1
|
Moise G, Jîjie AR, Moacă EA, Predescu IA, Dehelean CA, Hegheș A, Vlad DC, Popescu R, Vlad CS. Plants' Impact on the Human Brain-Exploring the Neuroprotective and Neurotoxic Potential of Plants. Pharmaceuticals (Basel) 2024; 17:1339. [PMID: 39458980 PMCID: PMC11510325 DOI: 10.3390/ph17101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain. DISCUSSION Numerous studies have highlighted the neuroprotective effects of various phytoconstituents, such as those found in Ginkgo biloba, Centella asiatica, Panax ginseng, Withania somnifera, and Curcuma longa. The neuroprotective compounds have demonstrated antioxidant, anti-inflammatory, and cognitive-enhancing properties, making them promising candidates for combating neurodegenerative diseases and improving brain function. Polyphenolic compounds, triterpenic acids, and specific phytocompounds like the ones from EGb 761 extract have shown interactions with key enzymes and receptors in the brain, leading to neuroprotective outcomes. However, this review also acknowledges the neurotoxic potential of certain plants, such as the Veratrum species, which contains steroidal alkaloids that can cause DNA damage and disrupt neurological function, or Atropa belladonna, which interfere with the normal functioning of the cholinergic system in the body, leading to a range of symptoms associated with anticholinergic toxicity. CONSLUSIONS This review also emphasizes the need for further research to elucidate the complex mechanisms underlying the neuroprotective and neurotoxic effects of plant-derived compounds, as well as to identify novel phytoconstituents with therapeutic potential. Understanding the complex relationship between plants and the human brain is crucial for harnessing the benefits of neuroprotective compounds while mitigating the risks associated with neurotoxic substances. This review provides a comprehensive overview of the knowledge on the neurological properties of plants and highlights the importance of continued research in this field for the development of novel therapeutic strategies targeting brain health and neurological disorders.
Collapse
Affiliation(s)
- Georgiana Moise
- Department of Clinical Pharmacology, The Doctoral School of Medicine, “Pius Brînzeu” County Emergency Clinical Hospital Timisoara, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Iasmina-Alexandra Predescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alina Hegheș
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliborca Cristina Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department II—Department of Microscopic Morphology, Division of Cell and Molecular Biology II, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
| |
Collapse
|
2
|
Li H, Lan Q, Li HX, Liang D, Zhang GJ. Hysterolides A-I, dimeric or monomeric sesquiterpene lactones from Parthenium hysterophorus L. PHYTOCHEMISTRY 2024; 219:113973. [PMID: 38211849 DOI: 10.1016/j.phytochem.2024.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Nine undescribed sesquiterpene lactones, including two pseudoguaianolide dimers (1 and 2), a pseudoguaiac dilactone (3), and six pseudoguaianolides (4-9), along with 13 known analogues (10-22) were isolated from Parthenium hysterophorus. Among them, hysterolide A (1) possesses an unusual carbon skeleton with a unique cyclobutane ring connecting two pseudoguaianolides. Hysterolide C (3) is a sesquiterpene dilactone incorporating a bicyclo[5.1.0]octane core. Spectroscopic analyses, 13C NMR and ECD calculations, and X-ray diffraction elucidated their structures and absolute configurations. Moreover, all the isolates were assayed for their anti-inflammatory activities by inhibiting LPS-induced nitric oxide production in BV-2 microglia cells, wherein, nine compounds displayed significant inhibitory activities with IC50 of 0.52-6.32 μM. Furthermore, the preliminary structure-activity relationship was also established.
Collapse
Affiliation(s)
- Hua Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Qian Lan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hong-Xia Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Gui-Jie Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541199, Guangxi, China.
| |
Collapse
|
3
|
Mahnashi MH, Ayaz M, Alqahtani YS, Alyami BA, Shahid M, Alqahtani O, Kabrah SM, Zeb A, Ullah F, Sadiq A. Quantitative-HPLC-DAD polyphenols analysis, anxiolytic and cognition enhancing potentials of Sorbaria tomentosa Lindl. Rehder. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116786. [PMID: 37328081 DOI: 10.1016/j.jep.2023.116786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants of the family Rosaceae have a long history of traditional uses in the management of neurological disorders. Sorbaria tomentosa Lindl. Rehder is composed of antioxidant and neuroprotective polyphenolics. AIMS OF THE STUDY The current study was designed to explore phenolics profile via high performance liquid chromatography-photodiode array detector (HPLC-DAD) and validated the neuroprotective and anxiolytic potentials of S. tomentosa by applying in vitro and in vivo approaches. MATERIALS AND METHODS The plant crude methanolic extract (St.Crm) and fractions were subjected to HPLC-DAD analysis for qualitative and quantitative assessment of phytochemicals. Samples were screened for in vitro free radicals scavenging assays by using 2,2-diphenylpicrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) along with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibition assays. For cognitive and anxiolytic studies, mice were subjected to open field, elevated plus maze (EPM), light-dark model, Y-maze, shallow water maze (SWM), and novel object recognition (NOR) tests. RESULTS HPLC-DAD analysis revealed the presence of high concentrations of phenolic compounds. For instance, in St.Cr, 21 phenolics were quantified, among which apigenin-7-glucoside (291.6 mg/g), quercetin (122.1 mg/g), quercetin-3-feruloylsophoroside-7-glucoside (52.6 mg/g), quercetin-7-glucoside (51.8 mg/g), ellagic acid (42.7 mg/g), luteolin (45.0 mg/g), kaempferol (40.5 mg/g), 5-feruloylquinic acid (43.7 mg/g) were present in higher concentrations. Likewise, in ethyl acetate fraction (St.Et.Ac), 21 phenolics were identified as 3,5-di-caffeoylquinic acid (177.4 mg/g) and 5-hydroxybenzoylquinic acid (46.9 mg/g) were most abundant phytochemicals. Highly valuable phenolics were also identified in other fractions including butanol (St.Bt), chloroform (St.Chf), and n-hexane (St.Hex). The various fractions exhibited concentration dependent inhibition of free radicals in DPPH and ABTS assays. Potent AChE inhibitory potentials were revealed by the test samples with St.Chf, St.Bt and St.EtAc being the most active having an IC50 of 298.1, 580.1, and 606.47 μg mL-1, respectively. Similarly, St.Chf, St.Bt, St.EtAc and St.Cr exhibited potent BChE inhibitory activity and was observed as 59.14, 54.73, 51.35 and 49.44%, respectively. A significant improvement in the exploratory behavior was observed in open field test and stress/anxiety was relieved effectively at 50-100 mg/kg. Likewise, EPM, light-dark and NOR tests revealed an anxiolytic and memory enhancing behaviors. These effects were further corroborated from the Y-maze and SWM transgenic studies that showed considerable improvement in cognition retention. CONCLUSIONS These findings concluded that S. tomentosa possessed potential anxiolytic and nootropic efficacies and may have therapeutic potential in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, Dir (L), KP, Pakistan.
