1
|
Raza W, Meena A, Luqman S. Diosmetin: A dietary flavone as modulator of signaling pathways in cancer progression. Mol Carcinog 2024; 63:1627-1642. [PMID: 38888206 DOI: 10.1002/mc.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Flavonoids, constituting the most extensive category of polyphenols, founds in a variety of plants and comprise over 9000 compounds. Diosmetin, O-methylated flavone (3',5,7-trihydroxy-4'-methoxyflavone) of flavonoid aglycone diosmin have witnessed a significant surge in recent years. Many studies showed that flavonoids induced cytotoxicity in different organ specific cancer types. Thus, current review evaluates the anticancer potential of diosmetin and shed light on its mechanism of action such as cell cycle regulation, apoptosis via both intrinsic and extrinsic pathway, autophagy and tumour progression and metastasis. It also provides comprehensive analysis of different cancer targets and their role in breast, colon, hepatic, gliomas, leukemia, lung, prostate and skin cancer. Combination studies of diosmetin to improve drug sensitivity and reduce toxicity towards normal cells has been also discussed. Besides, in vitro studies, present review also discuss the anticancer potential of diosmetin on xenograft mice model. Different natural sources of diosmetin, limitations, pharmacokinetic analysis and toxicity study also summarized in current review. The emphasis on enhancing solubility and permeability for clinical utility has been thoroughly highlighted with particular attention given to the utilization of nano formulations to overcome existing barriers. At last, in-depth analysis of current challenges and a forward-looking perspective deliberated to address the existing gaps and position it as a promising lead compound for clinical applications in cancer treatment. This discussion is boosted by diosmetin's potential anticancer properties on different cancers, makes valuable candidates in the ongoing quest for effective therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Huang Q, Pan X, Zhu W, Zhao W, Xu H, Hu K. Natural Products for the Immunotherapy of Glioma. Nutrients 2023; 15:2795. [PMID: 37375698 DOI: 10.3390/nu15122795] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioma immunotherapy has attracted increasing attention since the immune system plays a vital role in suppressing tumor growth. Immunotherapy strategies are already being tested in clinical trials, such as immune checkpoint inhibitors (ICIs), vaccines, chimeric antigen receptor T-cell (CAR-T cell) therapy, and virus therapy. However, the clinical application of these immunotherapies is limited due to their tremendous side effects and slight efficacy caused by glioma heterogeneity, antigen escape, and the presence of glioma immunosuppressive microenvironment (GIME). Natural products have emerged as a promising and safe strategy for glioma therapy since most of them possess excellent antitumor effects and immunoregulatory properties by reversing GIME. This review summarizes the status of current immunotherapy strategies for glioma, including their obstacles. Then we discuss the recent advancement of natural products for glioma immunotherapy. Additionally, perspectives on the challenges and opportunities of natural compounds for modulating the glioma microenvironment are also illustrated.
Collapse
Affiliation(s)
- Qi Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhao Zhu
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Zhao
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
3-Alkenyl-2-oxindoles: Synthesis, antiproliferative and antiviral properties against SARS-CoV-2. Bioorg Chem 2021; 114:105131. [PMID: 34243074 PMCID: PMC8241580 DOI: 10.1016/j.bioorg.2021.105131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 01/25/2023]
Abstract
Sets of 3-alkenyl-2-oxindoles (6,10,13) were synthesized in a facile synthetic pathway through acid dehydration (EtOH/HCl) of the corresponding 3-hydroxy-2-oxoindolines (5,9,12). Single crystal (10a,c) and powder (12a,26f) X-ray studies supported the structures. Compounds 6c and 10b are the most effective agents synthesized (about 3.4, 3.3 folds, respectively) against PaCa2 (pancreatic) cancer cell line relative to the standard reference used (Sunitinib). Additionally, compound 10b reveals antiproliferative properties against MCF7 (breast) cancer cell with IC50 close to that of Sunitinib. CAM testing reveals that compounds 6 and 10 demonstrated qualitative and quantitative decreases in blood vessel count and diameter with efficacy comparable to that of Sunitinib, supporting their anti-angiogenic properties. Kinase inhibitory properties support their multi-targeted inhibitory activities against VEGFR-2 and c-kit in similar behavior to that of Sunitinib. Cell cycle analysis studies utilizing MCF7 exhibit that compound 6b arrests the cell cycle at G1/S phase while, 10b reveals accumulation of the tested cell at S phase. Compounds 6a and 10b reveal potent antiviral properties against SARS-CoV-2 with high selectivity index relative to the standards (hydroxychloroquine, chloroquine). Safe profile of the potent synthesized agents, against normal cells (VERO-E6, RPE1), support the possible development of better hits based on the attained observations.
