1
|
Niu Y, Liu YL, Cao YG, Zhao YX, Chen X, Lu D, Zhao BX, Zheng XK, Feng WS. Chemical constituents from the stems of Ephedra intermedia and their α-glucosidase and AChE inhibitory effects. Fitoterapia 2025; 182:106433. [PMID: 39938660 DOI: 10.1016/j.fitote.2025.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Five undescribed glycosides (1-5) and eight known compounds (6-13) were isolated from the stems of Ephedra intermedia. Their chemical structures were determined by analysis of NMR, ECD, and MS data. In addition, The in vitro bioactive assay, α-glucosidase and acetylcholinesterase (AChE) inhibitory activities, suggested that compounds 11 and 12 exhibited obvious inhibitory effects on α-glucosidase with the IC50 value of 49.51 ± 0.97 μM and 47.12 ± 0.98 μM, respectively, compounds 4 and 5 showed weak inhibitory effects on AChE at the concentration of 100 μM.
Collapse
Affiliation(s)
- Ying Niu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yan-Ling Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yi-Xin Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xu Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Di Lu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Bing-Xian Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructionby Henan province & Education Ministry of P. R. China, Zhengzhou 450046, China.
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructionby Henan province & Education Ministry of P. R. China, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Nga TT, Thi Hoan L, Anh BTM, Mai NT, Huong PTT, Nhiem NX, Kiem PV, Tai BH. Two new lignan glycosides from Acanthus ilicifoliusL. with their NO inhibition and cytotoxic activity. Nat Prod Res 2024; 38:3146-3154. [PMID: 37234021 DOI: 10.1080/14786419.2023.2218009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
A phytochemical investigation of the methanolic extract of aerial parts of the Acanthus ilicifolius led to the isolation of two new lignan glycosides, acaniliciosides A and B (1 and 2), together with ten known compounds (3-12). The structures of isolated compounds were elucidated based on HR-ESI-MS, 1D and 2D NMR spectroscopic data. The absolute configurations of two new compounds were established by CD spectra. With the exception of compound 12, other compounds inhibited NO production in LPS activated RAW264.7 cells with IC50 values of 2.14-28.18 µM, as potent as that of the positive control of NG-monomethyl-L-arginine acetate (L-NMMA, IC50 of 32.50 µM). In addition, compounds 5-8 showed cytotoxic effects against SK-LU-1 and HepG2 cell lines with the IC50 values ranging from 16.48 to 76.40 μM compared to the positive control (ellipticine) with the IC50 values ranging from 1.23 to 1.46 μM.
Collapse
Affiliation(s)
- Tran Thuy Nga
- Faculty of Basic Sciences, University of Transport and Communications, Hanoi, Vietnam
| | - Lai Thi Hoan
- Faculty of Basic Sciences, University of Transport and Communications, Hanoi, Vietnam
| | - Bui Thi Mai Anh
- Faculty of Basic Sciences, University of Transport and Communications, Hanoi, Vietnam
| | - Nguyen Thi Mai
- Faculty of Basic Sciences, University of Transport and Communications, Hanoi, Vietnam
| | - Phan Thi Thanh Huong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
3
|
The Evaluation of Xiaozeng Qianggu Tablets for Treating Postmenopausal Osteoporosis via up-Regulated Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3960834. [PMID: 36193128 PMCID: PMC9526660 DOI: 10.1155/2022/3960834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Objective. Postmenopausal osteoporosis (PMOP) is a common age-associated disease in the life course. Clinically, Xiaozeng Qianggu Tablets (XQT) have a potent therapeutic effect on the PMOP. However, the bioactive components and the mechanism of XQT underlying the PMOP treatment were unclear and it should be explored to discover the scientific connotation in traditional medical practice. Methods. The components in XQT were identified by UPLC-Q-TOF/MS. The animal model of PMOP was established by surgical ovariectomy in the female Sprague-Dawley rats. After treatment of XQT, the therapeutic effect was assessed by the determination of bone metabolism biomarkers in serum and histopathological examination. The effect of XQT on the autophagy and bone micro-situation were tested using western blot, RT-qPCR, and transmission electron microscope. Results. There were 27 compounds identified in XQT, including catalpol, monotropein, verbascoside, cryptochlorogenic acid, 5,7-dihydroxychromone 7-rutinoside, biorobin, and so on. The bone metabolism markers (alkaline phosphatase, bone alkaline phosphatase, procollagen type I intact N-terminal propeptide, cross-linked carboxy-terminal telopeptide of type I collagen, and tartrate-resistant acid phosphatase) were significantly increased in the PMOP rats and reversed by XQT administration. Moreover, the width of bone trabeculae and the ratio of the area of calcium deposition to bone trabeculae were also improved after treating the middle dose of XQT. Meanwhile, the bone micro-structure was improved by XQT. The mRNA and protein expression of unc-51 like kinase 1, beclin-1, and microtubule-associated protein 1B-light chain 3 in PMOP rats were down-regulated and up-regulated by XQT administration. Conclusions. The compounds in XQT, including catalpol, monotropein, verbascoside cryptochlorogenic acid, and so on, were valuable for further pharmacy evaluation. The pathological changes and bone micro-structure were improved by XQT, and the down-regulated autophagy level was also restored, which suggested a potent effect of XQT on treating PMOP, corresponding to its clinic use.