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.
| | - Muhammad Shahid
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan.
| | - Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.
| | - Saeed M Kabrah
- Department of Laboratory Medicine Faculty of Applied Medical Sciences, Umm Al-Qura University, Kingdom of Saudi Arabia.
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, 18000, Dir (L), KP, Pakistan.
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, Dir (L), KP, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, Dir (L), KP, Pakistan.
| |
Collapse
|
4
|
Park JY, Lee HJ, Han ET, Han JH, Park WS, Kwon YS, Chun W. Caffeic acid methyl ester inhibits mast cell activation through the suppresion of MAPKs and NF-κB signaling in RBL-2H3 cells. Heliyon 2023; 9:e16529. [PMID: 37255982 PMCID: PMC10225881 DOI: 10.1016/j.heliyon.2023.e16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
Anti-inflammatory effects of caffeic acid derivatives have been widely reported. However, the effect of caffeic acid methyl ester (CAME) on the anti-allergic effect in mast cells has not been elucidated. The present study was aimed to investigate the anti-allergic properties of CAME and its underlying mechanism. Rat basophilic leukemia (RBL-2H3) cells were incubated withphorbol-12-myristate-13-acetate (PMA) and a calcium ionophore, A23187 to induce mast cell activation. Anti-allergic effect of CAME was examined by measuring cytokine, histamine and β-hexosaminidase release. Western blotting was conducted to determine cyclooxygenase-2 (COX-2) expression, Mitogen-activated protein kinases (MAPKs) activation and nuclear factor-κB (NF-κB) translocation. CAME significantly suppressed PMA/A23187-induced TNF-α secretion, and β-hexosaminidase and histamine release in a concentration-dependent manner. Furthermore, CAME significantly attenuated PMA/A23187-induced COX-2 expression and nuclear translocation of NF-κB. CAME significantly suppressed PMA/A23187-induced increased phosphorylation of p38, ERK and JNK RBL-2H3 cells. The results demonstrate that CAME significantly attenuates anti-allergic action by suppressing degranulation of mast cells through the suppression of MAPKs/NF-κB signaling pathway in RBL-2H3 cells.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hee Jae Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| |
Collapse
|
5
|
Caryocar brasiliense peel ethanolic extract has neuroprotective potential and reduces the activation of ERK1/2 in the ischemia and reperfusion brain acute phase in the rat. J Stroke Cerebrovasc Dis 2023; 32:106945. [PMID: 36669374 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress induced by ischemia and reperfusion (I/R) injury results in cell death by necrosis or apoptosis and triggers the activation of different intracellular pathways, such as mitogen-activated protein activated kinases. Pequi (Caryocar brasiliense) peel, residue of a fruit from Brazilian savannah-like vegetation, has phenolic compounds that have been demonstrated to have antioxidant effects in vitro. The present study aimed to evaluate the neuroprotective effects of C. brasiliense peel ethanolic extract (CBPE) against transient global I/R injury in the rat brain. Global ischemia for 5, 20, and 45 min followed by 2 h of reperfusion caused a significant time-dependent increase in the number of ischemic neurons (p ≤ 0.05); increased immunoreactivity of cleaved caspase-3 (CASP3); and activated extracellular signal-regulated kinase (ERK) 1/2. Pretreatment with CBPE (600 mg/kg, oral) or vitamin E (0.6 mg, oral) for 30 days showed significant protection against acute brain injury induced by 20 and 45 min or 5 min of ischemia, respectively, by reducing the cortical ischemic neuron count (p ≤ 0.05) and p-ERK1/2 immunoreactivity. In addition, active c-Jun N-terminal kinase (JNK) immunoreactivity was reduced in animals not subjected to ischemia. Therefore, we suggest an association between vitamin E and CBPE, which may generate a better neuroprotective response. Interestingly, mainly in the hippocampus and oligodendrocytes, high dose CBPE increase the number of isquemic neurons and of CASP3 immunoreactive cells in animals subjected or not to ischemia, which was not verified in the vitamin E group. Therefore, additional studies are recommended to verify the safety of the continuous use of CBPE.
Collapse
|
6
|
Gargi B, Semwal P, Jameel Pasha SB, Singh P, Painuli S, Thapliyal A, Cruz-Martins N. Revisiting the Nutritional, Chemical and Biological Potential of Cajanus cajan (L.) Millsp. Molecules 2022; 27:molecules27206877. [PMID: 36296470 PMCID: PMC9608987 DOI: 10.3390/molecules27206877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
The genus Cajanus (Family: Fabaceae) consists of approximately 37 species, and Cajanus cajan (C. cajan) is a significant member of the genus. It is a commercial legume crop widely grown in sub-tropical and semi-arid tropical areas of the world. C. cajan is well known for its folk medicinal uses to treat various disorders, such as toothache, dizziness, diabetes, stomachache, female ailments and chronic infections. These properties have been linked to the presence of several value-added nutritional and bioactive components. Different solvent extracts from C.cajan (leaves, root, stem and seeds) have been evaluated for their phytochemical and biological activities, namely antioxidant, antimicrobial, antidiabetic, neuroprotective, and anti-inflammatory effects. Taken together, and considering the prominent nutraceutical and therapeutic properties of C. cajan, this review article focuses on the important details including ethnomedicinal uses, chemical composition, biological applications and some other medicinal aspects related to C.cajan nutraceutical and pharmacological applications.