Collapse
|
5
|
Noreen H, Smith EN, Farman M, Claridge TD, McCullagh JS. Isolation, separation, identification, and quantification of bioactive methylated flavone regioisomers by UHPLC-MS/MS. ANALYTICAL SCIENCE ADVANCES 2021; 2:364-372. [PMID: 38715961 PMCID: PMC10989521 DOI: 10.1002/ansa.202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2024]
Abstract
Methylated flavones, commonly found in many plants of the Brassicaceae family, have potent antioxidant and anticancer activity with diverse therapeutic potential. However, the specific regioisomers of methylated flavones can have significantly different biochemical and potentially therapeutic properties as shown by various bioassays but analytically differentiating these compounds has been technically challenging and rarely reported. In this study, we demonstrate differentiation and identification of selected bioactive methylated flavone regioisomers, namely 5,7,3'-trihydroxy-4'-methoxyflavone, and 5,7,4'-trihydroxy-3'-methoxyflavone extracted from Coronopus didymus, a member of the Brassicaceae family, using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-QTOF-MS/MS). Characteristic MS/MS product ions produced from neutral loss of carbon monoxide, and a methyl radical from the [M-H]- ion, exhibited differential relative abundances attributed to different structural stabilities under the same activation and collision-induced dissociation conditions. MS/MS also provided structural information which was sufficient to differentiate the methylated regioisomers and determine the position of the methyl group based on interpretation of their respective fragmentation patterns. Quantification showed 5,7,4'-trihydroxy-3'-methoxyflavone was at least 1.60 mg per 10 g plant material in C. didymus extracts. This study demonstrates a straightforward and novel approach to rapidly differentiate, identify and quantify regio-isomeric methylated flavone natural products using reversed-phase UPLC-MS/MS.
Collapse
Affiliation(s)
- Hafiza Noreen
- Department of ChemistryQuaid‐i‐Azam UniversityIslamabadPakistan
- Department of ChemistryGovernment College Women UniversityFaisalabadPakistan
| | - Edward N. Smith
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of OxfordMansfield RoadOxfordUK
| | - Muhammad Farman
- Department of ChemistryQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Tim D.W. Claridge
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of OxfordMansfield RoadOxfordUK
| | - James S.O. McCullagh
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of OxfordMansfield RoadOxfordUK
| |
Collapse
|
6
|
Chemical constituents from Lycium barbarum (Solanaceae) and their chemophenetic significance. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Elbermawi A, Halim AF, Mansour ESS, Ahmad KF, Elsbaey M, Ashour A, Amen Y, El-Gamil MM, Tomofumi M, Shimizu K. Lycium schweinfurthii: new secondary metabolites and their cytotoxic activities. Nat Prod Res 2021; 36:5134-5141. [PMID: 34180314 DOI: 10.1080/14786419.2021.1922902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two new compounds, 11S-methoxy-11,12-dihydro phytuberin (2) and 9S-methoxy-benzocyclononan-7-one (6), together with twenty-six known ones were isolated from Lycium schweinfurthii (Solanaceae). Their planar structure was established by extensive spectroscopic analyses. The absolute configuration of compound 6 was determined by time dependent density functional theory calculations (TDDFT). The cytotoxic potential of the isolates was assessed in cultured skin cancer (G-361) and colon cancer (HCT-116 and CaCo-2) cell lines. Certain flavonoids showed the highest cytotoxic activity, with IC50 values ranging from 7.1 to 63.3 µM; meanwhile 5-flurouracil showed IC50 values ranging from 62.4 to >100 µM. All compounds showed minimal toxicity towards normal cells from skin (NHDF-4) and colon (CCD-841), indicating their potential selectivity and safety as cytotoxic candidates.