Collapse
|
4
|
Rehmanniae Radix Preparata (RRP) improves pain sensitization and suppresses PI3K/Akt/TRPV1 signaling pathway in estrogen deficient rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Matos P, Batista MT, Figueirinha A. A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115271. [PMID: 35430290 DOI: 10.1016/j.jep.2022.115271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Acanthus genus belongs to the Acanthaceae family, and its species are distributed in all continents, mainly in tropical and subtropical regions. Several traditional applications are referred to, but few scientific studies validate them. Despite this, studies in animal models corroborate some of its uses in folk medicine, such as anticancer, antidiabetic, anti-inflammatory, and antinociceptive, which encourages the research on plants of this genus. AIM OF THE REVIEW To our knowledge, this document is the first comprehensive review study that provides information on the geographic distribution, botanical characteristics, ethnomedicinal uses, phytochemicals, and pharmacological activities of some Acanthus species to understand the correlation between traditional uses, phytochemical, and pharmacological activities, providing perspectives for future studies. RESULTS In traditional medicine, Acanthus species are mainly used for diseases of respiratory, nervous and reproductive system, gastrointestinal and urinary tract, and skin illness. The most used species are A. montanus, A. ilicifolius, and A. ebracteatus. Chemical compounds (125) from different chemical classes were isolated and identified in seven species, mainly from A. ilicifolius, about 80, followed by A. ebracteatus and A. montanus, appearing with a slightly lower number with fewer phytochemical profile studies. Isolated phytoconstituents have been mainly alkaloids, phenylpropanoid glycosides, and phenylethanoids. In addition, aliphatic glycosides, flavonoids, lignan glycosides, megastigmane derivatives, triterpenoids, steroids, fatty acids, alcohols, hydroxybenzoic acids, simple phenols were also cited. Scientific studies from Acanthus species extracts and their phytoconstituents support their ethnomedical uses. Antimicrobial activity that is the most studied, followed by the antioxidant, anti-inflammatory, and anticancer properties, underlie many Acanthus species activities. A. dioscoridis, A. ebracteatus, A. hirsutus, A. ilicifolius, A. mollis, A. montanus, and A. polystachyus have studies on these activities, A. ilicifolius being the one with the most publications. Most studies were essentially performed in vitro. However, the anticancer, antidiabetic, anti-inflammatory and antinociceptive properties have been studied in vivo. CONCLUSION Acanthus species have remarkable phytoconstituents with different biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antinociceptive, hepatoprotective, and leishmanicidal, supporting traditional uses of some species. However, many others remain unexplored. Future studies should focus on these species, especially pharmacological properties, toxicity, and action mechanisms. This review provides a comprehensive report on Acanthus genus plants, evidencing their therapeutic potential and prospects for discovering new safe and effective drugs from Acanthus species.
