1
|
Gherlan GS, Lazar DS, Florescu SA, Dirtu RM, Codreanu DR, Lupascu S, Nica M. Non-toxigenic Vibrio cholerae - just another cause of vibriosis or a potential new pandemic? Arch Clin Cases 2025; 12:5-16. [PMID: 39925986 PMCID: PMC11801190 DOI: 10.22551/2025.46.1201.10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Although nontoxigenic Vibrio cholerae usually stands in the shadow of the two serogroups (O1 and O139) that cause pandemic cholera, its role in human pathology is increasingly recognized and described in the literature. The habitat of these pathogens is brackish seawater or even freshwater, and the infections caused by them include contact with these waters or consumption of seafood originating in this habitat, which is constantly expanding because of global warming. This habitat extension is a typical example of climate change's impact on infectious diseases. Although nontoxigenic Vibrio cholerae strains are rarely capable of producing the classical cholera toxin, they possess many other virulence factors, can secrete various other toxins, and thus produce illnesses that are sometimes even severe or life-threatening, more frequently in immunocompromised patients. Vibriosis may manifest as gastrointestinal illnesses, wounds, skin or subcutaneous tissue infections, or septicemia. To establish the correct etiological diagnosis for these infections, a high index of suspicion must be maintained, as the diagnostic techniques require targeted investigations and specific collection and transportation of the samples. Empiric treatment recommendations are available, but owing to the increasing resistance of this pathogen, susceptibility testing is needed for every diagnosed case. We intend to raise awareness regarding these infections, as they tend to be more frequent than they were in the past and to appear in areas where they had not been recognized before.
Collapse
Affiliation(s)
- George Sebastian Gherlan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Dragos Stefan Lazar
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Simin Aysel Florescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Raluca Mihaela Dirtu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Daniel Romeo Codreanu
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Stefan Lupascu
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Maria Nica
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| |
Collapse
|
2
|
Barkovskii AL, Brown C. Environmental Drivers of the Divergence of Harveyi Clade Pathogens with Distinctive Virulence Gene Profiles. Microorganisms 2024; 12:2234. [PMID: 39597623 PMCID: PMC11596038 DOI: 10.3390/microorganisms12112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Fish and shellfish pathogens of the Harveyi clade of the Vibrio genus cause significant losses to aquaculture yields and profits, with some of them also causing infections in humans. The present study aimed to evaluate the presence of Harveyi clade fish and shellfish pathogens and their possible diversification in response to environmental drivers in southeastern USA waters. The presence and abundance of potential pathogens were evaluated via the detection and quantitation of six Harveyi-clade-specific virulence genes (toxR, luxR, srp, vhha, vhh, and vhp; VGs) in environmental DNA with clade-specific primers. The environmental DNA was obtained from water and sediments collected from three Georgia (USA) cultured clam and wild oyster grounds. In sediments, the VG concentrations were, on average, three orders of magnitude higher than those in water. The most and least frequently detected VGs were vhp and toxR, respectively. In water, the VGs split into two groups based on their seasonal trends. The first group, composed of luxR, vhp, vhha, and vhh, peaked in August and remained at lower concentrations throughout the duration of the study. The second group, composed of toxR and srp, peaked in June and disappeared between July and December. The first group revealed a high adaptation of their carriers to an increase in temperature, tolerance to a wide range of pH, and a positive correlation with salinity up to 25 ppt. The second group of VGs demonstrated a lower adaptation of their carriers to temperature and negative correlations with pH, salinity, potential water density, conductivity, and dissolved solids but a positive correlation with turbidity. No such trends were observed in sediments. These data reveal the role of VGs in the adaptability of the Harveyi clade pathogens to environmental parameters, causing their diversification and possibly their stratification into different ecological niches due to changes in water temperature, acidity, salinity, and turbidity. This diversification and stratification may lead to further speciation and the emergence of new pathogens of this clade. Our data urge further monitoring of the presence and diversification of Harveyi clade pathogens in a global warming scenario.