Collapse
Affiliation(s)
- Ahmed Elbermawi
- Department of Pharmacognosy Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ahmed F Halim
- Department of Pharmacognosy Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - El-Sayed S Mansour
- Department of Pharmacognosy Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kadria F Ahmad
- Department of Pharmacognosy Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa Elsbaey
- Department of Pharmacognosy Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ahmed Ashour
- Department of Pharmacognosy Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yhiya Amen
- Department of Pharmacognosy Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mohammed M El-Gamil
- Department of Toxic and Narcotic Drugs, Forensic Medicine, Mansoura Laboratory, Medico-legal Organization, Ministry of Justice, Mansoura, Egypt
| | - Miyamoto Tomofumi
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Zhang M, Liang J, Jiang SK, Xu L, Wu YL, Awadasseid A, Zhao XY, Xiong XQ, Sugiyama H, Zhang W. Design, synthesis and anti-cancer activity of pyrrole-imidazole polyamides through target-downregulation of c-kit gene expression. Eur J Med Chem 2020; 207:112704. [DOI: 10.1016/j.ejmech.2020.112704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
|
9
|
Wang J, Jin M, Jin C, Ye C, Zhou Y, Wang R, Cui H, Zhou W, Li G. A new pentacyclic triterpenoid from the leaves of Rhododendron dauricum L. with inhibition of NO production in LPS-induced RAW 264.7 cells. Nat Prod Res 2020; 34:3313-3319. [PMID: 30810367 DOI: 10.1080/14786419.2019.1566822] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
A new pentacyclic triterpenoid, 3-oxo-urs-11,13(18)-dien-28-oic acid (1), along with twelve known triterpenoids, α-amyrin (2), 19α-hydroxy-α-amyrin (3), triptohypol E (4), uvaol (5), 2α,3α-dihydroxyurs-11-en-13β,28-olide (6), 3β-hydroxyurs-11-en-13β,28-olide (7), ursolic acid (8), asiatic acid (9), oleanolic acid (10), aegiceradienol (11), obtusalin (12) and betulinic acid (13) were isolated from the leaves of Rhododendron dauricum L. Their structures were established from spectroscopic data and comparison with reported values. Among them, compounds 3, 4, 6, 7 and 11 were isolated from the Ericaceae family for the first time. Compounds 2, 5, 9, 12 and 13 were obtained from R. dauricum for the first time. Additionally, compounds 6, 10 and 11 significantly inhibited the levels of NO in LPS-stimulated RAW 264.7 cells at 3 μM.
Collapse
Affiliation(s)
- Jiaming Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Mei Jin
- Department of Pharmacy, Yanbian University Hospital, Yanji, P. R. China
| | - Chunshi Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Chao Ye
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Yi Zhou
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Rongshen Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Huanhuan Cui
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Wei Zhou
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Gao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| |
Collapse
|
10
|
Flavonoids and caffeoylquinic acids in Chrysanthemum morifolium Ramat flowers: A potentially rich source of bioactive compounds. Food Chem 2020; 344:128733. [PMID: 33280963 DOI: 10.1016/j.foodchem.2020.128733] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/20/2022]
Abstract
Varieties of chrysanthemums are among the world's most valuable edible ornamental crops. However, the availability and relationship between the bio-chemicals of chrysanthemums and their morphological variations remain unclear. We developed liquid chromatography mass spectrometry to construct a spectral tag library to identify and quantify chemicals of 7 caffeoylquinic acids, 21 flavones and flavonols, 4 carotenoids, and 13 other compounds in 27 cultivars and representative tea of Chrysanthemum morifolium. A correlation analysis found that more acacetin 7-O-galactoside (23) resulted in lighter colored flowers and less acacetin (43) and kaempferol (44) was associated with yellow flowers. Hot-H2O extraction of C. morifolium tea showed that most flavonoids and caffeoylquinic acids dissolved out at 30 min, with 20.977 and 8.958 mg/g GW indicated that C. morifolium, which is used in food and tea, is rich in flavonoids and carotenoids. The results improve our understanding of flavonoid biosynthesis and the mechanisms responsible for flower color.