Collapse
Affiliation(s)
- Patrícia Matos
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal
| | - Maria Teresa Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; University of Coimbra, CIEPQPF, FFUC, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal.
| |
Collapse
|
6
|
Karim R, Begum MM, Alim MA, Uddin MS, Kabir MT, Khan AF, Islam T, Khan SI, Rahman MS. Effects of Alcoholic Extracts of Bangladeshi Mangrove Acanthus ilicifolius Linn. (Acanthaceae) Leaf and Stem on Atherogenic Model of Wistar Albino Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7539037. [PMID: 34194526 PMCID: PMC8184344 DOI: 10.1155/2021/7539037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 01/11/2023]
Abstract
Acanthus ilicifolius Linn. (Acanthaceae) is a popular mangrove ethnomedicinal plant that cures several ailments, including asthma, diabetes, cancer, and many others. Our experiment was aimed at evaluating the anti-atherogenic effect of A. ilicifolius (leaf and stem) on a high-fat diet-induced atherogenic rat model. Atherosclerosis was developed in 12 weeks. Treatment with the standard drug (3 mg/kg b.w./day, p.o. of Simvastatin), separate doses of methanolic and ethanolic extracts of A. ilicifolius leaf (250 and 500 mg/kg b.w./day, p.o.), and stem (200 and 400 mg/kg b.w./day, p.o.) was subsequently conducted for additional 15 days. The anti-atherogenic effect was evaluated by estimating the change in body weight, systolic blood pressure, and lipid profile. Histopathology of aorta, liver, and kidney of atherogenic models was done for further evaluation. The antioxidant effect of different extracts was performed via DPPH (2,2-diphenyl-1-picrylhydrazyl) assay using ascorbic acid as standard. The anticoagulant effect was determined after 15 days of treatment with the same doses of the plant extracts and the standard Warfarin (2 mg/kg b.w./day, p.o.). When compared with atherogenic control, treatment with A. ilicifolius significantly reduced (p < 0.01) body weight, systolic blood pressure, and serum lipid levels while it elevated HDL (high-density lipoprotein) level in a dose-dependent manner. Moreover, bleeding and clotting time was significantly decreased (p < 0.01) under the treatment of plant extracts. The histopathological data showed considerable improvement in tissue morphology after treatment. Our study evidenced that the alcoholic extracts of A. ilicifolius leaf and stem have anti-atherogenic properties and may be recommended as a potential herbal remedy for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Rubaba Karim
- Department of Pharmacy, Primeasia University, Dhaka 1213, Bangladesh
| | | | - Md. Abdul Alim
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Graduate School of Innovative Life Science, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | | | - Tanjina Islam
- Department of Pharmacy, Primeasia University, Dhaka 1213, Bangladesh
| | | | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| |
Collapse
|
7
|
Zhao Q, Ren X, Chen M, Yue SJ, Zhang MQ, Chen KX, Guo YW, Shao CL, Wang CY. Effects of traditional Chinese medicine formula Le-Cao-Shi on hepatitis B: In vivo and in vitro studies. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112132. [PMID: 31381954 DOI: 10.1016/j.jep.2019.112132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Formula Le-Cao-Shi (LCS) is a traditional Chinese medicine (TCM), which has long been used as a folk remedy against hepatitis B in China. The present study was conducted to evaluate the anti-hepatitis B effects of aqueous extract of LCS in vivo and in vitro. MATERIALS AND METHOD we investigated the anti-HBV effects of LCS in vivo and in vitro with duck hepatitis B model and HepG2.2.15 cell line model, respectively. The serologic and cellular biomarkers and the histopathological changes were examined. RESULTS By a duck hepatitis B model, the extract of LCS was found to restrain the expressions of duck hepatitis B surface antigen (DHBsAg), hepatitis B e antigen (DHBeAg), and HBV-DNA (DHBV-DNA). Moreover, LCS could decrease the levels of aspartate and alanine aminotransferases (AST and ALT) and ameliorate duck liver histological lesions. Correspondingly, in a HepG2.2.15 cellular model, LCS could also significantly inhibit the secretions of HBsAg and HBeAg. CONCLUSION LCS exerted potent anti-hepatitis effects against the infection of HBV. The above results demonstrated the first-hand experimental evidences for the anti-hepatitis B efficiency of LCS. Our study provides a basis for further exploration and development of this promising compound prescription to treat hepatitis B disease.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Cell Line, Tumor
- Cell Survival/drug effects
- DNA, Viral
- Drugs, Chinese Herbal/therapeutic use
- Ducks
- Hepatitis B/drug therapy
- Hepatitis B/immunology
- Hepatitis B/pathology
- Hepatitis B/virology
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Virus, Duck/drug effects
