1
|
Zhu J, Wu X, Mu M, Zhang Q, Zhao X. TEC-mediated tRF-31R9J regulates histone lactylation and acetylation by HDAC1 to suppress hepatocyte ferroptosis and improve non-alcoholic steatohepatitis. Clin Epigenetics 2025; 17:9. [PMID: 39838504 PMCID: PMC11748747 DOI: 10.1186/s13148-025-01813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Tectorigenin (TEC) is a monomer of anthocyanin, which we found exhibits hepatoprotective effects. tRNA-derived fragments (tRFs) and ferroptosis play important roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). Recent discoveries have revealed that histone lactylation and acetylation play a crucial role in connecting cellular metabolism and epigenetic regulation through post-translational modification of histones. However, it is unclear whether TEC improves NASH by regulating histone lactylation, acetylation and hepatocyte ferroptosis through tRFs. RESULTS In this study, we demonstrated that TEC significantly inhibits free fatty acids-induced hepatocyte ferroptosis both in vitro and in vivo. We identified tRF-31R9J (tRF-31-R9JP9P9NH5HYD) involved in TEC regulation of ferroptosis in steatosis hepatocytes. Overexpression of tRF-31R9J suppressed hepatocyte ferroptosis and enhanced cell viability in steatosis HepG2 cells. Knockdown of tRF-31R9J partially counteracted the inhibitory effect of TEC on ferroptosis in hepatocytes. Mechanistically, tRF-31R9J recruited HDAC1 to reduce the levels of histone lactylation and acetylation modifications of the pro-ferroptosis genes ATF3, ATF4, and CHAC1, thereby inhibiting their gene expression. CONCLUSIONS This study demonstrates that TEC-mediated tRF-31R9J inhibits hepatocyte ferroptosis through HDAC1-regulated histone delactylation and deacetylation, thereby improving NASH. These discoveries offer a theoretical foundation and new strategies for the medical management of NASH.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Xian Wu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Mao Mu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Quan Zhang
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Xueke Zhao
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
2
|
Zheng W, Ning K, Shi C, Zhou YF, Meng Y, Pan T, Chen Y, Xie Q, Xiang H. Xiaobugan decoction prevents CCl 4-induced acute liver injury by modulating gut microbiota and hepatic metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156113. [PMID: 39388924 DOI: 10.1016/j.phymed.2024.156113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The liver plays a crucial role in detoxification and metabolism. When its capacity to metabolize foreign substances is exceeded, it can lead to acute liver injury (ALI). Therefore, preventing liver disease and maintaining daily liver health are of utmost importance. Xiaobugan Decoction (XBGD), a traditional Chinese medicine (TCM) formula, is recorded in 'Fuxingjue', is used in folk practice to promote liver health and regulate respiration. However, the hepatoprotective mechanisms of XBGD remained unclear. PURPOSE We investigated the prophylactic and hepatoprotective effects of XBGD and explored its related molecular mechanisms using a mouse model of carbon tetrachloride (CCl4)-induced ALI. STUDY DESIGN AND METHODS XBGD composition was determined using analytical methods, and the main compounds were identified using ultra-high-performance liquid chromatography coupled with Q-Exactive focus mass spectrum (UHPLC-QE-MS) and high-performance liquid chromatography (HPLC). A CCl4-induced L02 cell injury model was employed to explore the protective effects of XBGD on liver cells, and a CCl4-induced ALI mouse model was used to investigate the hepatoprotective effects of XBGD. RESULTS Cellular experiments demonstrated that XBGD had a protective function against L02 cell damage by increasing cell viability, restoring alanine aminotransferase (ALT), aspartate aminotransferase (AST), and superoxide dismutase (SOD) levels, reducing malondialdehyde (MDA) content, and improving mitochondrial membrane potential (ΔΨm). In the mouse ALI model, XBGD prevented ALI by reducing ALT, AST, and alkaline phosphatase (ALP) levels and inhibiting oxidative stress. Quantitative real-time polymerase chain reaction (qPCR), immumohistochemical staining and western blotting results revealed that XBGD exerted hepatoprotective effects by reducing inflammatory responses and inhibiting cell apoptosis. Furthermore, 1H-NMR metabolomics indicated that XBGD regulates hepatic and intestinal metabolism, whereas 16S rDNA sequencing demonstrated the regulatory effects of XBGD on the gut microbiota. Correlation analysis highlighted the close relationship among gut microbiota, metabolites, and ALI indicators. CONCLUSIONS XBGD is a promising TCM for the prevention of CCl4-induced ALI via regulation of microbiota and metabolism. This study provides a new perspective on the development of hepatoprotective measures and the prevention of liver disease in daily life.
Collapse
Affiliation(s)
- Weiwei Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Ke Ning
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Chao Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Yong-Fei Zhou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Yao Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Tong Pan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Yue Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong Jilin 134504, PR China.