Collapse
|
11
|
Yuan H, Jiang S, Liu Y, Daniyal M, Jian Y, Peng C, Shen J, Liu S, Wang W. The flower head of Chrysanthemum morifolium Ramat. (Juhua): A paradigm of flowers serving as Chinese dietary herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113043. [PMID: 32593689 DOI: 10.1016/j.jep.2020.113043] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dietary herbal medicines are widely used for the prevention and treatment of a variety of diseases due to their pharmacological activities in China. Juhua (the flower head of Chrysanthemum morifolium Ramat.), the most representative flower-derived one, which is mainly used for the treatment of respiratory and cardiovascular diseases, shows significant activities, such as antimicrobial, anti-inflammatory, and anticancer, and, neuroprotective, as well as effects on the cardiovascular system. AIMS OF THIS REVIEW This review aims to provide an overview of the crucial roles of flowers in Chinese dietary herbal medicine, and the pharmaceutical research progress of Juhua (the paradigm of dietary herbal medicine derived from the flower) including its applications in Traditional Chinese medicine and diet, cultivars, phytochemistry, quality control, pharmacology, and toxicity, along with chrysanthemum breeding and biotechnology. METHOD The information associated with Chinese dietary herbal medicine, flower-derived medicine, dietary flower, and pharmaceutical research of Juhua, was collected from government reports, classic books of Traditional Chinese medicine, the thesis of doctors of philosophy and maters, and database including Pubmed, Scifinder, Web of Science, Google Scholar, China National Knowledge Internet; and others. RESULT All flower-originated crude medicines recorded in Chinese pharmacopeia and their applications were summarized for the first time in this paper. The edible history and development of flowers in China, the theory of Chinese dietary herbal medicines, as well as flowers serving as dietary herbal medicines, were discussed. Moreover, applications in Traditional Chinese medicine and diet, cultivars, phytochemistry, quality control, pharmacology, and safety evaluation of Juhua, together with chrysanthemum breeding and biotechnology, were summarized in this paper. CONCLUSION The theory of dietary herbal medicines, which are an important part of the Traditional Chinese medicine system, has a history of thousands of years. Many herbal flowers, serving as dietary herbal medicines, contribute significantly to the prevention and treatment of a variety of diseases for Chinese people. To better benefit human health, more effective supervision practice for dietary herbal medicines is needed. Although various investigations on Juhua have been done, there is a lack of analytical methods for discrimination of cultivar flowers and identification of authenticity. Research on the major compounds with bioactivities, especially those related to its clinical application or healthcare function, as well as their possible mechanize, need be strengthened. More safety evaluation of Juhua should be carried out. The research limitations Juhua is facing exist in all dietary herbal medicine.
Collapse
Affiliation(s)
- Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yingkai Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Jianliang Shen
- Hunan Kangdejia Forestry Technology Co., Ltd., Yongzhou, 425600, China
| | - Shifeng Liu
- Hunan Kangdejia Forestry Technology Co., Ltd., Yongzhou, 425600, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
12
|
Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food Chem Toxicol 2020; 145:111708. [PMID: 32866514 DOI: 10.1016/j.fct.2020.111708] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Acacetin is a di-hydroxy and mono-methoxy flavone present in various plants, including black locust, Damiana, Silver birch. Literature information revealed that acacetin exhibits an array of pharmacological potential including chemopreventive and cytotoxic properties in cancer cell lines, prevents ischemia/reperfusion/myocardial infarction-induced cardiac injury, lipopolysaccharide (LPS), 1-methyl-4-phenyl pyridinium ion (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced neuroinflammation, LPS and sepsis-induced lung injury, rheumatoid and collagen-induced arthritis, inhibit the microbial growth, obesity, viral-mediated infections as well as hepatic protection. PURPOSE This review highlights the therapeutic potential of acacetin, with updated and comprehensive information on the biological sources, chemistry, and pharmacological properties along with the possible mechanism of action, safety aspects, and future research opportunities. STUDY DESIGN The information was retrieved from various search engines, including Pubmed, SciFinder, Science direct, Inxight:drugs, Google scholar, and Meta cyc. RESULT The first section of this review focuses on the detailed biological source of acacetin, chromatographic techniques used for isolation, chemical characteristics, the method for the synthesis of acacetin, and the available natural and synthetic derivatives. Subsequently, the pharmacological activities, including anti-cancer, anti-inflammatory, anti-viral, anti-microbial, anti-obesity, have been discussed. The pharmacokinetics data and toxicity profile of acacetin are also discussed. CONCLUSION Acacetin is a potent molecule reported for its strong anti-inflammatory and anti-cancer activity, however further scientific evidence is essential to validate its potency in disease models associated with inflammation and cancer. There is limited information available for toxicity profiling of acacetin; therefore, further studies would aid in establishing this natural flavone as a potent candidate for research studies at clinical setup.