Collapse
Affiliation(s)
- Andrei L. Barkovskii
- Department of Biological and Environmental Science, Georgia College and State University, Milledgeville, GA 30161, USA
| | | |
Collapse
|
3
|
Fernández-Juárez V, Riedinger DJ, Gusmao JB, Delgado-Zambrano LF, Coll-García G, Papazachariou V, Herlemann DPR, Pansch C, Andersson AF, Labrenz M, Riemann L. Temperature, sediment resuspension, and salinity drive the prevalence of Vibrio vulnificus in the coastal Baltic Sea. mBio 2024; 15:e0156924. [PMID: 39297655 PMCID: PMC11481517 DOI: 10.1128/mbio.01569-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024] Open
Abstract
The number of Vibrio-related infections in humans, e.g., by Vibrio vulnificus, has increased along the coasts of the Baltic Sea. Due to climate change, vibriosis risk is expected to increase. It is, therefore, pertinent to design a strategy for mitigation of the vibriosis threat in the Baltic Sea area, but a prerequisite is to identify the environmental conditions promoting the occurrence of pathogenic Vibrio spp., like V. vulnificus. To address this, we sampled three coastal Baltic sites in Finland, Germany, and Denmark with salinities between 6 and 21 from May to October 2022. The absolute and relative abundances of Vibrio spp. and V. vulnificus in water were compared to environmental conditions, including the presence of the eelgrass Zostera marina, which has been suggested to reduce pathogenic Vibrio species abundance. In the water column, V. vulnificus only occurred at the German station between July and August at salinity 8.1-11.2. Temperature and phosphate (PO43-) were identified as the most influencing factors for Vibrio spp. and V. vulnificus. The accumulation of Vibrio spp. in the sediment and the co-occurrence with sediment bacteria in the water column indicate that sediment resuspension contributed to V. vulnificus abundance. Interestingly, V. vulnificus co-occurred with specific cyanobacteria taxa, as well as specific bacteria associated with cyanobacteria. Although we found no reduction in Vibrio spp. or V. vulnificus associated with eelgrass beds, our study underscores the importance of extended heatwaves and sediment resuspension, which may elevate the availability of PO43-, for Vibrio species levels at intermediate salinities in the Baltic Sea. IMPORTANCE Elevated sea surface temperatures are increasing the prevalence of pathogenic Vibrio at higher latitudes. The recent increase in Vibrio-related wound infections and deaths along the Baltic coasts is, therefore, of serious health concern. We used culture-independent data generated from three Baltic coastal sites in Denmark, Germany, and Finland from May to October (2022), with a special focus on Vibrio vulnificus, and combined it with environmental data. Our temporal model shows that temperature, combined with sediment resuspension, drives the prevalence of V. vulnificus at intermediate salinities in the coastal Baltic Sea.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - David J. Riedinger
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Joao Bosco Gusmao
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | | | - Guillem Coll-García
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Microbiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
- Environmental Microbiology Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Spain
| | - Vasiliki Papazachariou
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel P. R. Herlemann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
- Estonian University of Life Sciences, Tartu, Estonia
| | - Christian Pansch
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Anders F. Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Ling Y, Xu P, Afiqah-Aleng N, Ishak SD, Wang Y, Shu-Chien AC, Sung YY, Rozaimi R, Liew HJ, Fazhan H, Waiho K. Physiological adaptation and gut microbiota changes of orange mud crab Scylla olivacea in response to increased temperature condition. AQUATIC SCIENCES 2024; 86:100. [DOI: 10.1007/s00027-024-01120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/07/2024] [Indexed: 01/05/2025]
|
5
|
Feng S, Karanth S, Almuhaideb E, Parveen S, Pradhan AK. Machine learning to predict the relationship between Vibrio spp. concentrations in seawater and oysters and prevalent environmental conditions. Food Res Int 2024; 188:114464. [PMID: 38823834 DOI: 10.1016/j.foodres.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Vibrio parahaemolyticus and Vibrio vulnificus are bacteria with a significant public health impact. Identifying factors impacting their presence and concentrations in food sources could enable the identification of significant risk factors and prevent incidences of foodborne illness. In recent years, machine learning has shown promise in modeling microbial presence based on prevalent external and internal variables, such as environmental variables and gene presence/absence, respectively, particularly with the generation and availability of large amounts and diverse sources of data. Such analyses can prove useful in predicting microbial behavior in food systems, particularly under the influence of the constant changes in environmental variables. In this study, we tested the efficacy of six machine learning regression models (random forest, support vector machine, elastic net, neural network, k-nearest neighbors, and extreme gradient boosting) in predicting the relationship between environmental variables and total and pathogenic V. parahaemolyticus and V. vulnificus concentrations in seawater and oysters. In general, environmental variables were found to be reliable predictors of total and pathogenic V. parahaemolyticus and V. vulnificus concentrations in seawater, and pathogenic V. parahaemolyticus in oysters (Acceptable Prediction Zone >70 %) when analyzed using our machine learning models. SHapley Additive exPlanations, which was used to identify variables influencing Vibrio concentrations, identified chlorophyll a content, seawater salinity, seawater temperature, and turbidity as influential variables. It is important to note that different strains were differentially impacted by the same environmental variable, indicating the need for further research to study the causes and potential mechanisms of these variations. In conclusion, environmental variables could be important predictors of Vibrio growth and behavior in seafood. Moreover, the models developed in this study could prove invaluable in assessing and managing the risks associated with V. parahaemolyticus and V. vulnificus, particularly in the face of a changing environment.