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong Jilin 134504, PR China.
| |
Collapse
|
3
|
Niu C, Zhang J, Okolo PI. The possible pathogenesis of liver fibrosis: therapeutic potential of natural polyphenols. Pharmacol Rep 2024; 76:944-961. [PMID: 39162986 DOI: 10.1007/s43440-024-00638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Liver fibrosis is the formation of a fibrous scar resulting from chronic liver injury, independently from etiology. Although many of the mechanical details remain unknown, activation of hepatic stellate cells (HSCs) is a central driver of liver fibrosis. Extracellular mechanisms such as apoptotic bodies, paracrine stimuli, inflammation, and oxidative stress are critical in activating HSCs. The potential for liver fibrosis to reverse after removing the causative agent has heightened interest in developing antifibrotic therapies. Polyphenols, the secondary plant metabolites, have gained attention because of their health-beneficial properties, including well-recognized antioxidant and anti-inflammatory activities, in the setting of liver fibrosis. In this review, we present an overview of the mechanisms underlying liver fibrosis with a specific focus on the activation of resident HSCs. We highlight the therapeutic potential and promising role of natural polyphenols to mitigate liver fibrosis pathogenesis, focusing on HSCs activation. We also discuss the translational gap from preclinical findings to clinical treatments involved in natural polyphenols in liver fibrosis.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
4
|
Wenbo Z, Jianwei H, Hua L, Lei T, Guijuan C, Mengfei T. The potential of flavonoids in hepatic fibrosis: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155932. [PMID: 39146877 DOI: 10.1016/j.phymed.2024.155932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathophysiological process of extracellular matrix abnormal deposition induced by multiple pathogenic factors. Currently, there is still a lack of effective and non-toxic drugs for treating fibrosis in clinic. Flavonoids are polyphenolic compounds synthesized in plants and modern pharmacological studies confirmed flavonoids exhibit potent hepatoprotective effect. PURPOSE Summarize literature to elaborate the mechanism of HF and evaluate the potential of flavonoids in HF, aiming to provide a new perspective for future research. METHODS The literatures about hepatic fibrosis and flavonoids are collected via a series of scientific search engines including Google Scholar, Elsevier, PubMed, CNKI, WanFang, SciFinder and Web of Science database. The key words are "flavonoids", "hepatic fibrosis", "pharmacokinetic", "toxicity", "pathogenesis" "traditional Chinese medicine" and "mechanism" as well as combination application. RESULTS Phytochemical and pharmacological studies revealed that about 86 natural flavonoids extracted from Chinese herbal medicines possess significantly anti-fibrosis effect and the mechanisms maybe through anti-inflammatory, antioxidant, inhibiting hepatic stellate cells activation and clearing activated hepatic stellate cells. CONCLUSIONS This review summarizes the flavonoids which are effective in HF and the mechanisms in vivo and in vitro. However, fewer studies are focused on the pharmacokinetics of flavonoids in HF model and most studies are limited to preclinical studies, therefore there is no reliable data from clinical trials for the development of new drugs. Further in-depth research related it can be conducted to improve the bioavailability of flavonoids and serve the development of new drugs.
Collapse
Affiliation(s)
- Zhu Wenbo
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China.
| | - Han Jianwei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Liu Hua
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| | - Tang Lei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Chen Guijuan
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Tian Mengfei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| |
Collapse
|
5
|
Ciceu A, Fenyvesi F, Hermenean A, Ardelean S, Dumitra S, Puticiu M. Advancements in Plant-Based Therapeutics for Hepatic Fibrosis: Molecular Mechanisms and Nanoparticulate Drug Delivery Systems. Int J Mol Sci 2024; 25:9346. [PMID: 39273295 PMCID: PMC11394827 DOI: 10.3390/ijms25179346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic liver injuries often lead to hepatic fibrosis, a condition characterized by excessive extracellular matrix accumulation and abnormal connective tissue hyperplasia. Without effective treatment, hepatic fibrosis can progress to cirrhosis or hepatocellular carcinoma. Current treatments, including liver transplantation, are limited by donor shortages and high costs. As such, there is an urgent need for effective therapeutic strategies. This review focuses on the potential of plant-based therapeutics, particularly polyphenols, phenolic acids, and flavonoids, in treating hepatic fibrosis. These compounds have demonstrated anti-fibrotic activities through various signaling pathways, including TGF-β/Smad, AMPK/mTOR, Wnt/β-catenin, NF-κB, PI3K/AKT/mTOR, and hedgehog pathways. Additionally, this review highlights the advancements in nanoparticulate drug delivery systems that enhance the pharmacokinetics, bioavailability, and therapeutic efficacy of these bioactive compounds. Methodologically, this review synthesizes findings from recent studies, providing a comprehensive analysis of the mechanisms and benefits of these plant-based treatments. The integration of novel drug delivery systems with plant-based therapeutics holds significant promise for developing effective treatments for hepatic fibrosis.
