCMs) activated the PI3K-Akt-mTOR kinase axis, leading to increased N2B expression in the presence of RBM20, but not in NRCMs in the absence of RBM20. By inhibiting this kinase axis with inhibitors, decreased N2B isoform was observed in NRCMs and also in diabetic rat model treated with streptozotocin, but not in NRCMs and diabetic rats in the absence of RBM20. In addition to the alteration of titin isoform ratios in response to insulin, we found that RBM20 expression was increased in NRCMs with insulin treatment, suggesting that RBM20 levels were also regulated by insulin-induced kinase axis. Further, knockdown of p70S6K1 with siRNA reduced both RBM20 and N2B levels, while knockdown of 4E-BP1 elevated expression levels of RBM20 and N2B. These findings reveal a major signal transduction pathway for insulin-induced titin alternative splicing, and place RBM20 in a central position in the pathway, which is consistent with the reputed role of RBM20 in titin alternative splicing. Findings from this study shed light on gene therapeutic strategies at the molecular level by correction of pre-mRNA mis-splicing.
Collapse
|
42
|
Isoforms of the nuclear envelope protein Nurim are differentially expressed during heart development in mice. Gene 2017; 627:123-128. [PMID: 28600179 DOI: 10.1016/j.gene.2017.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022]
Abstract
To date, transcript variants of the nuclear envelope protein Nurim and their expression profiles in mice have never been elucidated. In this study, we determined that the primary Nurim variant a was abundantly expressed in mouse heart, liver, spleen and kidney. The protein level of isoform a is initiated at an early stage of heart formation and demonstrated a significant increase in expression throughout embryonic heart development. Interestingly, Nurim b is also up-regulated from E12.5 to E18.5 in different individuals. Our research represents the first report on alternative splicing variants of mouse Nurim and their differential expression profile during embryonic development. These studies suggest a potential role for Nurim in early heart morphogenesis and should help further elucidate the function of Nurim.
Collapse
|
43
|
Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 2017; 18:437-451. [PMID: 28488700 DOI: 10.1038/nrm.2017.27] [Citation(s) in RCA: 875] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative splicing of eukaryotic transcripts is a mechanism that enables cells to generate vast protein diversity from a limited number of genes. The mechanisms and outcomes of alternative splicing of individual transcripts are relatively well understood, and recent efforts have been directed towards studying splicing networks. It has become apparent that coordinated splicing networks regulate tissue and organ development, and that alternative splicing has important physiological functions in different developmental processes in humans.
Collapse
|
44
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
45
|
Villegas-Ruiz V, Hendlmeier F, Buentello-Volante B, Rodríguez-Loaiza JL, Miranda-Duarte A, Zenteno JC. Genome-wide mRNA analysis reveals a TUBD1 isoform profile as a potential biomarker for diabetic retinopathy development. Exp Eye Res 2017; 155:99-106. [DOI: 10.1016/j.exer.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 12/23/2016] [Accepted: 01/21/2017] [Indexed: 01/23/2023]
|
46
|
Molecular Characterization of Pediatric Restrictive Cardiomyopathy from Integrative Genomics. Sci Rep 2017; 7:39276. [PMID: 28098235 PMCID: PMC5241776 DOI: 10.1038/srep39276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022] Open
Abstract
Pediatric restrictive cardiomyopathy (RCM) is a genetically heterogeneous heart disease with limited therapeutic options. RCM cases are largely idiopathic; however, even within families with a known genetic cause for cardiomyopathy, there is striking variability in disease severity. Although accumulating evidence implicates both gene expression and alternative splicing in development of dilated cardiomyopathy (DCM), there have been no detailed molecular characterizations of underlying pathways dysregulated in RCM. RNA-Seq on a cohort of pediatric RCM patients compared to other forms of adult cardiomyopathy and controls identified transcriptional differences highly common to the cardiomyopathies, as well as those unique to RCM. Transcripts selectively induced in RCM include many known and novel G-protein coupled receptors linked to calcium handling and contractile regulation. In-depth comparisons of alternative splicing revealed splicing events shared among cardiomyopathy subtypes, as well as those linked solely to RCM. Genes identified with altered alternative splicing implicate RBM20, a DCM splicing factor, as a potential mediator of alternative splicing in RCM. We present the first comprehensive report on molecular pathways dysregulated in pediatric RCM including unique/shared pathways identified compared to other cardiomyopathy subtypes and demonstrate that disruption of alternative splicing patterns in pediatric RCM occurs in the inverse direction as DCM.