Collapse
Affiliation(s)
- Baby Gargi
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun 248 002, India
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun 248 002, India
- Correspondence: (P.S.); (N.C.-M.)
| | | | - Pooja Singh
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun 248 002, India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Premnagar, Dehradun 248 006, India
| | - Ashish Thapliyal
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun 248 002, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra PRD, Portugal
- Correspondence: (P.S.); (N.C.-M.)
| |
Collapse
|
7
|
Sharma K, Verma R, Kumar D, Nepovimova E, Kuča K, Kumar A, Raghuvanshi D, Dhalaria R, Puri S. Ethnomedicinal plants used for the treatment of neurodegenerative diseases in Himachal Pradesh, India in Western Himalaya. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115318. [PMID: 35469830 DOI: 10.1016/j.jep.2022.115318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are considered as a healthcare resource and widely used by rural people in their traditional medicine system for curing neurodegenerative diseases. Neurodegenerative diseases refer to incurable and debilitating conditions that result in progressive degeneration/death of nerve cells or neurons in the human brain. This review is mainly focused on the usage of different ethnomedicinal plants in the treatment of different neurodegenerative diseases in Himachal Pradesh. Study reveals total of 73 ethnomedicinal plants, which are used for treating different neurological disorders in different areas of Himachal Pradesh. The data is compiled from the different sources that described the detailed information of plants in tabular form and highlights the significance of different phytochemicals on neuroprotective function. The present study also provides the scientific data and clinical (in-vivo and in-vitro) studies in support of ethnomedicinal use. AIM OF THE STUDY This review aims to provide information of ethnomedicinal plants which are used for the treatment of neurodegenerative diseases in Himachal Pradesh. MATERIALS AND METHODS Information on the use of ethnomedicinal plants to treat various neurological disorders has been gathered from a variety of sources, including various types of literature, books, and relevant publications in Google Scholar, Research Gate, Science Direct, Scopus, and Pub Med, among others. The collected data is tabulated, including the botanical names of plants, mode of use and the disease for which it is used for curing, etc. RESULTS: There are 73 ethnomedicinal plants that are used to cure various neurological disorders, with the most plants being used to treat epilepsy problem in Himachal Pradesh. CONCLUSION Numerous phytochemicals and extracts from diverse plants were found to have a protective effect against neurodegenerative diseases. Antioxidant activity is known to exist in a variety of herbal plants. The most common bioactive antioxidant chemicals having their significant impacts include flavonoids, flavones, coumarins, lignans, isoflavones, catechins, anthocyanins, and isocatechins.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005, Hradec, Kralove, Czech Republic.
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.
| | - Disha Raghuvanshi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| |
Collapse
|
8
|
Kim W, Kwon HJ, Jung HY, Hahn KR, Yoon YS, Hwang IK, Choi SY, Kim DW. Neuroprotective Effects of Purpurin Against Ischemic Damage via MAPKs, Bax, and Oxidative Stress Cascades in the Gerbil Hippocampus. Mol Neurobiol 2022; 59:2580-2592. [PMID: 35094304 PMCID: PMC9016019 DOI: 10.1007/s12035-021-02642-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Purpurin has various effects, including anti-inflammatory effects, and can efficiently cross the blood-brain barrier. In the present study, we investigated the effects of purpurin on oxidative stress in HT22 cells and mild brain damage in the gerbil hippocampal CA1 region induced by transient forebrain ischemia. Oxidative stress induced by H2O2 was significantly ameliorated by treatment with purpurin, based on changes in cell death, DNA fragmentation, formation of reactive oxygen species, and pro-apoptotic (Bax)/anti-apoptotic (Bcl-2) protein levels. In addition, treatment with purpurin significantly reduced the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK), and p38 signaling in HT22 cells. Transient forebrain ischemia in gerbils led to a significant increase in locomotor activity 1 day after ischemia and significant decrease in number of surviving cells in the CA1 region 4 days after ischemia. Administration of purpurin reduced the travel distance 1 day after ischemia and abrogates the neuronal death in the hippocampal CA1 region 4 days after ischemia based on immunohistochemical and histochemical staining for NeuN and Fluoro-Jade C, respectively. Purpurin treatment significantly decreased the activation of microglia and astrocytes as well as the increases of nuclear factor kappa-light-chain-enhancer of activated B cells p65 in the hippocampal CA1 region 4 days after ischemia and ameliorated the ischemia-induced transient increases of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the hippocampus 6 h after ischemia. In addition, purpurin significantly alleviated the ischemia-induced phosphorylation of JNK, ERK, and p38 in the hippocampus 1 day after ischemia. Furthermore, purpurin treatment significantly mitigated the increases of Bax in the hippocampus 1 day after ischemia and the lipid peroxidation based on malondialdehyde and hydroperoxides levels 2 days after ischemia. These results suggest that purpurin can be one of the potential candidates to reduce neuronal damage and inflammatory responses after oxidative stress in HT22 cells or ischemic damage in gerbils.