Collapse
Affiliation(s)
- Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Dumitra
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Monica Puticiu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| |
Collapse
|
6
|
Zhu J, Tang W, Wu X, Mu M, Zhang Q, Zhao X. Tectorigenin improves metabolic dysfunction-associated steatohepatitis by down-regulating tRF-3040b and promoting mitophagy to inhibit pyroptosis pathway. Biochem Biophys Res Commun 2024; 720:150118. [PMID: 38776757 DOI: 10.1016/j.bbrc.2024.150118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Tectorigenin (TEC) as a plant extract has the advantage of low side effects on metabolic dysfunction-associated steatohepatitis (MASH) treatment. Our previous study have shown that tRNA-derived RNA fragments (tRFs) associated with autophagy and pyroptosis in MASH, but whether TEC can mitigate MASH through tRFs-mediated mitophagy is not fully understood. This study aims to investigate whether TEC relies on tRFs to adjust the crosstalk of hepatocyte mitophagy with pyroptosis in MASH. Immunofluorescence results of PINK1 and PRKN with MitoTracker Green-labeled mitochondria verified that TEC enhanced mitophagy. Additionally, TEC inhibited pyroptosis, as reflected by the level of GSDME, NLRP3, IL-1β, and IL-18 decreased after TEC treatment, while the effect of pyroptosis inhibition by TEC was abrogated by Pink1 silencing. We found that the upregulation expression of tRF-3040b caused by MASH was suppressed by TEC. The promotion of mitophagy and the suppression of pyroptosis induced by TEC were abrogated by tRF-3040b mimics. TEC reduced lipid deposition, inflammation, and pyroptosis, and promoted mitophagy in mice, but tRF-3040b agomir inhibited these effects. In summary, our findings provided that TEC significantly reduced the expression of tRF-3040b to enhance mitophagy, thereby inhibiting pyroptosis in MASH. We elucidated a powerful theoretical basis and provided safe and effective potential drugs for MASH with the prevention and treatment.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China.
| | | | - Xian Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Mao Mu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Quan Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
7
|
Liu H, Wang X, Deng H, Huang H, Liu Y, Zhong Z, Shen L, Cao S, Ma X, Zhou Z, Chen D, Peng G. Integrated Transcriptome and Metabolomics to Reveal the Mechanism of Adipose Mesenchymal Stem Cells in Treating Liver Fibrosis. Int J Mol Sci 2023; 24:16086. [PMID: 38003277 PMCID: PMC10671340 DOI: 10.3390/ijms242216086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Liver fibrosis (LF) is a late-stage process observed in various chronic liver diseases with bile and retinol metabolism closely associated with it. Adipose-derived mesenchymal stem cells (ADMSCs) have shown significant therapeutic potential in treating LF. In this study, the transplantation of ADMSCs was applied to a CCl4-induced LF model to investigate its molecular mechanism through a multi-omics joint analysis. The findings reveal that ADMSCs effectively reduced levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), gamma-glutamyltransferase (GGT), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and α-Smooth muscle actin (α-SMA), thereby mitigating liver lesions, preventing liver parenchymal necrosis, and improving liver collagen deposition. Furthermore, 4751 differentially expressed genes (DEGs) and 270 differentially expressed metabolites (DMs) were detected via transcriptome and metabolomics analysis. Conjoint analysis showed that ADMSCs up-regulated the expression of Cyp7a1, Baat, Cyp27a1, Adh7, Slco1a4, Aldh1a1, and Adh7 genes to promote primary bile acids (TCDCA: Taurochenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; GCA: glycocholic acid, TCA: Taurocholic acid) synthesis, secretion and retinol metabolism. This suggests that ADMSCs play a therapeutic role in maintaining bile acid (BA) homeostasis and correcting disturbances in retinol metabolism.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Yifan Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Liuhong Shen
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Suizhong Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xiaoping Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| |
Collapse
|
8
|
Rong J, Fu F, Han C, Wu Y, Xia Q, Du D. Tectorigenin: A Review of Its Sources, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2023; 28:5904. [PMID: 37570873 PMCID: PMC10421414 DOI: 10.3390/molecules28155904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Tectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.