Collapse
|
13
|
|
14
|
Omokhua-Uyi AG, Abdalla MA, Leonard CM, Aro A, Uyi OO, Van Staden J, McGaw LJ. Flavonoids isolated from the South African weed Chromolaena odorata (Asteraceae) have pharmacological activity against uropathogens. BMC Complement Med Ther 2020; 20:233. [PMID: 32703212 PMCID: PMC7376718 DOI: 10.1186/s12906-020-03024-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 07/10/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) caused by opportunistic pathogens are among the leading health challenges globally. Most available treatment options are failing as a result of antibiotic resistance and adverse effects. Natural sources such as plants may serve as promising alternatives. METHODS Compounds were isolated from the South African weed Chromolaena odorata through column chromatography. Purified compounds were tested for antimicrobial activity using the p-iodonitrotetrazolium chloride (INT) colorimetric method, against uropathogenic Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Aspergillus fumigatus and Cryptococcus neoformans. Anti-biofilm, anti-adhesion and metabolic inhibition activities were investigated against selected strains. Safety of the compounds was determined against Vero monkey kidney, C3A human liver and colon (Caco2) cells. RESULTS Four compounds identified as pectolinaringenin (1), (±)-4',5,7-trimethoxy flavanone (2), 5-hydroxy-3,7,4'-trimethoxyflavone (3) and 3,5,7-trihydroxy-4'-methoxyflavone) (4) were isolated. Minimum inhibitory concentration (MIC) varied between 0.016 and 0.25 mg/mL. Compounds 2 and 3 showed promising antimicrobial activity against E. coli, S. aureus, K. pneumoniae, A. fumigatus and C. neoformans with MIC between 0.016 and 0.125 mg/mL, comparable to gentamicin, ciprofloxacin and amphotericin B used as positive controls. Compounds 2 and 3 showed good anti-biofilm and metabolic inhibition activities against E. coli and S. aureus but weak anti-adhesion activity against the organisms. Low toxicity with selectivity indexes between 1 and 12.625 were recorded with the compounds, indicating that the compounds were rather toxic to the microbial strains and not to the human and animal cells. CONCLUSION Pharmacological activities displayed by compounds 2 and 3 isolated from C. odorata and low toxicity recorded credits it as a potential lead for the development of useful prophylactic treatments and anti-infective drugs against UTIs. Although known compounds, this is the first time these compounds have been isolated from the South African weed C. odorata and tested for antimicrobial, anti-biofilm, metabolic inhibition and anti-adhesion activities.