Collapse
Affiliation(s)
- Woosuk Kim
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
- Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, South Korea
| | - Hyun Jung Kwon
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| |
Collapse
|
9
|
Kaur L, Malhi DS, Cooper R, Kaur M, Sohal HS, Mutreja V, Sharma A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: A journey from noxious weed to a therapeutic medicinal plant. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114525. [PMID: 34411657 DOI: 10.1016/j.jep.2021.114525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Parthenium hysterophorus L. is a noxious weed and a species of flowering plant in the Asteraceae family. It is regarded as the seventh most deadly weed in the world: harmful to both humans and livestock. It is widely known as Congress Grass or Feverfew. Despite its pitfalls, P. hysterophorus bestows medicinal effects. Although prolific in nature and difficult to control, many novel applications of this controversial herb have been discovered as an approach to manage the weed. AIM The current review aims to compile all the ethnobotanical, phytochemistry, biological activities and utilities, clinical studies and toxicity data available on P. hysterophorus and its major chemical constituent parthenin. MATERIALS AND METHODS Extensive literature surveyed Google search, Google scholar, Wiley online library, Elsevier, Springer, Science direct, American Chemical Society, Royal Society of Chemistry and Research Gate. RESULT According to the study, P. hysterophorus is utilized as a traditional medicine throughout Central America and the Caribbean. It can be used to treat skin infections, dermatitis, amoebic dysentery, and as an analgesic in the treatment of muscular rheumatism. The extracts obtained from P. hysterophorus have anti-inflammatory, antioxidant, larvicidal, anti-microbial, insecticidal, hypoglycaemic and anti-cancer activity. CONCLUSION The earlier investigations confirmed that P. hysterophorus has numerous traditional and biological applications. However, the scientific data are limited in clinical and toxicological studies. Therefore, further research is required on clinical and toxicological aspects to understand the complete potential and effects of P. hysterophorus.
Collapse
Affiliation(s)
- Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Raymond Cooper
- Dept Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
10
|
Jesus F, Gonçalves AC, Alves G, Silva LR. Health Benefits of Prunus avium Plant Parts: An Unexplored Source Rich in Phenolic Compounds. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1854781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fábio Jesus
- CICS - UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C. Gonçalves
- CICS - UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Gilberto Alves
- CICS - UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Luís R. Silva
- CICS - UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
11
|
Jantas D, Chwastek J, Malarz J, Stojakowska A, Lasoń W. Neuroprotective Effects of Methyl Caffeate against Hydrogen Peroxide-Induced Cell Damage: Involvement of Caspase 3 and Cathepsin D Inhibition. Biomolecules 2020; 10:E1530. [PMID: 33182454 PMCID: PMC7696984 DOI: 10.3390/biom10111530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022] Open
Abstract
Finding effective neuroprotective strategies to combat various neurodegenerative disorders still remain a clinically unmet need. Methyl caffeate (MC), a naturally occurring ester of caffeic acid, possesses antioxidant and anti-inflammatory activities; however, its role in neuroprotection is less investigated. In order to better characterize neuroprotective properties of MC, we tested its effectiveness in various models of neuronal cell injury in human neuroblastoma SH-SY5Y cells and in mouse primary neuronal cell cultures. MC at micromolar concentrations attenuated neuronal cell damage induced by hydrogen peroxide (H2O2) in undifferentiated and neuronal differentiated SH-SY5Y cells as well as in primary cortical neurons. This effect was associated with inhibition of both caspase-3 and cathepsin D but without involvement of the PI3-K/Akt pathway. MC was neuroprotective when given before and during but not after the induction of cell damage by H2O2. Moreover, MC was protective against 6-OHDA-evoked neurotoxicity in neuronal differentiated SH-SY5Y cells via inhibition of necrotic and apoptotic processes. On the other hand, MC was ineffective in models of excitotoxicity (induced by glutamate or oxygen-glucose deprivation) and even moderately augmented cytotoxic effects of the classical apoptotic inducer, staurosporine. Finally, in undifferentiated neuroblastoma cells MC at higher concentrations (above 50 microM) induced cell death and when combined with the chemotherapeutic agent, doxorubicin, it increased the cell damaging effects of the latter compound. Thus, neuroprotective properties of MC appear to be limited to certain models of neurotoxicity and depend on its concentrations and time of administration.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.C.); (W.L.)
| | - Jakub Chwastek
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.C.); (W.L.)
| | - Janusz Malarz
- Department of Phytochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.M.); (A.S.)
| | - Anna Stojakowska
- Department of Phytochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.M.); (A.S.)
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.C.); (W.L.)
| |
Collapse
|
12
|
Bagdas D, Gul Z, Meade JA, Cam B, Cinkilic N, Gurun MS. Pharmacologic Overview of Chlorogenic Acid and its Metabolites in Chronic Pain and Inflammation. Curr Neuropharmacol 2020; 18:216-228. [PMID: 31631820 PMCID: PMC7327949 DOI: 10.2174/1570159x17666191021111809] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Natural phenolic compounds in medicinal herbs and dietary plants are antioxidants which play therapeutic or preventive roles in different pathological situations, such as oxidative stress and inflammation. One of the most studied phenolic compounds in the last decade is chlorogenic acid (CGA), which is a potent antioxidant found in certain foods and drinks. OBJECTIVE This review focuses on the anti-inflammatory and antinociceptive bioactivities of CGA, and the putative mechanisms of action are described. Ethnopharmacological reports related to these bioactivities are also reviewed. MATERIALS AND METHODS An electronic literature search was conducted by authors up to October 2019. Original articles were selected. RESULTS CGA has been shown to reduce inflammation and modulate inflammatory and neuropathic pain in animal models. CONCLUSION The consensus of the literature search was that systemic CGA may facilitate pain management via bolstering antioxidant defenses against inflammatory insults.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States.,Yale Tobacco Center of Regulatory Science, Yale University, New Haven, CT, United States
| | - Zulfiye Gul
- Department of Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Julie A Meade
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Betul Cam
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Nilufer Cinkilic
- Department of Biology, Faculty of Science and Arts, Uludag University, Bursa, Turkey
| | - Mine Sibel Gurun
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
13
|
Hanafy DM, Burrows GE, Prenzler PD, Hill RA. Potential Role of Phenolic Extracts of Mentha in Managing Oxidative Stress and Alzheimer's Disease. Antioxidants (Basel) 2020; 9:antiox9070631. [PMID: 32709074 PMCID: PMC7402171 DOI: 10.3390/antiox9070631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
With an increase in the longevity and thus the proportion of the elderly, especially in developed nations, there is a rise in pathological conditions that accompany ageing, such as neurodegenerative disorders. Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive and memory decline. The pathophysiology of the disease is poorly understood, with several factors contributing to its development, such as oxidative stress, neuroinflammation, cholinergic neuronal apoptotic death, and the accumulation of abnormal proteins in the brain. Current medications are only palliative and cannot stop or reverse the progression of the disease. Recent clinical trials of synthetic compounds for the treatment of AD have failed because of their adverse effects or lack of efficacy. Thus, there is impetus behind the search for drugs from natural origins, in addition to the discovery of novel, conventional therapeutics. Mints have been used traditionally for conditions relevant to the central nervous system. Recent studies showed that mint extracts and/or their phenolic constituents have a neuroprotective potential and can target multiple events of AD. In this review, we provide evidence of the potential role of mint extracts and their derivatives as possible sources of treatments in managing AD. Some of the molecular pathways implicated in the development of AD are reviewed, with focus on apoptosis and some redox pathways, pointing to mechanisms that may be modulated for the treatment of AD, and the need for future research invoking knowledge of these pathways is highlighted.