Collapse
Affiliation(s)
- Juan Rong
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
- Proteomics-Metabolomics Platform, Research Core Facility, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Chen C, Li X, Kano Y, Yuan D, Qu J. Oriental traditional herbal Medicine--Puerariae Flos: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116089. [PMID: 36621660 DOI: 10.1016/j.jep.2022.116089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria Flos (PF), a traditional herbal medicine, is botanically from the dried flowers of Pueraria lobate (Willd.) Ohwi. (Chinese: ) or Pueraria thomsonii Benth. (Chinese: ). It has a long history of thousands of years in China for awakening the spleen, clearing the lungs, relieving alcohol. AIM OF THE REVIEW This review aims to report the up-to-date research progress in ethnopharmacology, phytochemistry, pharmacology and toxicology, metabolism and therapeutic application of PF, so as to provide a strong basis for future clinical treatment and scientific research. MATERIALS AND METHODS Relevant information on PF was collected from scientific literature databases including PubMed, CNKI and other literature sources (Ph.D. and M.Sc. dissertations and Chinese herbal classic books) by using the keyword "Puerariae". RESULTS Briefly, phytochemical research report has isolated 39 flavonoids, 19 saponins and 25 volatile oils from PF. Flavonoids and saponins are the most important bioactive compounds, and most of the quality control studies focus on these two types of compounds. Modern pharmacological studies have revealed their significant biological activities in relieving alcoholism, hepatoprotective, anti-tumor, anti-inflammatory, and anti-oxidation, which provides theoretical support for the traditional use. CONCLUSIONS Comprehensive analysis showed that pharmacological activity of most purified compounds from PF had not been reported. Kakkalide, tectoridin and their deglycosylated metabolites (irisolidone and tectorigenin) has been focused on excessively due to their higher content and better activities. This leads to low development and resources waste. Interestingly, PF made a breakthrough in the field of food. Many kinds of fat-lowering foods such as PILLBOX Onaka have been popular in Japan market, which received extensive attention. Therefore, we suggest that future research can be paid attention on the development of the plant's function in the field of food and medicine, as well as the transformation from experimental to clinical.
Collapse
Affiliation(s)
- Cai Chen
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Xiaojie Li
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Yoshihiro Kano
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
10
|
Zhu J, Wen Y, Zhang Q, Nie F, Cheng M, Zhao X. The monomer TEC of blueberry improves NASH by augmenting tRF-47-mediated autophagy/pyroptosis signaling pathway. J Transl Med 2022; 20:128. [PMID: 35287671 PMCID: PMC8919551 DOI: 10.1186/s12967-022-03343-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Nonalcoholic steatohepatitis (NASH) is one of the most common liver diseases and has no safe and effective drug for treatment. We have previously reported the function of blueberry, but the effective monomer and related molecular mechanism remain unclear.
Methods
The monomer of blueberry was examined by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). The NASH cell model was constructed by exposing HepG2 cells to free fatty acids. The NASH mouse model was induced by a high-fat diet for 12 weeks. NASH cell and mouse models were treated with different concentrations of blueberry monomers. The molecular mechanism was studied by Oil Red O staining, ELISA, enzyme activity, haematoxylin–eosin (H&E) staining, immunohistochemistry, immunofluorescence, western blot, RNA sequencing, and qRT-PCR.
Results
We identified one of the main monomer of blueberry as tectorigenin (TEC). Cyanidin-3-O glucoside (C3G) and TEC could significantly inhibit the formation of lipid droplets in steatosis hepatocytes, and the effect of TEC on the formation of lipid droplets was significantly higher than that of C3G. TEC can promote cell proliferation and inhibit the release of inflammatory mediators in NASH cell model. Additionally, TEC administration provided a protective role against high-fat diets induced lipid damage, and suppressed lipid accumulation. In NASH mouse model, TEC can activate autophagy, inhibit pyroptosis and the release of inflammatory mediators. In NASH cell model, TEC inhibited pyroptosis by stimulating autophagy. Then, small RNA sequencing revealed that TEC up-regulated the expression of tRF-47-58ZZJQJYSWRYVMMV5BO (tRF-47). The knockdown of tRF-47 blunted the beneficial effects of TEC on NASH in vitro, including inhibition of autophagy, activation of pyroptosis and release of inflammatory factors. Similarly, suppression of tRF-47 promoted the lipid injury and lipid deposition in vivo.
Conclusions
These results demonstrated that tRF-47-mediated autophagy and pyroptosis plays a vital role in the function of TEC to treat NASH, suggesting that TEC may be a promising drug for the treatment of NASH.