Collapse
Affiliation(s)
- Shuyi Feng
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Shraddha Karanth
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Esam Almuhaideb
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Salina Parveen
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Abani K Pradhan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
6
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
7
|
Morrison BH, Jones JL, Dzwonkowski B, Krause JW. Tracking Vibrio: population dynamics and ecology of Vibrio parahaemolyticus and V. vulnificus in an Alabama estuary. Microbiol Spectr 2024; 12:e0367423. [PMID: 38578091 PMCID: PMC11210274 DOI: 10.1128/spectrum.03674-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Vibrio is a genus of halophilic, gram-negative bacteria found in estuaries around the globe. Integral parts of coastal cultures often involve contact with vectors of pathogenic Vibrio spp. (e.g., consuming raw shellfish). High rates of mortality from certain Vibrio spp. infections demonstrate the need for an improved understanding of Vibrio spp. dynamics in estuarine regions. Our study assessed meteorological, hydrographic, and biological correlates of Vibrio parahaemolyticus and V. vulnificus at 10 sites in the Eastern Mississippi Sound System (EMSS) from April to October 2019. During the sampling period, median abundances of V. parahaemolyticus and V. vulnificus were 2.31 log MPN/L and 2.90 log MPN/L, respectively. Vibrio spp. dynamics were largely driven by site-based variation, with sites closest to freshwater inputs having the highest abundances. The E-W wind scalar, which affects Ekman transport, was a novel Vibrio spp. correlate observed. A potential salinity effect on bacterial-particle associations was identified, where V. vulnificus was associated with larger particles in conditions outside of their optimal salinity. Additionally, V. vulnificus abundances were correlated to those of harmful algal species that did not dominate community chlorophyll. Correlates from this study may be used to inform the next iteration of regionally predictive Vibrio models and may lend additional insight to Vibrio spp. ecology in similar systems. IMPORTANCE Vibrio spp. are bacteria found in estuaries worldwide; some species can cause illness and infections in humans. Relationships between Vibrio spp. abundance, salinity, and temperature are well documented, but correlations to other environmental parameters are less understood. This study identifies unique correlates (e.g., E-W wind scalar and harmful algal species) that could potentially inform the next iteration of predictive Vibrio models for the EMSS region. Additionally, these correlates may allow existing environmental monitoring efforts to be leveraged in providing data inputs for future Vibrio risk models. An observed correlation between salinity and V. vulnificus/particle-size associations suggests that predicted environmental changes may affect the abundance of Vibrio spp. in certain reservoirs, which may alter which vectors present the greatest vibrio risk.