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis B e Antigens/immunology
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/virology
- Humans
- Liver/drug effects
- Liver/pathology
- Medicine, Chinese Traditional
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Min Chen
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Meng-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
8
|
Simultaneous Quantification of Four Phenylethanoid Glycosides in Rat Plasma by UPLC-MS/MS and Its Application to a Pharmacokinetic Study of Acanthus Ilicifolius Herb. Molecules 2019; 24:molecules24173117. [PMID: 31466218 PMCID: PMC6749432 DOI: 10.3390/molecules24173117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
Acanthus ilicifolius herb (AIH), the dry plant of Acanthus ilicifolius L., has long been used as a folk medicine for treating acute and chronic hepatitis. Phenylethanoid glycosides (PhGs) are one family of the main components in AIH with hepatoprotective, antioxidant, and anti-inflammatory activities. In this study, the pharmacokinetics of AIH was investigated preliminarily by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS). A simultaneously quantitative determination method for four PhGs (acteoside, isoacteoside, martynoside, and crenatoside) in rat plasma was first established by UPLC-MS/MS. These four PhGs were separated with an ACQUITY UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) by gradient elution (mobile phase: MeCN and 0.1% formic acid in water, 0.4 mL/min). The mass spectrometry detection was performed using negative electrospray ionization (ESI−) in multiple reaction monitoring (MRM) mode. By the established method, the preliminary pharmacokinetics of AIH was elucidated using the kinetic parameters of the four PhGs in rat plasma after intragastric administration of AIH ethanol extract. All four PhGs showed double peaks on concentration-time curves, approximately at 0.5 h and 6 h, respectively. Their elimination half-lives (t1/2) were different, ranging from 3.42 h to 8.99 h, although they shared similar molecular structures. This work may provide a basis for the elucidation of the pharmacokinetic characteristics of bioactive components from AIH.
Collapse
|
9
|
Liu C, Wang L, Zhu R, Liu H, Ma R, Chen B, Li L, Guo Y, Jia Q, Shi S, Zhao D, Mo F, Zhao B, Niu J, Fu M, Orekhov AN, Brömme D, Gao S, Zhang D. Rehmanniae Radix Preparata suppresses bone loss and increases bone strength through interfering with canonical Wnt/β-catenin signaling pathway in OVX rats. Osteoporos Int 2019; 30:491-505. [PMID: 30151623 DOI: 10.1007/s00198-018-4670-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
UNLABELLED Rehmanniae Radix Preparata (RRP) improves bone quality in OVX rats through the regulation of bone homeostasis via increasing osteoblastogenesis and decreasing osteoclastogenesis, suggesting it has a potential for the development of new anti-osteoporotic drugs. INTRODUCTION Determine the anti-osteoporotic effect of RRP in ovariectomized (OVX) rats and identify the signaling pathway involved in this process. METHODS OVX rats were treated with RRP aqueous extract for 14 weeks. The serum levels of tartrate-resistant acid phosphatase (TRAP), receptor activator of nuclear factor kappa-Β ligand (RANKL), alkaline phosphatase (ALP), and osteoprotegerin (OPG) were determined by ELISA. Bone histopathological alterations were evaluated by H&E, Alizarin red S, and Safranin O staining. Bone mineral density (BMD) and bone microstructure in rat femurs and lumbar bones were determined by dual-energy X-ray absorptiometry and micro-computed tomography. Femoral bone strength was detected by a three-point bending assay. The expression of Phospho-glycogen synthase kinase 3 beta (p-GSK-3β), GSK-3β, Dickkopf-related protein 1 (DKK1), cathepsin K, OPG, RANKL, IGF-1, Runx2, β-catenin, and p-β-catenin was determined by western blot and/or immunohistochemical staining. RESULTS Treatment of OVX rats with RRP aqueous extract rebuilt bone homeostasis demonstrated by increasing the levels of OPG as well as decreasing the levels of TRAP, RANKL, and ALP in serum. Furthermore, RRP treatment preserved BMD and mechanical strength by increasing cortical bone thickness and epiphyseal thickness as well as improving trabecular distribution in the femurs of OVX rats. In addition, RRP downregulated the expression of DKK1, sclerostin, RANKL, cathepsin K, and the ratio of p-β-catenin to β-catenin, along with upregulating the expression of IGF-1, β-catenin, and Runx2 and the ratio of p-GSK-3β to GSK-3β in the tibias and femurs of OVX rats. Echinacoside, jionoside A1/A2, acetoside, isoacetoside, jionoside B1, and jionoside B2 were identified in the RRP aqueous extract. CONCLUSION RRP attenuates bone loss and improves bone quality in OVX rats partly through its regulation of the canonical Wnt/β-catenin signaling pathway, suggesting that RRP has the potential to provide a new source of anti-osteoporotic drugs.