Collapse
|
11
|
Integration of transcriptomics and metabolomics confirmed hepatoprotective effects of steamed shoot extracts of ginseng (Panax ginseng C.A. Meyer) on toxicity caused by overdosed acetaminophen. Biomed Pharmacother 2021; 143:112177. [PMID: 34555627 DOI: 10.1016/j.biopha.2021.112177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/15/2023] Open
Abstract
The study aimed, by integrating transcriptomics and metabolomics, to reveal novel biomarkers caused by overdosed acetaminophen (APAP) and liver protection substances procured by pre-administration of ginseng shoots extract (GSE). Totally 4918 genes and 127 metabolites were identified as differentially expressed genes and differential metabolites, respectively. According to KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment, such pathways as primary bile acid biosynthesis, bile secretion, retinol metabolism, histidine and several other amino-related metabolism were significantly altered by GSE and disturbed by subsequent overdosed APAP at the transcriptomic as well as metabolomic levels. Fifteen key biomarker metabolites related to these pathways were up-regulated in APAP-treated vs GSE-pretreated liver tissues, and were reported exerting anti-oxidant, anti-inflammatory, anti-apoptotic and/or immunomodulate functions, three of which even possessed direct hepatoprotection effects. Twenty five vital unigenes modulating these metabolites were further verified by correlation analysis and expression levels of fifteen of them were examined by qRT-PCR. Our findings indicate that GSE may be an effective dietary supplement for preventing the liver damage caused by the overdosed APAP.
Collapse
|
12
|
Xiang J, Yang G, Ma C, Wei L, Wu H, Zhang W, Tao X, Jiang L, Liang Z, Kang L, Yang S. Tectorigenin alleviates intrahepatic cholestasis by inhibiting hepatic inflammation and bile accumulation via activation of PPARγ. Br J Pharmacol 2021; 178:2443-2460. [PMID: 33661551 DOI: 10.1111/bph.15429] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence suggests that human cholestasis is closely associated with the accumulation and activation of hepatic macrophages. Research indicates that activation of PPARγ exerts liver protective effects in cholestatic liver disease (CLD), particularly by ameliorating inflammation and fibrosis, thus limiting disease progression. However, existing PPARγ agonists, such as troglitazone and rosiglitazone, have significant side effects that prevent their clinical application in the treatment of CLD. In this study, we found that tectorigenin alleviates intrahepatic cholestasis in mice by activating PPARγ. EXPERIMENTAL APPROACH Wild-type mice were intragastrically administered α-naphthylisothiocyanate (ANIT) or fed a diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to simultaneously establish an experimental model of intrahepatic cholestasis and tectorigenin intervention, followed by determination of intrahepatic cholestasis and the mechanisms involved. In addition, PPARγ-deficient mice were administered ANIT and/or tectorigenin to determine whether tectorigenin exerts its liver protective effect by activating PPARγ. KEY RESULTS Treatment with tectorigenin alleviated intrahepatic cholestasis by inhibiting the recruitment and activation of hepatic macrophages and by promoting the expression of bile transporters via activation of PPARγ. Furthermore, tectorigenin increased expression of the bile salt export pump (BSEP) through enhanced PPARγ binding to the BSEP promoter. In PPARγ-deficient mice, the hepatoprotective effect of tectorigenin during cholestasis was blocked. CONCLUSION AND IMPLICATIONS In conclusion, tectorigenin reduced the recruitment and activation of hepatic macrophages and enhanced the export of bile acids by activating PPARγ. Taken together, our results suggest that tectorigenin is a candidate compound for cholestasis treatment.
Collapse
Affiliation(s)
- Jiaqing Xiang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Guangyan Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Lingling Wei
- Institute of Agricultural Economics and Information, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiuhua Tao
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Lingyun Jiang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Zhen Liang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lin Kang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shu Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Inhibition of hyaluronan synthesis by 4-methylumbelliferone ameliorates non-alcoholic steatohepatitis in choline-deficient L-amino acid-defined diet-induced murine model. Arch Pharm Res 2021; 44:230-240. [PMID: 33486695 DOI: 10.1007/s12272-021-01309-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Hyaluronan (HA) as a glycosaminoglycan can bind to cell-surface receptors, such as TLR4, to regulate inflammation, tissue injury, repair, and fibrosis. 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, is a drug used for the treatment of biliary spasms. Currently, therapeutic interventions are not available for non-alcoholic steatohepatitis (NASH). In this study, we investigated the effects of 4-MU on NASH using a choline-deficient amino acid (CDAA) diet model. CDAA diet-fed mice showed NASH characteristics, including hepatocyte injury, hepatic steatosis, inflammation, and fibrogenesis. 4-MU treatment significantly reduced hepatic lipid contents in CDAA diet-fed mice. 4-MU reversed CDAA diet-mediated inhibition of Ppara and induction of Srebf1 and Slc27a2. Analysis of serum ALT and AST levels revealed that 4-MU treatment protected against hepatocellular damage induced by CDAA diet feeding. TLR4 regulates low molecular weight-HA-induced chemokine expression in hepatocytes. In CDAA diet-fed, 4-MU-treated mice, the upregulated chemokine/cytokine expression, such as Cxcl1, Cxcl2, and Tnf was attenuated with the decrease of macrophage infiltration into the liver. Moreover, HA inhibition repressed CDAA diet-induced mRNA expression of fibrogenic genes, Notch1, and Hes1 in the liver. In conclusion, 4-MU treatment inhibited liver steatosis and steatohepatitis in a mouse model of NASH, implicating that 4-MU may have therapeutic potential for NASH.