Collapse
Affiliation(s)
- Doaa M. Hanafy
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
- Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW Department of Primary Industries), Pugsley Place, Wagga Wagga, NSW 2650, Australia
- Department of Pharmacognosy, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Geoffrey E. Burrows
- School of Agricultural & Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
| | - Paul D. Prenzler
- Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW Department of Primary Industries), Pugsley Place, Wagga Wagga, NSW 2650, Australia
- School of Agricultural & Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
- Correspondence: (P.D.P.); (R.A.H.); Tel.: +61-2-693-32978 (P.D.P.); +61-2-693-32018 (R.A.H.)
| | - Rodney A. Hill
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
- Correspondence: (P.D.P.); (R.A.H.); Tel.: +61-2-693-32978 (P.D.P.); +61-2-693-32018 (R.A.H.)
| |
Collapse
|
14
|
Park JY, Lee HJ, Kwon YS, Chun W. 3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced Inflammatory Response by Increasing SIRT1 Expression in Human Umbilical Vein Endothelial Cells. J Vasc Res 2020; 57:302-310. [PMID: 32564014 DOI: 10.1159/000507628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 11/19/2022] Open
Abstract
3,4,5-Trihydroxycinnamic acid (THC) has been demonstrated to exert anti-inflammatory activities in LPS-induced RAW264.7 murine macrophage cells and in LPS-induced septic mice. However, the effect of THC on the inflammatory response in vascular endothelial cells has not been clearly examined. The goal of the present study was to elucidate the anti-inflammatory properties of THC and its underlying mechanism in LPS-challenged human umbilical vein endothelial cells (HUVECs). THC significantly suppressed LPS-induced interleukin-1β production and intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression and significantly decreased LPS-induced nuclear factor-κB activation by attenuating p65 phosphorylation and inhibitor of kappa B degradation. To understand the underlying mechanism of the anti-inflammatory effect of THC, the involvement of the sirtuin 1 (SIRT1) signaling pathway was examined. THC resulted in increased expression of SIRT1 in LPS-challenged HUVECs. Among the downstream molecular targets of SIRT1, the level of LPS-induced acetylated p53 was significantly decreased by THC treatment, whereas no noticeable change was observed in the levels of forkhead box O3 and peroxisome proliferator activated receptor gamma coactivator 1 alpha. In conclusion, the results clearly demonstrate that THC possesses anti-inflammatory properties by increasing SIRT1 expression and subsequent suppression of p53 activation in LPS-challenged HUVECs.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Pharmacology, College of Medicine, Chuncheon, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Chuncheon, Republic of Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Chuncheon, Republic of Korea,
| |
Collapse
|
15
|
Wahid M, Ali A, Saqib F, Aleem A, Bibi S, Afzal K, Ali A, Baig A, Khan SA, Bin Asad MHH. Pharmacological exploration of traditional plants for the treatment of neurodegenerative disorders. Phytother Res 2020; 34:3089-3112. [DOI: 10.1002/ptr.6742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Muqeet Wahid
- Faculty of Pharmacy, Department of Pharmacology Bahauddin Zakariya University Multan Pakistan
- Institute of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Anam Ali
- Faculty of Pharmacy, Department of Pharmacology Bahauddin Zakariya University Multan Pakistan
| | - Fatima Saqib
- Faculty of Pharmacy, Department of Pharmacology Bahauddin Zakariya University Multan Pakistan
| | - Ambreen Aleem
- Faculty of Pharmacy, Department of Pharmacology Bahauddin Zakariya University Multan Pakistan
| | - Sumbal Bibi
- Department of Pharmacy COMSATS University Islamabad Abbottabad Pakistan
| | - Khurram Afzal
- Institute of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Atif Ali
- Department of Pharmacy COMSATS University Islamabad Abbottabad Pakistan
| | - Ayesha Baig
- Department of Biotechnology COMSATS University Islamabad Abbottabad Pakistan
| | - Shujaat Ali Khan
- Department of Pharmacy COMSATS University Islamabad Abbottabad Pakistan
| | - Muhammad Hassham Hassan Bin Asad
- Department of Pharmacy COMSATS University Islamabad Abbottabad Pakistan
- Department of Genetics, Institute of Fundamental Medicine and Biology Kazan Federal University Kazan Russia
| |
Collapse
|
16
|
An analog derived from phenylpropanoids ameliorates Alzheimer's disease–like pathology and protects mitochondrial function. Neurobiol Aging 2019; 80:187-195. [DOI: 10.1016/j.neurobiolaging.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 01/14/2023]
|
17
|
Plazas EA, Avila MC, Delgado WA, Patino OJ, Cuca LE. In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/rjmp.2018.9.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed Pharmacother 2017; 97:958-968. [PMID: 29136774 DOI: 10.1016/j.biopha.2017.10.145] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023] Open
Abstract
Schisandra chinensis fruits have been traditionally used for thousands of years in Korea, China and Japan to treat various ailments. The fruits contain a variety of bioactive metabolites, especially lignan components have been reported to have various biological activities and have potential in the treatment of numerous neurodegenerative diseases. The lignans from S. chinensis are mainly grouped under dibenzocyclooctadiene lignans. Previous studies have reported that the crude extracts and the isolated pure lignan components effectively protect the neuronal cell damage and significantly enhance the cognitive performances. The experimental findings support the extracts and lignan components from S. chinensis can be used as new therapeutic agents to treat various neurodegenerative diseases. In the current review, we highlight the lignans from S. chinensis as promising resources for the development of natural and effective agents for neuroprotective and cognitive enhancement effects. The lignan extracts and individual compounds from S. chinensis were summarized in relation to their neuroprotective and cognitive enhancement activities.