Collapse
Affiliation(s)
- Blair H Morrison
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
- Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, Alabama, USA
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
| | - Jessica L Jones
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
| | - Brian Dzwonkowski
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
- Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, Alabama, USA
| | - Jeffrey W Krause
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
- Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
8
|
Miyoshi SI, Kurata M, Hirose R, Yoshikawa M, Liang Y, Yamagishi Y, Mizuno T. Isolation of Vibrio cholerae and Vibrio vulnificus from Estuarine Waters, and Genotyping of V. vulnificus Isolates Using Loop-Mediated Isothermal Amplification. Microorganisms 2024; 12:877. [PMID: 38792707 PMCID: PMC11124270 DOI: 10.3390/microorganisms12050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Bacteria in the genus Vibrio are ubiquitous in estuarine and coastal waters. Some species (including Vibrio cholerae and Vibrio vulnificus) are known human pathogens causing ailments like cholera, diarrhea, or septicemia. Notably, V. vulnificus can also cause a severe systemic infection (known as vibriosis) in eels raised in aquaculture facilities. Water samples were periodically collected from the estuary of the Asahi River, located in the southern part of Okayama City, Japan. These samples were directly plated onto CHROMagar Vibrio plates, and colonies displaying turquoise-blue coloration were selected. Thereafter, polymerase chain reaction was used to identify V. cholerae and V. vulnificus. A total of 30 V. cholerae strains and 194 V. vulnificus strains were isolated during the warm season when the water temperature (WT) was higher than 20 °C. Concurrently, an increase in coliforms was observed during this period. Notably, V. vulnificus has two genotypes, designated as genotype 1 and genotype 2. Genotype 1 is pathogenic to humans, while genotype 2 is pathogenic to both humans and eels. The loop-mediated isothermal amplification method was developed to rapidly determine genotypes at a low cost. Of the 194 strains isolated, 80 (41.2%) were identified as genotype 1 strains. Among the 41 strains isolated when the WTs were higher than 28 °C, 25 strains (61.0%) belonged to genotype 1. In contrast, of the 32 strains isolated when the WTs were lower than 24 °C, 27 strains (84.4%) belonged to genotype 2. These results suggest that the distribution of the two genotypes was influenced by WT.
Collapse
Affiliation(s)
- Shin-ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama-City 700-8530, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhu S, Wang X, Zhao W, Zhang Y, Song D, Cheng H, Zhang XH. Vertical dynamics of free-living and particle-associated vibrio communities in the eastern tropical Indian Ocean. Front Microbiol 2023; 14:1285670. [PMID: 37928659 PMCID: PMC10620696 DOI: 10.3389/fmicb.2023.1285670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023] Open
Abstract
Members of the family Vibrionaceae (vibrios) are widely distributed in estuarine, offshore, and marginal seas and perform an important ecological role in the marine organic carbon cycle. Nevertheless, there is little knowledge about whether vibrios play ecological roles in the oligotrophic pelagic area, which occupies a larger water volume. In this study, we investigated the abundance, diversity, and composition of free-living and particle-associated vibrios and their relationships with environmental factors along the water depth in the eastern tropical Indian Ocean (ETIO). The abundance of vibrios in free-living fractions was significantly higher than that of particle-associated fractions on the surface. Still, both were similar at the bottom, indicating that vibrios may shift from free-living lifestyles on the surface to mixed lifestyles at the bottom. Vibrio-specific 16S rRNA gene amplicon sequencing revealed that Paraphotobacterium marinum and Vibrio rotiferianus were dominant species in the water column, and Vibrio parahaemolyticus (a clinically important pathogen) was recorded in 102 samples of 111 seawater samples in 10 sites, which showed significant difference from the marginal seas. The community composition also shifted, corresponding to different depths in the water column. Paraphotobacterium marinum decreased with depth, and V. rotiferianus OTU1528 was mainly distributed in deeper water, which significantly correlated with the alteration of environmental factors (e.g., temperature, salinity, and dissolved oxygen). In addition to temperature and salinity, dissolved oxygen (DO) was an important factor that affected the composition and abundance of Vibrio communities in the ETIO. Our study revealed the vertical dynamics and preferential lifestyles of vibrios in the ETIO, helping to fill a knowledge gap on their ecological distribution in oligotrophic pelagic areas and fully understanding the response of vibrios in a global warming environment.