Collapse
|
14
|
Sun L, Zhao M, Zhao Y, Wang M, Man J, Zhao C. Investigation of the therapeutic effect of Shaoyao Gancao decoction on CCL 4 -induced liver injury in rats by metabolomic analysis. Biomed Chromatogr 2020; 34:e4940. [PMID: 32634249 DOI: 10.1002/bmc.4940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Shaoyao Gancao decoction (SGD) is a famous Chinese traditional prescription for treating liver injury. In this research, we investigated the therapeutic effects of SGD on liver injury and its metabolic mechanisms using 1 H NMR and UPLC-MS. Serum biochemical indicators and histopathological methods were used to determine the mechanism of action of SGD in treating liver injury. An orthogonal partial least squares discriminant analysis method was used to screen potential metabolic markers, and the MetaboAnalyst and KEGG PATHWAY databases were used to find relevant metabolic pathways. A total of 26 significant metabolites were identified with significant changes in their abundance levels, and these metabolites are involved in many metabolic pathways such as amino acid and lipid metabolism. The changes in biomarker levels reveal the therapeutic effect of SGD on liver injury, which is of great significance to speculate on possible metabolic mechanisms.
Collapse
Affiliation(s)
- Lin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanhui Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingyi Man
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
15
|
Cheng HH, Liang WZ, Liao WC, Kuo CC, Hao LJ, Chou CT, Jan CR. Investigation of effect of tectorigenin (O-methylated isoflavone) on Ca 2+ signal transduction and cytotoxic responses in canine renal tubular cells. CHINESE J PHYSIOL 2020; 63:60-67. [PMID: 32341231 DOI: 10.4103/cjp.cjp_14_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tectorigenin, a traditional Chinese medicine, is isolated from the flower of plants such as Pueraria thomsonii Benth. It is an O-methylated isoflavone, a type of flavonoid. Previous studies have shown that tectorigenin evoked various physiological responses in different models, but the effect of tectorigenin on cytosolic-free Ca2+ levels ([Ca2+]i) and cytotoxicity in renal tubular cells is unknown. Our research explored if tectorigenin changed Ca2+ signal transduction and viability in Madin-Darby Canine Kidney (MDCK) renal tubular cells. [Ca2+]iin suspended cells were measured by applying the fluorescent Ca2+-sensitive probe fura-2. Viability was explored by using water-soluble tetrazolium-1 as a fluorescent dye. Tectorigenin at concentrations of 5-50 μM induced [Ca2+]irises. Ca2+ removal reduced the signal by approximately 20%. Tectorigenin (50 μM) induced Mn2+ influx suggesting of Ca2+ entry. Tectorigenin-induced Ca2+ entry was inhibited by 10% by three inhibitors of store-operated Ca2+ channels, namely, nifedipine, econazole, and SKF96365. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin inhibited 83% of tectorigenin-evoked [Ca2+]irises. Conversely, treatment with tectorigenin abolished thapsigargin-evoked [Ca2+]irises. Inhibition of phospholipase C with U73122 inhibited 50% of tectorigenin-induced [Ca2+]irises. Tectorigenin at concentrations between 10 and 60 μM killed cells in a concentration-dependent fashion. Chelation of cytosolic Ca2+ with 1,2-bis (2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid/acetoxy methyl did not reverse tectorigenin's cytotoxicity. Our data suggest that, in MDCK cells, tectorigenin evoked [Ca2+]irises and induced cell death that was not associated with [Ca2+]irises. Therefore, tectorigenin may be a Ca2+-independent cytotoxic agent for kidney cells.