Collapse
Affiliation(s)
- Kandhasamy Sowndhararajan
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ponnuvel Deepa
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Minju Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Songmun Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
19
|
Biophenols of mints: Antioxidant, acetylcholinesterase, butyrylcholinesterase and histone deacetylase inhibition activities targeting Alzheimer’s disease treatment. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Wang YN, Liu MF, Hou WZ, Xu RM, Gao J, Lu AQ, Xie MP, Li L, Zhang JJ, Peng Y, Ma LL, Wang XL, Shi JG, Wang SJ. Bioactive Benzofuran Derivatives from Cortex Mori Radicis, and Their Neuroprotective and Analgesic Activities Mediated by mGluR₁. Molecules 2017; 22:molecules22020236. [PMID: 28208727 PMCID: PMC6155743 DOI: 10.3390/molecules22020236] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 02/04/2023] Open
Abstract
Four new benzofuran-type stilbene glycosides and 14 known compounds including 8 benzofuran-type stilbenes and 6 flavonoids were isolated from the traditional Chinese medicine, Cortex Mori Radicis. The new compounds were identified as (9R)-moracin P 3′-O-α-l-arabinopyranoside (1), (9R)-moracin P 9-O-β-d-glucopyranoside (2), (9R)-moracin P 3′-O-β-d-glucopyranoside (3), and (9R)-moracin O 10-O-β-d-glucopyranoside (4) based on the spectroscopic interpretation and chemical analysis. Three benzofuran-type stilbenes, moracin O (5), R (7), and P (8) showed significant neuroprotective activity against glutamate-induced cell death in SK-N-SH cells. In addition, moracin O (5) and P (8) also demonstrated a remarkable inhibition of the acetic acid-induced pain. The molecular docking with metabotropic glutamate receptor 1 (mGluR1) results indicated that these neuroprotective benzofuran-type stilbenes might be the active analgesic components of the genus Morus, and acted by mediating the mGluR1 pathway.
Collapse
Affiliation(s)
- Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Mao-Feng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Wei-Zhen Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Rui-Ming Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jie Gao
- GRU Cancer Center, Augusta University, Augusta, GA 30912, USA.
| | - An-Qi Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Mei-Ping Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Lan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jian-Jun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Li-Li Ma
- Editorial Department, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiao-Liang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Su-Juan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
21
|
Maqueshudul Haque Bhuiyan M, Mohibbullah M, Hannan MA, Hong YK, Choi JS, Choi IS, Moon IS. Undaria pinnatifida Promotes Spinogenesis and Synaptogenesis and Potentiates Functional Presynaptic Plasticity in Hippocampal Neurons. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:529-42. [PMID: 25967666 DOI: 10.1142/s0192415x15500330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Reductions in neurotrophic factors are implicated in synaptic dysfunction in the central nervous system, but exogenous neurotrophic factors with potential effects on neuritic regeneration and synaptic reconstruction could offer therapeutic and preventive strategies for treating memory-related neurological disorders. In an earlier effort to identify natural neurotrophic agents, we found that the ethanol extract of the edible marine alga Undaria pinnatifida (UPE) had promising effects on the neuritogenesis of cultured hippocampal neurons. Here, we further investigated the ability of UPE to promote spinogenesis and synaptogenesis in primary cultures of hippocampal neurons. It was found that UPE triggered significant increase in numbers of dendritic filopodia and spines, promoted the formation of excitatory and inhibitory synapses, and potentiated synaptic transmission by increasing the sizes of reserve vesicle pools at presynaptic terminals. These findings indicate a substantial role for UPE in the morphological and functional maturation of neurons and suggest that UPE is a possible therapeutic preventative measure and treatment for neurodegenerative diseases, such as those involving cognitive disorders and memory impairments.
Collapse
|
22
|
3,4,5-Trihydroxycinnamic acid increases heme-oxygenase-1 (HO-1) and decreases macrophage infiltration in LPS-induced septic kidney. Mol Cell Biochem 2014; 397:109-16. [DOI: 10.1007/s11010-014-2177-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
23
|
Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:967462. [PMID: 24790636 PMCID: PMC3984789 DOI: 10.1155/2014/967462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022]
Abstract
Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines.
Collapse
|
24
|
Vo VA, Lee JW, Shin SY, Kwon JH, Lee HJ, Kim SS, Kwon YS, Chun W. Methyl p-Hydroxycinnamate Suppresses Lipopolysaccharide-Induced Inflammatory Responses through Akt Phosphorylation in RAW264.7 Cells. Biomol Ther (Seoul) 2014; 22:10-6. [PMID: 24596616 PMCID: PMC3936424 DOI: 10.4062/biomolther.2013.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 12/02/2022] Open
Abstract
Derivatives of caffeic acid have been reported to possess diverse pharmacological properties such as anti-inflammatory, anti-tumor, and neuroprotective effects. However, the biological activity of methyl p-hydroxycinnamate, an ester derivative of caffeic acid, has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of methyl p-hydroxycinnamate in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Methyl p-hydroxycinnamate significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. Methyl p-hydroxycinnamate also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-1β and TNF-α. In addition, methyl p-hydroxycinnamate significantly suppressed LPS-induced degradation of IκB, which retains NF-κB in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-κB in the nucleus. Methyl p-hydroxycinnamate exhibited significantly increased Akt phosphorylation in a concentration-dependent manner. Furthermore, inhibition of Akt signaling pathway with wortmaninn abolished methyl p-hydroxycinnamate-induced Akt phosphorylation. Taken together, the present study clearly demonstrates that methyl p-hydroxycinnamate exhibits anti-inflammatory activity through the activation of Akt signaling pathway in LPS-stimulated RAW264.7 macrophage cells.