Collapse
|
47
|
Lara-Pezzi E, Desco M, Gatto A, Gómez-Gaviro MV. Neurogenesis: Regulation by Alternative Splicing and Related Posttranscriptional Processes. Neuroscientist 2016; 23:466-477. [PMID: 27837180 DOI: 10.1177/1073858416678604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complexity of the mammalian brain requires highly specialized protein function and diversity. As neurons differentiate and the neuronal circuitry is established, several mRNAs undergo alternative splicing and other posttranscriptional changes that expand the variety of protein isoforms produced. Recent advances are beginning to shed light on the molecular mechanisms that regulate isoform switching during neurogenesis and the role played by specific RNA binding proteins in this process. Neurogenesis and neuronal wiring were recently shown to also be regulated by RNA degradation through nonsense-mediated decay. An additional layer of regulatory complexity in these biological processes is the interplay between alternative splicing and long noncoding RNAs. Dysregulation of posttranscriptional regulation results in defective neuronal differentiation and/or synaptic connections that lead to neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Enrique Lara-Pezzi
- 1 Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,2 National Heart and Lung Institute, Imperial College London, London, UK
| | - Manuel Desco
- 3 Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain.,4 Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alberto Gatto
- 1 Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - María Victoria Gómez-Gaviro
- 3 Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain.,4 Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
48
|
Zhu C, Chen Z, Guo W. Pre-mRNA mis-splicing of sarcomeric genes in heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1863:2056-2063. [PMID: 27825848 DOI: 10.1016/j.bbadis.2016.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 12/01/2022]
Abstract
Pre-mRNA splicing is an important biological process that allows production of multiple proteins from a single gene in the genome, and mainly contributes to protein diversity in eukaryotic organisms. Alternative splicing is commonly governed by RNA binding proteins to meet the ever-changing demands of the cell. However, the mis-splicing may lead to human diseases. In the heart of human, mis-regulation of alternative splicing has been associated with heart failure. In this short review, we focus on alternative splicing of sarcomeric genes and review mis-splicing related heart failure with relatively well studied Sarcomeric genes and splicing mechanisms with identified regulatory factors. The perspective of alternative splicing based therapeutic strategies in heart failure has also been discussed.
Collapse
Affiliation(s)
- Chaoqun Zhu
- Animal Science, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Zhilong Chen
- Animal Science, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, USA; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Guo
- Animal Science, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
49
|
Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1. Sci Rep 2016; 6:35550. [PMID: 27759042 PMCID: PMC5069560 DOI: 10.1038/srep35550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/30/2016] [Indexed: 01/26/2023] Open
Abstract
The RNA binding protein Celf1 regulates alternative splicing in the nucleus and mRNA stability and translation in the cytoplasm. Celf1 is strongly down-regulated during mouse postnatal heart development. Its re-induction in adults induced severe heart failure and reversion to fetal splicing and gene expression patterns. However, the impact of Celf1 depletion on cardiac transcriptional and posttranscriptional dynamics in neonates has not been addressed. We found that homozygous Celf1 knock-out neonates exhibited cardiac dysfunction not observed in older homozygous animals, although homozygous mice are smaller than wild type littermates throughout development. RNA-sequencing of mRNA from homozygous neonatal hearts identified a network of cell cycle genes significantly up-regulated and down-regulation of ion transport and circadian genes. Cell cycle genes are enriched for Celf1 binding sites supporting a regulatory role in mRNA stability of these transcripts. We also identified a cardiac splicing network coordinated by Celf1 depletion. Target events contain multiple Celf1 binding sites and enrichment in GU-rich motifs. Identification of direct Celf1 targets will advance our knowledge in the mechanisms behind developmental networks regulated by Celf1 and diseases where Celf1 is mis-regulated.
Collapse
|
50
|
(Intrinsically disordered) splice variants in the proteome: implications for novel drug discovery. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|