Collapse
Affiliation(s)
- Aitebiremen G. Omokhua-Uyi
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3201 South Africa
| | - Muna A. Abdalla
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
- Deparment of Food Science and Technology, Faculty of Agriculture, University of Khartoum, 13314 Khartoum North, Sudan
| | - Carmen M. Leonard
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| | - Abimbola Aro
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
| | - Osariyekemwen O. Uyi
- Department of Animal and Environmental Biology, University of Benin, P.M.B, Benin City, 1154 Nigeria
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3201 South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
| |
Collapse
|
15
|
Inhibition of TGF-β Signaling in Gliomas by the Flavonoid Diosmetin Isolated from Dracocephalum peregrinum L. Molecules 2020; 25:molecules25010192. [PMID: 31906574 PMCID: PMC6982745 DOI: 10.3390/molecules25010192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/28/2019] [Accepted: 01/01/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Dracocephalum peregrinum L., a traditional Kazakh medicine, has good expectorant, anti-cough, and to some degree, anti-asthmatic effects. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a natural flavonoid found in traditional Chinese herbs, is the main flavonoid in D. peregrinum L. and has been used in various medicinal products because of its anticancer, antimicrobial, antioxidant, estrogenic, and anti-inflammatory effects. The present study aimed to investigate the effects of diosmetin on the proliferation, invasion, and migration of glioma cells, as well as the possible underlying mechanisms. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound, and Transwell assays were used to demonstrate the effects of diosmetin in glioma. Protein levels of Bcl-2, Bax, cleaved caspase-3, transforming growth factor-β (TGF-β), E-cadherin, and phosphorylated and unphosphorylated smad2 and smad3 were determined by Western blots. U251 glioma cell development and progression were measured in vivo in a mouse model. Results: Diosmetin inhibited U251 cell proliferation, migration, and invasion in vitro, the TGF-β signaling pathway, and Bcl-2 expression. In contrast, there was a significant increase in E-cadherin, Bax, and cleaved caspase-3 expression. Furthermore, it effectively reduced the tumorigenicity of glioma cells and promoted apoptosis in vivo. Conclusion: The results of this study suggest that diosmetin suppresses the growth of glioma cells in vitro and in vivo, possibly by activating E-cadherin expression and inhibiting the TGF-β signaling pathway.
Collapse
|
16
|
Lajis AFB, Ariff AB. Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro study. J Cosmet Dermatol 2019; 18:703-727. [PMID: 30866156 DOI: 10.1111/jocd.12900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
Collapse
Affiliation(s)
- Ahmad Firdaus B Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
17
|
Wang X, Jin M, Jin C, Sun J, Zhou W, Li G. A new sesquiterpene, a new monoterpene and other constituents with anti-inflammatory activities from the roots of Aristolochia debilis. Nat Prod Res 2018; 34:351-358. [DOI: 10.1080/14786419.2018.1532425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xin Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Mei Jin
- Department of Pharmacy, Yanbian University Hospital, Yanji, P.R. China
| | - Chunshi Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Jinfeng Sun
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Wei Zhou
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Gao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| |
Collapse
|
18
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
19
|
Ge A, Ma Y, Liu YN, Li YS, Gu H, Zhang JX, Wang QX, Zeng XN, Huang M. Diosmetin prevents TGF-β1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways. Life Sci 2016; 153:1-8. [PMID: 27101925 DOI: 10.1016/j.lfs.2016.04.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/10/2016] [Accepted: 04/15/2016] [Indexed: 11/17/2022]
Abstract
AIMS Epithelial-mesenchymal transition (EMT) plays a critical role in airway repair and remodeling in many respiratory diseases such as asthma and pulmonary fibrosis. The flavone aglycone, diosmetin, possesses anti-remodeling activity in a murine model of chronic asthma, but little is known about its effects on EMT. Herein, we investigated whether diosmetin inhibits transforming growth factor-β1 (TGF-β1)-induced EMT with underlying mechanisms in human bronchial epithelial (HBE) cells. MAIN METHODS HBE cells were incubated with TGF-β1 (10ng/ml), either alone or in combination with diosmetin for indicated times. We measured reactive oxygen species (ROS) levels using FACScan and immunofluorescent assays. We assessed protein expression of NADPH oxidase 4 (NOX4), superoxide dismutase (SOD), catalase, Akt, Erk, p38, and phosphorylation levels of Akt, Erk and p38 by Western blot analysis. KEY FINDINGS TGF-β1 promoted EMT and ROS generation in HBE cells. Diosmetin significantly suppressed TGF-β1-induced increases in cell migration and altered N-cadherin, E-cadherin, and α-smooth muscle actin expression. In addition, diosmetin prevented TGF-β1-induced intracellular ROS generation, down-regulated NOX4, and up-regulated SOD and catalase expression. Furthermore, diosmetin remarkably inhibited TGF-β1-induced phosphorylation of phosphoinositide 3-kinase (PI3K)/Akt and mitogen activated protein kinase (MAPK) pathways in HBE cells. SIGNIFICANCE Our results demonstrate for the first time that diosmetin alleviates TGF-β1-induced EMT by inhibiting ROS generation and inactivating PI3K/Akt and MAPK pathways. Our findings revealed a new role for diosmetin in reducing airway remodeling and fibrogenesis.