Collapse
Affiliation(s)
- C Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Chinese Materia Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - L Wang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Chinese Materia Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - R Zhu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - H Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - R Ma
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - B Chen
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - L Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Y Guo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- The Third Affiliated Clinical Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Q Jia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - S Shi
- Chinese Materia Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - D Zhao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - F Mo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - B Zhao
- Chinese Materia Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - J Niu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - M Fu
- The Research Institute of McGill University Health Center, Montreal, Quebec, H4A 3J1, Canada
| | - A N Orekhov
- Laboratory of Angiopathology, Russian Academy of Medical Sciences, Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia
| | - D Brömme
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - S Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - D Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
10
|
Matos P, Figueirinha A, Paranhos A, Nunes F, Cruz P, Geraldes CFGC, Cruz MT, Batista MT. Bioactivity of Acanthus mollis - Contribution of benzoxazinoids and phenylpropanoids. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:198-205. [PMID: 30201231 DOI: 10.1016/j.jep.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthus mollis is a plant native to the Mediterranean region, traditionally used as diuretic, anti-inflammatory and soothing of the mucous membranes of the digestive and urinary tract and externally as healing of wounds and burns, also demonstrating analgesic and anti-inflammatory activities. However, studies focused on its phytochemical composition as well as scientific proof of Acanthus mollis efficacy are scarce. AIM OF THE STUDY The proposed work aims to perform a phytochemical characterization and evaluation of the therapeutic potential of Acanthus mollis, based on biological properties that support its traditional uses. MATERIAL AND METHODS In this study, an 96% ethanol extract from Acanthus mollis leaves was obtained and its phytochemical composition evaluated using High Performance Liquid Chromatography with Photodiode Array Detector coupled to Electrospray Ionization Mass Spectrometry (HPLC-PDA-ESI/MSn). The chemical structure of the compound isolated was elucidated using 1H and 13C Nuclear Magnetic Resonance (NMR), 1H-correlation spectroscopy (1H-COSY), heteronuclear single quantum correlation (HSQC) and heteronuclear multiple-bond correlation (HMBC). The quantification of the constituents was performed using two external standards (2,4-dihydroxy-1,4-benzoxazin-3-one and verbascoside). The antioxidant activity was determined by the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) assay. Anti-inflammatory activity was determined measuring the inhibition of nitric oxide production by RAW 264.7 macrophages stimulated with the TLR4 agonist lipopolysaccharide (LPS) and through lipoxygenase (LOX) inhibition assay. The cytotoxicity was screened on two lines (RAW 264.7 and HaCaT) using the resazurin assay. RESULTS Compounds such as verbascoside and its derivatives, as well as benzoxazinoids were found as the main constituents. A percentage of 5.58% was verified for the 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) derivatives. DIBOA was the main compound of the extract. Significant concentrations were also found for phenylpropanoids, which constitute about 4.39% of the total compounds identified. This extract showed antioxidant capacity against DPPH (IC50 = 40.00 ± 1.59 μg/mL) and superoxide anion (IC50 = 29.42 ± 1.99 μg/mL). It also evidenced anti-inflammatory potential in RAW 264.7 macrophages, presenting capacity for nitric oxide reduction (IC50 = 28.01 μg/mL). Moreover, in vitro studies have shown that this extract was able to inhibit the lipoxygenase, with an IC50 of 104.39 ± 4.95 µg/mL. Importantly, all effective concentrations were devoid of cytotoxicity in keratinocytes, thus highlighting the safety of the extract for the treatment of skin inflammatory related diseases. Concerning macrophages it was also possible to disclose concentrations showing anti-inflammatory activity and without cytotoxicity (up to 30 µg/mL). The benzoxazinoid DIBOA demonstrated a considerable anti-inflammatory activity suggesting its important contribution to this activity. CONCLUSIONS These results corroborate the anti-inflammatory properties traditionally attributed to this plant. Among the compounds identified in this study, benzoxazinoids exhibited a significant anti-inflammatory activity that was never previously described. Ethanol seems to be a good option for the extraction of these bioactive compounds, since relevant antioxidant/anti-radical and anti-inflammatory activities were found for this extract.