Collapse
Affiliation(s)
- Shaodong Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Wenbin Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yulin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Derui Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haojin Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Waidner LA, Potdukhe TV. Tools to Enumerate and Predict Distribution Patterns of Environmental Vibrio vulnificus and Vibrio parahaemolyticus. Microorganisms 2023; 11:2502. [PMID: 37894160 PMCID: PMC10609196 DOI: 10.3390/microorganisms11102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Collapse
Affiliation(s)
- Lisa A. Waidner
- Hal Marcus College of Science and Engineering, University of West Florida, 11000 University Pkwy, Building 58, Room 108, Pensacola, FL 32514, USA
| | - Trupti V. Potdukhe
- GEMS Program, College of Medicine, University of Illinois Chicago, 1853 W. Polk St., Chicago, IL 60612, USA;
| |
Collapse
|
11
|
Gangwar M, Usmani M, Jamal Y, Brumfield KD, Huq A, Unnikrishnan A, Colwell RR, Jutla AS. Environmental Factors Associated with Incidence and Distribution of V. parahaemolyticus and V. vulnificus in Chesapeake Bay, Maryland, USA: A three-year case study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559351. [PMID: 37808627 PMCID: PMC10557581 DOI: 10.1101/2023.09.25.559351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Members of the genus Vibrio are ecologically significant bacteria native to aquatic ecosystems globally, and a few can cause diseases in humans. Vibrio-related illnesses have increased in recent years, primarily attributed to changing environmental conditions. Therefore, understanding the role of environmental factors in the occurrence and growth of pathogenic strains is crucial for public health. Water, oyster, and sediment samples were collected between 2009 and 2012 from Chester River and Tangier Sound sites in Chesapeake Bay, Maryland, USA, to investigate the relationship between water temperature, salinity, and chlorophyll with the incidence and distribution of Vibrio parahaemolyticus (VP) and Vibrio vulnificus (VV). Odds ratio analysis was used to determine association between the likelihood of VP and VV presence and these environmental variables. Results suggested that water temperature threshold of 20°C or higher was associated with an increased risk, favoring the incidence of Vibrio spp. A significant difference in salinity was observed between the two sampling sites, with distinct ranges showing high odds ratio for Vibrio incidence, especially in water and sediment, emphasizing the impact of salinity on VP and VV incidence and distribution. Notably, salinity between 9-20 PPT consistently favored the Vibrio incidence across all samples. Relationship between chlorophyll concentrations and VP and VV incidence varied depending on sample type. However, chlorophyll range of 0-10 μg/L was identified as critical in oyster samples for both vibrios. Analysis of odds ratios for water samples demonstrated consistent outcomes across all environmental parameters, indicating water samples offer a more reliable indicator of Vibrio spp. incidence.
Collapse
Affiliation(s)
- Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Yusuf Jamal
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Avinash Unnikrishnan
- Department of Civil, Construction, and Environmental Engineering, UAB School of Engineering, University of Alabama at Birmingham, AL, USA
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Antarpreet S. Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Tyre KN, Brewton RA, Kreiger LB, Lapointe BE. Widespread human waste pollution in surface waters observed throughout the urbanized, coastal communities of Lee County, Florida, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162716. [PMID: 36921859 DOI: 10.1016/j.scitotenv.2023.162716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 05/17/2023]
Abstract
The coastal communities of Lee County, Florida, USA have grown rapidly since the 1970s. In this county, drainage ditches, canals, creeks, and the Caloosahatchee River Estuary often have high concentrations of nutrients and bacteria limiting their designated uses. Septic systems have previously been identified as a major pollution source in some areas of Lee County; therefore, this study sought to identify the extent of this issue throughout the county. To accomplish this, surface water samples were collected at 25 ditch, creek, or canal sites suspected of human waste contamination from septic systems in various drainage basins throughout Lee County during January 2020-January 2021. Water samples were analyzed for nutrients, dual stable nitrate isotopes (δ15N-NO3-, δ18O-NO3-), fecal indicator bacteria (enterococci, Escherichia coli), a molecular tracer of human waste (HF183), and chemical tracers of human waste (the artificial sweetener sucralose, pharmaceuticals). Particulate organic matter (POM) and macrophytes were also collected and analyzed for stable carbon (δ13C) and nitrogen (δ15N) isotopes, as well as elemental composition (C:N:P). To broaden the assessment of stable isotope values and C:N:P, archived macrophyte samples from 2019 were also included in analyses. Ammonium concentrations were high (> 4.3 μM) in 55 % of samples. Fecal bacteria were high in 66 % of samples. HF183 was detected in 50 % of samples and positively correlated with enterococci (r = 0.32). Sucralose concentrations were high (> 380 ng/L) in 54 % of samples, while carbamazepine was detected in 40 % of samples. Human waste N sources were indicated by δ15N > 3.00 ‰ at 44 % of sites by δ15N-NO3-, 68 % of sites by POM, and at 100 % of sites where macrophyte samples were collected. This large-scale study provides evidence of widespread human waste pollution throughout Lee County and can help guide infrastructure improvements to promote sustainable development. These findings should be applicable to urbanized regions globally that are experiencing declines in water quality and harmful algal blooms due to development with inadequate infrastructure.