Collapse
Affiliation(s)
- Ai Ge
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Yuan Ma
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Ya-Nan Liu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China; Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, Jiangsu 221000, China
| | - Ye-Shan Li
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China; Department of Respiratory & Critical Care Medicine, The Second People's Hospital of Wuhu, 263 Jiuhuashan Road, Wuhu, Anhui 241001, China
| | - Hao Gu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jia-Xiang Zhang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Qin-Xue Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Xiao-Ning Zeng
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| | - Mao Huang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
20
|
Shen Z, Shao J, Dai J, Lin Y, Yang X, Ma J, He Q, Yang B, Yao K, Luo P. Diosmetin protects against retinal injury via reduction of DNA damage and oxidative stress. Toxicol Rep 2015; 3:78-86. [PMID: 28959525 PMCID: PMC5615423 DOI: 10.1016/j.toxrep.2015.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/02/2015] [Accepted: 12/12/2015] [Indexed: 11/15/2022] Open
Abstract
Visual impairment is a global public health problem that needs new candidate drugs. Chrysanthemum is a traditional Chinese drug, famous for its eye-protective function, with an unclear mechanism of action. To determine how chrysanthemum contributes to vision, we identified, for the first time, the component of chrysanthemum, diosmetin (DIO), which acts in protecting the injured retina in an adriamycin (ADR) improving model. We observed that DIO could attenuate the apoptosis of retinal cells in Sprague–Dawley rats and verified this effect in cultured human retinal pigment epithelium (RPE) cells, ARPE-19. Our further study on the mechanism revealed the counteractive effect of DIO on the attenuation of DNA damage and oxidative stress, which occurs in a wide range of retinal disorders. These results collectively promise the potential value of DIO as a retinal-protective agent for disorders that lead to blindness. In addition, we identified, for the first time, the component of chrysanthemum, DIO, which acts in protecting the injured retina.
Collapse
Key Words
- ADR, adriamycin
- AMD, age-related macular degeneration
- ATP, adenosine triphosphate
- Apoptosis
- CNV, choroidal neovascularisation
- Chrysanthemum
- DIO, diosmetin
- DNA damage
- Diosmetin
- Diosmetin (PubChem CID5281612)
- Doxorubicin (PubChem CID31703)
- H&E, hematoxylin and eosin
- IC50, inhibition for 50% of the cells
- IVI, intravitreal injection
- Oxidative stress
- PVR, proliferative vitreoretinopathy
- ROS, reactive oxygen species
- RPE, retinal pigment epithelium
- Retinal injury
- Retinal pigment epithelium
Collapse
Affiliation(s)
- Zeren Shen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jinjin Shao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jiabin Dai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yuchen Lin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiaochun Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jian Ma
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, P.R. China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Peihua Luo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
21
|
Ge A, Liu Y, Zeng X, Kong H, Ma Y, Zhang J, Bai F, Huang M. Effect of diosmetin on airway remodeling in a murine model of chronic asthma. Acta Biochim Biophys Sin (Shanghai) 2015; 47:604-11. [PMID: 26033789 DOI: 10.1093/abbs/gmv052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/17/2015] [Indexed: 11/14/2022] Open
Abstract
Bronchial asthma, one of the most common allergic diseases, is characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. The anti-oxidant flavone aglycone diosmetin ameliorates the inflammation in pancreatitis, but little is known about its impact on asthma. In this study, the effects of diosmetin on chronic asthma were investigated with an emphasis on the modulation of airway remodeling in BALB/c mice challenged with ovalbumin (OVA). It was found that diosmetin significantly relieved inflammatory cell infiltration, goblet cell hyperplasia, and collagen deposition in the lungs of asthmatic mice and notably reduced AHR in these animals. The OVA-induced increases in total cell and eosinophil counts in bronchoalveolar lavage fluid were reversed, and the level of OVA-specific immunoglobulin E in serum was attenuated by diosmetin administration, implying an anti-Th2 activity of diosmetin. Furthermore, diosmetin remarkably suppressed the expression of smooth muscle actin alpha chain, indicating a potent anti-proliferative effect of diosmetin on airway smooth muscle cells (ASMCs). Matrix metallopeptidase-9, transforming growth factor-β1, and vascular endothelial growth factor levels were also alleviated by diosmetin, suggesting that the remission of airway remodeling might be attributed to the decline of these proteins. Taken together, our findings provided a novel profile of diosmetin with anti-remodeling therapeutic benefits, highlighting a new potential of diosmetin in remitting the ASMC proliferation in chronic asthma.