Collapse
Affiliation(s)
- Van Anh Vo
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Jae-Won Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Seung-Yeon Shin
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Jae-Hyun Kwon
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701 ; Department of Radiology, Dongguk University Ilsan Hospital, Ilsan 410-773, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Sung-Soo Kim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| |
Collapse
|
25
|
Vo VA, Lee JW, Kim JY, Park JH, Lee HJ, Kim SS, Kwon YS, Chun W. Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl β-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:79-86. [PMID: 24634601 PMCID: PMC3951828 DOI: 10.4196/kjpp.2014.18.1.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 11/15/2022]
Abstract
Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl β-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-1β and TNF-α. In addition, CG significantly suppressed LPS-induced degradation of IκB. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells.
Collapse
Affiliation(s)
- Van Anh Vo
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Jae-Won Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Ji-Young Kim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Jun-Ho Park
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Sung-Soo Kim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
26
|
3,4,5-Trihydroxycinnamic acid inhibits lipopolysaccharide (LPS)-induced inflammation by Nrf2 activation in vitro and improves survival of mice in LPS-induced endotoxemia model in vivo. Mol Cell Biochem 2014; 390:143-53. [DOI: 10.1007/s11010-014-1965-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
27
|
Lee JW, Choi YJ, Park JH, Sim JY, Kwon YS, Lee HJ, Kim SS, Chun W. 3,4,5-Trihydroxycinnamic Acid Inhibits Lipopolysaccharide-Induced Inflammatory Response through the Activation of Nrf2 Pathway in BV2 Microglial Cells. Biomol Ther (Seoul) 2013; 21:60-5. [PMID: 24009860 PMCID: PMC3762302 DOI: 10.4062/biomolther.2012.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 11/05/2022] Open
Abstract
3,4,5-Trihydroxycinnamic acid (THC) is a derivative of hydroxycinnamic acids, which have been reported to possess a variety of biological properties such as anti-inflammatory, anti-tumor, and neuroprotective activities. However, biological activity of THC has not been extensively examined. Recently, we reported that THC possesses anti-inflammatory activity in LPS-stimulated BV2 microglial cells. However, its precise mechanism by which THC exerts anti-inflammatory action has not been clearly identified. Therefore, the present study was carried out to understand the anti-inflammatory mechanism of THC in BV2 microglial cells. THC effectively suppressed the LPS-induced induction of pro-inflammatory mediators such as NO, TNF-α, and IL-1β. THC also suppressed expression of MCP-1, which plays a key role in the migration of activated microglia. To understand the underlying mechanism by which THC exerts these anti-inflammatory properties, involvement of Nrf2, which is a cytoprotective transcription factor, was examined. THC resulted in increased phosphorylation of Nrf2 with consequent expression of HO-1 in a concentration-dependent manner. THC-induced phosphorylation of Nrf2 was blocked with SB203580, a p38 MAPK inhibitor, indicating that p38 MAPK is the responsible kinase for the phosphorylation of Nrf2. Taken together, the present study for the first time demonstrates that THC exerts anti-inflammatory properties through the activation of Nrf2 in BV2 microglial cells, suggesting that THC might be a valuable therapeutic adjuvant for the treatment of inflammation-related disorders in the CNS.
Collapse
Affiliation(s)
- Jae-Won Lee
- Department of Pharmacology, College of Medicine, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Stojakowska A, Michalska K, Malarz J, Beharav A, Kisiel W. Root tubers of Lactuca tuberosa as a source of antioxidant phenolic compounds and new furofuran lignans. Food Chem 2013; 138:1250-5. [DOI: 10.1016/j.foodchem.2012.11.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
|
29
|
Bagdas D, Cinkilic N, Ozboluk HY, Ozyigit MO, Gurun MS. Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J Nat Med 2012. [PMID: 23203628 DOI: 10.1007/s11418-012-0726-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlorogenic acid (CGA) is a natural organic phenolic compound that is found in many plants, fruits and vegetables. CGA has beneficial bioactivities and strong therapeutic effects in inflammatory processes. CGA-rich fractions have analgesic activity but CGA has not been tested previously in neuropathic pain, which results from tissue damage, inflammation or injury of the nervous system. Chronic constrictive nerve injury (CCI) is a peripheral neuropathic pain model which initiates an inflammatory cascade. We aimed to determine possible antihyperalgesic effects of CGA in neuropathic pain. Our study showed for the first time that CGA [50, 100 and 200 mg/kg; intraperitoneally (i.p.)] produced significant dose- and time-dependent antihyperalgesic activity in CCI-induced neuropathic pain. In addition, chronic administration of CGA (100 mg/kg/day; i.p. for 14 days) prevented the development of mechanical hyperalgesia and attenuated CCI-induced histopathological changes. On the other hand, CGA (200 mg/kg) did not affect falling latencies of rats in the rota rod test. Hence, CGA might represent a novel potential therapeutic option for the management of neuropathic pain.
Collapse
Affiliation(s)
- Deniz Bagdas
- Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey,
| | | | | | | | | |
Collapse
|
30
|
Substituent effects on the electrocatalytic oxidation of phenols at preanodized screen-printed carbon electrodes. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Lee JW, Bae CJ, Choi YJ, Kim SI, Kim NH, Lee HJ, Kim SS, Kwon YS, Chun W. 3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced iNOS Expression by Suppressing NF-κB Activation in BV2 Microglial Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:107-12. [PMID: 22563255 PMCID: PMC3339285 DOI: 10.4196/kjpp.2012.16.2.107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 11/15/2022]
Abstract
Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as neuronal protection against excitotoxicity and anti-inflammatory property, the biological activity of 3,4,5-trihydroxycinnamic acid (THC), a derivative of hydroxycinnamic acids, has not been clearly examined. The objective of the present study is to evaluate the anti-inflammatory effects of THC on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. THC significantly suppressed LPS-induced excessive production of nitric oxide (NO) and expression of iNOS, which is responsible for the production of iNOS. THC also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-1β and TNF-α in BV2 microgilal cells. Furthermore, THC significantly suppressed LPS-induced degradation of IκB, which retains NF-κB in the cytoplasm. Therefore, THC attenuated nuclear translocation of NF-κB, a major pro-inflammatory transcription factor. Taken together, the present study for the first time demonstrates that THC exhibits anti-inflammatory activity through the suppression of NF-κB transcriptional activation in LPS-stimulated BV2 microglial cells.