Collapse
Affiliation(s)
- P Matos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - A Figueirinha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - A Paranhos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - F Nunes
- Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - P Cruz
- Coimbra Chemistry Centre (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - C F G C Geraldes
- Coimbra Chemistry Centre (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal
| | - M T Cruz
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - M T Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIEPQPF, Department of Chemical Engineering, Faculty of Science and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
11
|
Sardar PK, Dev S, Al Bari MA, Paul S, Yeasmin MS, Das AK, Biswas NN. Antiallergic, anthelmintic and cytotoxic potentials of dried aerial parts of Acanthus ilicifolius L. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0094-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
13
|
Hyun H, Park H, Jeong J, Kim J, Kim H, Oh HI, Hwang HS, Kim HH. Effects of Watercress Containing Rutin and Rutin Alone on the Proliferation and Osteogenic Differentiation of Human Osteoblast-like MG-63 Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:347-52. [PMID: 25177168 PMCID: PMC4146638 DOI: 10.4196/kjpp.2014.18.4.347] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/27/2014] [Indexed: 11/15/2022]
Abstract
Most known osteoporosis medicines are effective for bone resorption, and so there is an increasing demand for medicines that stimulate bone formation. Watercress (N. officinale R. Br.) is widely used as a salad green and herbal remedy. This study analyzed a watercress extract using ultra-performance liquid chromatography/mass spectrometry, and identified a rutin as one of its major constituents. Osteogenic-related assays were used to compare the effects of watercress containing rutin (WCR) and rutin alone on the proliferation and differentiation of human osteoblast-like MG-63 cells. The reported data are expressed as percentages relative to the control value (medium alone; assigned as 100%). WCR increased cell proliferation to 125.0±4.0% (mean±SD), as assessed using a cell viability assay, and increased the activity of alkaline phosphatase, an early differentiation marker, to 222.3±33.8%. In addition, WCR increased the expression of collagen type I, another early differentiation marker, to 149.2±2.8%, and increased the degree of mineralization, a marker of the late process of differentiation, to 122.9±3.9%. Rutin alone also increased the activity of ALP (to 154.4±12.2%), the expression of collagen type I (to 126.6±6.2%), and the degree of mineralization (to 112.3±5.0%). Daidzein, which is reported to stimulate bone formation, was used as a positive control; the effects of WCR on proliferation and differentiation were significantly greater than those of daidzein. These results indicate that WCR and rutin can both induce bone formation via the differentiation of MG-63 cells. This is the first study demonstrating the effectiveness of either WCR or rutin as an osteoblast stimulant.
Collapse
Affiliation(s)
- Hanbit Hyun
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Heajin Park
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Jaehoon Jeong
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Jihye Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Haesung Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Hyun Il Oh
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Hye Seong Hwang
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ha Hyung Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
14
|
Singh D, Aeri V. Phytochemical and pharmacological potential of Acanthus ilicifolius. J Pharm Bioallied Sci 2013; 5:17-20. [PMID: 23559819 PMCID: PMC3612333 DOI: 10.4103/0975-7406.106557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/29/2012] [Accepted: 04/05/2012] [Indexed: 11/04/2022] Open
Abstract
Acanthus ilicifolius (Acanthaceae) has received considerable attention due to its wide range of secondary metabolites and its traditional usage in Indian and Chinese system of medicine. This plant is reported to be a mangrove. Mangrove survives in the most hostile environment with fluctuating tidal and saline regime. Hence, these plants are considered to be rich sources of steroids, triterpenoids, saponins, flavonoids, alkaloids, and tannins. Present review article is an attempt to cover recent developments in phytochemical and pharmacological potential of drug. Traditionally, the plant has been used for dyspepsia, paralysis, asthsma, headache, rheumatism, and skin diseases. The plant is known as 'Krishnasaireyaka' or 'Karimkurunji', is one of the 9 plants equated to the drug 'Sahachara,' which is used in Ayurvedic medicine for rheumatic complaints. The plant has not been explored to its full potential. The review will be a good reference tool for investigators who wish to work on natural compounds with free radical scavenging activity to combat diseases associated with stress.