Collapse
Affiliation(s)
- Ai Ge
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanan Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoning Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hui Kong
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuan Ma
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiaxiang Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fangfang Bai
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mao Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
22
|
Skin cancer and new treatment perspectives: A review. Cancer Lett 2015; 357:8-42. [DOI: 10.1016/j.canlet.2014.11.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022]
|
23
|
Zhao M, Du L, Tao J, Qian D, Shang EX, Jiang S, Guo J, Liu P, Su SL, Duan JA. Determination of metabolites of diosmetin-7-O-glucoside by a newly isolated Escherichia coli from human gut using UPLC-Q-TOF/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11441-11448. [PMID: 25382172 DOI: 10.1021/jf502676j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Different human intestinal bacteria were isolated and screened for their ability to transform diosmetin-7-O-glucoside. A Gram-negative anaerobic bacterium, strain 4, capable of metabolizing diosmetin-7-O-glucoside was newly isolated. Its 16S rRNA gene sequence displayed 99% similarity with that of Escherichia. Then strain 4 was identified as a species of the genus Escherichia and was named Escherichia sp. 4. Additionally, an ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technique combined with Metabolynx software method was established to screen the metabolites of diosmetin-7-O-glucoside. Comparing the retention time and MS/MS spectrum, three metabolites were detected and tentatively identified. These metabolites were acquired by four proposed metabolic pathways including dehydroxylation, deglycosylation, methylation, and acetylation. Diosmetin-7-O-glucoside was mainly bioconverted to considerable amounts of diosmetin and minor amounts of acacetin by the majority of the isolated intestinal bacteria such as Escherichia sp. 4. Subsequently, several strains could degrade acacetin to produce methylated and acetylated acacetin. The metabolites and metabolic pathways of diosmetin-7-O-glucoside by human intestinal bacterium Escherichia sp. 4 were first investigated.
Collapse
Affiliation(s)
- Min Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine , 138 Xianlin Road, Nanjing 210023, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yu G, Wan R, Yin G, Xiong J, Hu Y, Xing M, Cang X, Fan Y, Xiao W, Qiu L, Wang X, Hu G. Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-κB. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2133-2142. [PMID: 24966921 PMCID: PMC4069971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
Diosmetin (3', 5, 7-trihydroxy-4'-methoxyflavone), the aglycone part of the flavonoid glycosides diosmin occurs naturally in citrus fruit, was considered to exhibit anti-inflammatory and antioxidant properties. Our study aimed to investigate the effect of diosmetin in a murine model of cerulein-induced acute pancreatitis (AP). Experimental AP was induced in mice by seven intraperitoneal injection of cerulein (50 ug/kg) at hourly intervals. Diosmetin (100 mg/kg) or vehicle was pretreated 2 h before the first cerulein injection. After 6 h, 9 h, 12 h of the first cerulein injection, the severity of acute pancreatitis was evaluated biochemically and morphologically. Pretreatment with diosmetin significantly reduced serum levels of amylase and lipase; the histological injury; the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6; myeloperoxidase (MPO) activity, trypsinogen activation peptide (TAP) level, the expression of inducible nitric oxide synthase (iNOS); and the nuclear factor (NF)-κB activation in cerulein-induced AP. This study showed that administration of diosmetin demonstrated a beneficial effect on the course of cerulein-induced AP in mice. Therefore, diosmetin may become a new therapeutic agent in future clinical trials for treatment of AP.
Collapse
Affiliation(s)
- Ge Yu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
| | - Rong Wan
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| | - Guojian Yin
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
| | - Jie Xiong
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
| | - Yanling Hu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
| | - Miao Xing
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
| | - Xiaofeng Cang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
| | - Yuting Fan
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
| | - Wenqin Xiao
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
| | - Lei Qiu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Zhabei District, Shanghai 200072, People’s Republic of China
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| |
Collapse
|