Collapse
Affiliation(s)
- Jae-Won Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hannan MA, Kang JY, Hong YK, Lee H, Choi JS, Choi IS, Moon IS. The Marine AlgaGelidium amansiiPromotes the Development and Complexity of Neuronal Cytoarchitecture. Phytother Res 2012; 27:21-9. [DOI: 10.1002/ptr.4684] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 01/19/2023]
Affiliation(s)
- Md. Abdul Hannan
- Department of Biotechnology; Pukyong National University; Namku; Busan; 608-737; Korea
| | - Ji-Young Kang
- Department of Biotechnology; Pukyong National University; Namku; Busan; 608-737; Korea
| | - Yong-Ki Hong
- Department of Biotechnology; Pukyong National University; Namku; Busan; 608-737; Korea
| | - HyunSook Lee
- Department of Anatomy, College of Medicine; Dongguk University; Gyeongju; 780-714; Korea
| | - Jae-Suk Choi
- RIS Center, IACF; Silla University; Sasang-gu; Busan; 617-736; Korea
| | | | - Il Soo Moon
- Department of Anatomy, College of Medicine; Dongguk University; Gyeongju; 780-714; Korea
| |
Collapse
|
33
|
Prakash T, Kotresha D, Rama Rao N. Cerebroprotective activity of Wedelia calendulacea on global cerebral ischemia in rats. ACTA BIOLOGICA HUNGARICA 2011; 62:361-75. [PMID: 22119866 DOI: 10.1556/abiol.62.2011.4.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H2O2), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pretreated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.
Collapse
Affiliation(s)
- T Prakash
- Department of Pharmacology, Acharya & B.M. Reddy College of Pharmacy, Bangalore 560 090, Karnataka, India.
| | | | | |
Collapse
|
34
|
Abdallah FB, Fetoui H, Fakhfakh F, Keskes L. Caffeic acid and quercetin protect erythrocytes against the oxidative stress and the genotoxic effects of lambda-cyhalothrin in vitro. Hum Exp Toxicol 2011; 31:92-100. [PMID: 22027499 DOI: 10.1177/0960327111424303] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lambda-cyhalothrin (LTC) is a synthetic pyrethroid with a broad spectrum of insecticidal and acaricidal activities used to control wide range of insect pests in a variety of applications. The aim of this study was to examine (i) the potency of LTC to induce oxidative stress response in rat erythrocytes in vitro and (ii) the role of caffeic acid (20 μM) and/or quercetin (10 μM) in preventing the cytotoxic effects. Erythrocytes were divided into four portions. The erythrocytes of the first portion were incubated for 4 h at 37°C with different concentrations (0, 50 and 100 μM) of LTC. The others portions were pretreated with caffeic acid and/or quercetin for 30 min prior to LTC incubation. Lipid peroxidation, protein oxidation, antioxidant enzyme activities and DNA damage were examined. LTC at different concentrations causes increased levels of lipid peroxidation, protein oxidation, DNA damage and decreased antioxidant enzyme activities. Combined caffeic acid and quercetin pretreatments significantly reduced the levels of lipid peroxidation markers, that is thiobarbituric acid reactive substance (TBARS), protein carbonyls (PCO) and decreased DNA damage in LTC portion. Further, combined caffeic acid and quercetin pretreatment maintain antioxidant enzyme activities and glutathione content near to normal values. These results suggest that LTC exerts its toxic effect by increasing lipid peroxidation, altering the antioxidant enzyme activities and DNA damage. Caffeic acid and quercetin pretreatments prevent the toxic effects of LTC, suggesting their role as a potential antioxidant.
Collapse
Affiliation(s)
- Fatma Ben Abdallah
- Laboratory of Histology Embryology and Reproductive Biology, University of Sfax, Tunisia.
| | | | | | | |
Collapse
|
35
|
Choi YJ, Kwak EB, Lee JW, Lee YS, Cheong IY, Lee HJ, Kim SS, Kim MJ, Kwon YS, Chun WJ. Cytoprotective Effects of Docosyl Cafferate against tBHP-Induced Oxidative Stress in SH-SY5Y Human Neuroblastoma Cells. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.2.195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
|
37
|
Lee JW, Cheong IY, Kim HS, Lee JJ, Lee YS, Kwon YS, Kim MJ, Lee HJ, Kim SS, Chun W. Anti-inflammatory Activity of 1-docosanoyl Cafferate Isolated from Rhus verniciflua in LPS-stimulated BV2 Microglial Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:9-15. [PMID: 21461235 DOI: 10.4196/kjpp.2011.15.1.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 11/15/2022]
Abstract
Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as protection of neuronal cells against excitotoxicity, the biological activity of 1-docosanoyl cafferate (DC) has not been examined. The objective of the present study was to evaluate the anti-inflammatory effects of DC, isolated from the stem bark of Rhus verniciflua, on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Pretreatment of cells with DC significantly attenuated LPS-induced NO production, and mRNA and protein expression of iNOS in a concentration-dependent manner. DC also significantly suppressed LPS-induced release of cytokines such as TNF-α and IL-1β . Consistent with the decrease in cytokine release, DC dose-dependently and significantly attenuated LPS-induced mRNA expression of these cytokines. Furthermore, DC significantly suppressed LPS-induced degradation of IKB, which retains NF-kB in the cytoplasm. Therefore, nuclear translocation of NF-kB induced by LPS stimulation was significantly suppressed with DC pretreatment. Taken together, the present study suggests that DC exerts its anti-inflammatory activity through the suppression of NF-kB translocation to the nucleus.
Collapse
Affiliation(s)
- Jae-Won Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|