Collapse
Affiliation(s)
- Dharya Singh
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
15
|
Mani Senthil Kumar KT, Puia Z, Samanta SK, Barik R, Dutta A, Gorain B, Roy DK, Adhikari D, Karmakar S, Sen T. The Gastroprotective Role of Acanthus ilicifolius - A Study to Unravel the Underlying Mechanism of Anti-Ulcer Activity. Sci Pharm 2012; 80:701-17. [PMID: 23008816 PMCID: PMC3447604 DOI: 10.3797/scipharm.1108-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 06/18/2012] [Indexed: 11/22/2022] Open
Abstract
Acanthus ilicifolius (Acanthaceae), a mangrove medicinal plant, is widely used by the local inhabitants of the Sundarbans (India) to treat a variety of diseases. As a part of our continued search for novel bioactive products from mangrove medicinal plants, we were able to document the anti-inflammatory effects of this plant. In the present study, we have performed a detailed evaluation of the gastroprotective activity of the methanolic extract of Acanthus ilicifolius using different models of gastric ulceration. Unlike the conventional non-steroidal anti-inflammatory drugs, a methanolic extract of Acanthus ilicifolius leaves (MEAL) possessing significant anti-inflammatory properties, as revealed from our previous studies displayed in rats in dosages of 200 mg and 400 mg/kg BW after intraperitoneal administration, showed significant protective activity (anti-ulcer activity) against the gastric lesions induced by aspirin, indomethacin, stress, ethanol, and pylorus ligation. In pylorus-ligated rats, administration of Methanolic extract of Acanthus ilicifolius leaves (MEAL) significantly decreased gastric volume, acidity, and peptic activity. Moreover, pre-treatment with MEAL significantly restored the levels of reduced glutathione (GSH) and the antioxidant enzyme superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), along with significant inhibition of both lipid peroxidation and myeloperoxidase (MPO) activity in pylorus-ligated animals. Ulceration induced with ethanol was significantly inhibited with MEAL, and the extract also resulted in the reduction of both lipid peroxidation and myeloperoxidase activity. Furthermore, in this experimental model, administration of MEAL improved the activities of SOD, CAT, GSH, and GPX. A similar pattern of action was also noticed in cold-restraint stress-induced (CRS) ulceration, where MEAL pre-treatment inhibited CRS-induced ulceration, improved the status of antioxidant enzymes, and also reduced the level of lipid peroxides. These results suggest that extracts of the leaves of Acanthus ilicifolius may exhibit anti-ulcer activities additional to the anti-inflammatory properties.
Collapse
|
16
|
He J, Hu XP, Zeng Y, Li Y, Wu HQ, Qiu RZ, Ma WJ, Li T, Li CY, He ZD. Advanced research on acteoside for chemistry and bioactivities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2011; 13:449-64. [PMID: 21534045 DOI: 10.1080/10286020.2011.568940] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Acteoside is one kind of phenylethanoid glycoside, which has shown a lot of biological activities. This article reviewed the study progress of acteoside, such as distribution, preparation, identification, and bioactivities.
Collapse
Affiliation(s)
- Jiang He
- School of Medicine, College of Life Science, School of Chemistry and Chemical Engineering, Shenzhen University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cuong NX, Nhiem NX, Thao NP, Nam NH, Dat NT, Anh HLT, Huong LM, Kiem PV, Minh CV, Won JH, Chung WY, Kim YH. Inhibitors of osteoclastogenesis from Lawsonia inermis leaves. Bioorg Med Chem Lett 2010; 20:4782-4. [DOI: 10.1016/j.bmcl.2010.06.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/12/2010] [Accepted: 06/22/2010] [Indexed: 11/25/2022]
|
18
|
Singh A, Duggal S, Suttee A. Acanthus ilicifolius Linn.-Lesser Known Medicinal Plants with Significant Pharmacological Activities. ACTA ACUST UNITED AC 2009. [DOI: 10.5138/ijpm.2009.0975.0185.05785] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|