Collapse
Affiliation(s)
- He-Hsiung Cheng
- Department of Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung; Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Wei-Chuan Liao
- Department of Surgery, Kaohsiung Veterans General Hospital; Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - Lyh-Jyh Hao
- Department of Endocrinology and Metabolism, Kaohsiung Veterans General Hospital Tainan Branch; Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi Campus; Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital Chiayi Branch, Puzi City, Chiayi County, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Wu Z, Ren S, Chen T, Hui A, Zhang W. Separation and purification of six isoflavones from Iris tectorum Maxim by macroporous resin-based column chromatography coupled with preparative high-performance liquid chromatography. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1603239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shaowei Ren
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tianyun Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
17
|
Wang Y, Jing W, Qu W, Liu Z, Zhang D, Qi X, Liu L. Tectorigenin inhibits inflammation and pulmonary fibrosis in allergic asthma model of ovalbumin-sensitized guinea pigs. J Pharm Pharmacol 2020; 72:956-968. [PMID: 32314371 DOI: 10.1111/jphp.13271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/21/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of tectorigenin on treating allergic asthma model of guinea pigs and investigate the underlying mechanisms. METHODS Allergic asthma model of guinea pigs was established by sensitizing with ovalbumin (OVA). Then OVA-sensitized guinea pigs were injected with 10 mg/kg tectorigenin, 25 mg/kg tectorigenin or dexamethasone to investigate the effect of tectorigenin. KEY FINDINGS High dose of tectorigenin effectively decreased the number of coughs, the number of inflammatory cells and the levels of pro-inflammatory factors. Moreover, tectorigenin could inhibit pulmonary fibrosis in guinea pigs sensitized with OVA. In addition, the functions of tectorigenin were realized through downregulating profibrotic factors of transforming growth factor (TGF)-β1, phosphorylated (p)-Smad2/3 and Smad4, upregulating fibrosis-inhibitor of Smad7 and decreasing pro-inflammatory factors of vascular endothelial growth factor A (VEGFA), tumour necrosis factor-α (TNF-α), Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), p-inhibitor of nuclear factor-kappa B (NF-κB) kinase β (p-IKKβ) and NF-κB. CONCLUSIONS Tectorigenin could inhibit pulmonary fibrosis and airway inflammation through TGF-β1/Smad signalling pathway and TLR4/NF-κB signalling pathway. Therefore, tectorigenin might be a promising medicine to treat allergic asthma.
Collapse
Affiliation(s)
- Youpeng Wang
- The Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Jing
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wanying Qu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhiwei Liu
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Di Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Qi
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lujia Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Shendge AK, Panja S, Basu T, Mandal N. A Tropical Lichen, Dirinaria consimilis Selectively Induces Apoptosis in MCF-7 Cells through the Regulation of p53 and Caspase-Cascade Pathway. Anticancer Agents Med Chem 2020; 20:1173-1187. [PMID: 32188391 DOI: 10.2174/1871520620666200318095410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is the most leading cause of death, with 49.9% of crude incidence rate and 12.9% of crude mortality rate. Natural resources have been extensively used throughout history for better and safer treatment against various diseases. OBJECTIVES The present study was aimed to investigate the antioxidant and anticancer potential of a tropical lichen Dirinaria consimilis (DCME) and its phytochemical analysis. METHODS The DCME was preliminarily evaluated for ROS, and RNS scavenging potential. Furthermore, DCME was evaluated for in vitro anticancer activity through cell proliferation assay, cell cycle analysis, annexin V/PI staining, morphological analysis, and western blotting study. Finally, the HPLC and LC-MS analyses were done to identify probable bioactive compounds. RESULTS The in vitro antioxidant studies showed promising ROS, and RNS scavenging potential of DCME. Moreover, the in vitro antiproliferative study bared the cytotoxic nature of DCME towards MCF-7 (IC50 - 98.58 ± 6.82μg/mL) and non-toxic towards WI-38 (IC50 - 685.85 ± 19.51μg/mL). Furthermore, the flow-cytometric analysis revealed the increase in sub G1 population as well as early apoptotic populations dose-dependently. The results from confocal microscopy showed the DNA fragmentation in MCF-7 upon DCME treatment. Finally, the western blotting study revealed the induction of tumor suppressor protein, p53, which results in increasing the Bax/Bcl-2 ratio and activation of caspase-cascade pathways. CONCLUSION The activation of caspase-3, -8, -9 and PARP degradation led us to conclude that DCME induces apoptosis in MCF-7 through both intrinsic and extrinsic mechanisms. The LC-MS analysis showed the presence of various bioactive compounds.
Collapse
Affiliation(s)
- Anil K Shendge
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata-700054, West Bengal, India
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata-700054, West Bengal, India
| | - Tapasree Basu
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata-700054, West Bengal, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata-700054, West Bengal, India
| |
Collapse
|
19
|
Noh D, Choi JG, Lee YB, Jang YP, Oh MS. Protective effects of Belamcandae Rhizoma against skin damage by ameliorating ultraviolet-B-induced apoptosis and collagen degradation in keratinocytes. ENVIRONMENTAL TOXICOLOGY 2019; 34:1354-1362. [PMID: 31436008 DOI: 10.1002/tox.22836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Ultraviolet-B light (UV-B) is a major cause of skin photoaging, inducing cell death and extracellular matrix collapse by generating reactive oxygen species (ROS). Belamcandae Rhizoma (BR), the rhizome of Belamcanda chinensis Leman, exhibits antioxidant properties, but it remains unknown whether BR extract ameliorates UV-B-induced skin damage. In this study, we evaluated the effects of a standardized BR extract on UV-B-induced apoptosis and collagen degradation in HaCaT cells. BR was extracted using four different methods. We used radical-scavenging assays to compare the antioxidative activities of the four extracts. Cells were irradiated with UV-B and treated with BR boiled in 70% (vol/vol) ethanol (BBE). We measured cell viability, intracellular ROS levels, the expression levels of antioxidative enzymes, and apoptosis-related and collagen degradation-related proteins. The irisflorentin and tectorigenin levels were measured via high-performance liquid chromatography. BBE exhibited the best radical-scavenging and cell protective effects of the four BR extracts. BBE inhibited intracellular ROS generation and induced the synthesis of antioxidative enzymes such as catalase and glutathione. BBE attenuated apoptosis by reducing the level of caspase-3 and increasing the Bcl-2/Bax ratio. BBE reduced the level of matrix metalloproteinase-1 and increased that of type I collagen. The irisflorentin and tectorigenin contents were 0.23% and 0.015%, respectively. From these results, BBE ameliorated UV-B-induced apoptosis and collagen degradation by enhancing the expression of antioxidative enzymes. It may be a useful treatment for UV-B-induced skin damage.
Collapse
Affiliation(s)
- Dongjin Noh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Gyu Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Young Bae Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Tectorigenin, a Flavonoid-Based Compound of Leopard Lily Rhizome, Attenuates UV-B-Induced Apoptosis and Collagen Degradation by Inhibiting Oxidative Stress in Human Keratinocytes. Nutrients 2018; 10:nu10121998. [PMID: 30562977 PMCID: PMC6316707 DOI: 10.3390/nu10121998] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/10/2023] Open
Abstract
Ultraviolet (UV) light, a major risk factor for external skin photoaging, induces oxidative stress in skin. UV causes a breakdown of skin homeostasis by impairing the extracellular matrix and inducing cell death. Tectorigenin, a constituent of leopard lily (Belamcanda chinensis L.) rhizome, has been reported to possess antioxidant, hair-darkening, and anti-inflammatory activities; however, the effect of tectorigenin on UV-B-induced skin damage is unknown. Here, we investigated the anti-skin-damage effects of tectorigenin against UV-B-stimulated oxidative stress in human keratinocytes. We irradiated HaCaT cells with UV-B (25 mJ/cm2), followed by treatment with tectorigenin for 24 h. We found that tectorigenin decreased the levels of intracellular reactive oxygen species by increasing the expression of anti-oxidative enzymes, such as glutathione and catalase. Furthermore, tectorigenin inhibited apoptosis by reducing caspase-3- and Bcl-2-associated protein-X levels, and increasing Bcl-2 protein levels. Tectorigenin also decreased matrix metalloproteinase-1 levels and increased type 1 collagen levels, thus preventing collagen degradation. These data demonstrate that tectorigenin exerts anti-skin-damage effects in human keratinocytes by attenuating UV-B-induced hyper-oxidation, apoptosis, and collagen degradation.
Collapse
|
21
|
Zhang Y, Zhang M, Li H, Zhao H, Wang F, He Q, Zhang T, Wang S. Serum metabonomics study of the hepatoprotective effect of amarogentin on CCl4-induced liver fibrosis in mice by GC-TOF-MS analysis. J Pharm Biomed Anal 2018; 149:120-127. [DOI: 10.1016/j.jpba.2017.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023]
|
22
|
Gu L, Tao X, Xu Y, Han X, Qi Y, Xu L, Yin L, Peng J. Dioscin alleviates BDL- and DMN-induced hepatic fibrosis via Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway. Toxicol Appl Pharmacol 2016; 292:19-29. [PMID: 26747300 DOI: 10.1016/j.taap.2015.12.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 01/08/2023]
Abstract
Oxidative stress is involved in hepatic stellate cells (HSCs) activation and extracellular matrix overproduction. We previously reported the promising effects of dioscin against CCl4-induced liver fibrosis, but its effects and mechanisms on BDL- and DMN-induced liver fibrosis remain unknown. The results in the present study indicated that dioscin significantly inhibited HSCs activation and attenuated hepatic fibrosis in rats. Furthermore, dioscin markedly up-regulated the levels of sirtuin 1 (Sirt1), HO-1, GST, GCLC and GCLM via increasing the nuclear translocation of nuclear erythroid factor 2-related factor 2 (Nrf2), which in turn inhibited mitogen-activated protein kinase 14 (p38 MAPK) phosphorylation and reduced the levels of COL1A1, COL3A1, α-SMA and fibronectin. These results were further validated by knockdown of Sirt1 and Nrf2 using siRNAs silencing, and abrogation of p38 MAPK using SB-203580 (a p38 MAPK inhibitor) in HSC-T6 and LX-2 cells. Collectively, our findings confirmed the potent effects of dioscin against liver fibrosis and also provided novel insights into the mechanisms of this compound as a candidate for the prevention of liver fibrosis in the future.
Collapse
Affiliation(s)
- Lina Gu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|