Collapse
Affiliation(s)
- Kevin N Tyre
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 N US Highway 1, Fort Pierce, FL 34946, United States of America; Geosyntec Consultants, 3504 Lake Lynda Dr., Suite 155, Orlando, FL 32817, United States of America
| | - Rachel A Brewton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 N US Highway 1, Fort Pierce, FL 34946, United States of America.
| | - Lisa B Kreiger
- Lee County Department of Natural Resources, 1500 Monroe Street, Fort Myers, FL 33901, United States of America
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 N US Highway 1, Fort Pierce, FL 34946, United States of America
| |
Collapse
|
13
|
Schütt EM, Hundsdörfer MAJ, von Hoyningen-Huene AJE, Lange X, Koschmider A, Oppelt N. First Steps towards a near Real-Time Modelling System of Vibrio vulnificus in the Baltic Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085543. [PMID: 37107825 PMCID: PMC10138452 DOI: 10.3390/ijerph20085543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
Over the last two decades, Vibrio vulnificus infections have emerged as an increasingly serious public health threat along the German Baltic coast. To manage related risks, near real-time (NRT) modelling of V. vulnificus quantities has often been proposed. Such models require spatially explicit input data, for example, from remote sensing or numerical model products. We tested if data from a hydrodynamic, a meteorological, and a biogeochemical model are suitable as input for an NRT model system by coupling it with field samples and assessing the models' ability to capture known ecological parameters of V. vulnificus. We also identify the most important predictors for V. vulnificus in the Baltic Sea by leveraging the St. Nicolas House Analysis. Using a 27-year time series of sea surface temperature, we have investigated trends of V. vulnificus season length, which pinpoint hotspots mainly in the east of our study region. Our results underline the importance of water temperature and salinity on V. vulnificus abundance but also highlight the potential of air temperature, oxygen, and precipitation to serve as predictors in a statistical model, albeit their relationship with V. vulnificus may not be causal. The evaluated models cannot be used in an NRT model system due to data availability constraints, but promising alternatives are presented. The results provide a valuable basis for a future NRT model for V. vulnificus in the Baltic Sea.
Collapse
Affiliation(s)
- Eike M. Schütt
- Earth Observation and Modelling, Department of Geography, Kiel University, 24118 Kiel, Germany
- Correspondence:
| | - Marie A. J. Hundsdörfer
- Earth Observation and Modelling, Department of Geography, Kiel University, 24118 Kiel, Germany
| | | | - Xaver Lange
- Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Agnes Koschmider
- Business Informatics and Process Analytics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Natascha Oppelt
- Earth Observation and Modelling, Department of Geography, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
14
|
Leard E, Carmichael RH, Ortmann AC, Jones JL. Environmental Drivers of Vibrio cholerae Abundances in Mobile Bay, Alabama. Microbiol Spectr 2023; 11:e0173322. [PMID: 36692305 PMCID: PMC9927273 DOI: 10.1128/spectrum.01733-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Vibrio cholerae is the etiological agent of the illness cholera. However, there are non-O1/non-O139 V. cholerae (NOVC) strains that generally lack the toxin gene (ctx) and colonization factors that cause cholera. These NOVC strains are autochthonous members of estuarine environments and a significant cause of seafood-borne gastroenteritis in the United States. The objective of this study was to identify environmental parameters that correlate with NOVC prevalence in oysters, water, and sediment at three ecologically diverse locations in Mobile Bay, AL, including Dog River (DR), Fowl River (FR), and Cedar Point (CP). Oyster, water, and sediment samples were collected twice a month when conditions were favorable for NOVC growth and once a month when they were not. A most probable number (MPN)/real-time PCR assay was used to determine NOVC abundances. Environmental parameters were measured during sampling to determine their relationship, if any, with NOVC at each site. NOVC abundances in oysters at DR, FR, and CP were 0.87, 0.87, and -0.13 log MPN/g, respectively. In water, the median NOVC levels at DR, FR, and CP were 1.18, -0.13, and -0.82 log MPN/mL, and in sediment, the levels were 1.48, 1.87, and -0.03 log MPN/g, respectively. Correlations of NOVC abundances in oyster, water, and sediment samples with environmental parameters were largely site specific. For example, the levels of NOVC in oysters at DR had a positive correlation with temperature but a negative correlation with dissolved oxygen (DO) and nutrient concentrations, NO2-, NO3-, dissolved inorganic nitrogen (DIN), total dissolved nitrogen (TDN), and dissolved inorganic phosphorus (DIP). At FR, however, the levels of NOVC in oysters displayed only a negative correlation with NO2-. When grouping NOVC abundances by temperature, the main driving factor for prevalence, additional correlations with salinity, total cell counts, dissolved organic nitrogen (DON), and dissolved organic carbon (DOC) became evident regardless of the site. IMPORTANCE NOVC can cause gastrointestinal illness in humans, which typically occurs after the consumption of raw or undercooked seafood. Incidence rates of NOVC gastroenteritis have increased during the past decade. In this study, NOVC was enumerated from oysters, sediment, and water collected at three sites in Mobile Bay, with environmental parameters measured concurrently over the course of a year, to identify potential environmental drivers of NOVC abundances. The data from this study, from an area lacking in V. cholerae research, provide a useful baseline for risk analysis of V. cholerae infections. Defining correlations between NOVC and environmental attributes at different sites and temperatures within a dynamic system such as Mobile Bay provides valuable data to better understand the occurrence and proliferation of V. cholerae in the environment.
Collapse
Affiliation(s)
- Elizabeth Leard
- Food and Drug Administration, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
- University Programs, Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
| | - Ruth H. Carmichael
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
- University Programs, Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
| | - Alice C. Ortmann
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
| | - Jessica L. Jones
- Food and Drug Administration, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
| |
Collapse
|
15
|
Namadi P, Deng Z. Optimum environmental conditions controlling prevalence of vibrio parahaemolyticus in marine environment. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105828. [PMID: 36423461 DOI: 10.1016/j.marenvres.2022.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
This literature review presents major environmental indicators and their optimum variation ranges for the prevalence of Vibrio parahaemolyticus in the marine environment by critically reviewing and statistically analyzing more than one hundred studies from countries around the world. Results of this review indicated that the prevalence of Vibrio parahaemolyticus in the marine environment is primarily responsive to favorable environmental conditions that are described with environmental indicators. The importance of environmental indicators to the prevalence of Vibrio parahaemolyticus can be ranked from the highest to lowest as Sea Surface Temperature (SST), salinity, pH, chlorophyll a, and turbidity, respectively. It was also found in this study that each environmental indicator has an optimum variation range favoring the prevalence of Vibrio parahaemolyticus. Specifically, the SST range of 25.67 ± 2 °C, salinity range of 27.87 ± 3 ppt, and pH range of 7.96 ± 0.1 were found to be the optimum conditions for the prevalence of Vibrio parahaemolyticus. High vibrio concentrations were also observed in water samples with the chlorophyll a range of 16-25 μg/L. The findings provide new insights into the importance of environmental indicators and their optimum ranges, explaining not only the existence of both positive and negative associations reported in the literature but also the dynamic associations between the Vibrio presence and its environmental drivers.
Collapse
Affiliation(s)
- Peyman Namadi
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Zhiqiang Deng
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
16
|
Nasreen T, Islam MT, Liang KYH, Johura FT, Kirchberger PC, Hill E, Sultana M, Case RJ, Alam M, Boucher YF. Dynamic Subspecies Population Structure of Vibrio cholerae in Dhaka, Bangladesh. MICROBIAL ECOLOGY 2022; 84:730-745. [PMID: 34633491 DOI: 10.1007/s00248-021-01838-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Cholera has been endemic to the Ganges Delta for centuries. Although the causative agent, Vibrio cholerae, is autochthonous to coastal and brackish water, cholera occurs continually in Dhaka, the inland capital city of Bangladesh which is surrounded by fresh water. Despite the persistence of this problem, little is known about the environmental abundance and distribution of lineages of V. cholerae, the most important being the pandemic generating (PG) lineage consisting mostly of serogroup O1 strains. To understand spatial and temporal dynamics of PG lineage and other lineages belonging to the V. cholerae species in surface water in and around Dhaka City, we used qPCR and high-throughput amplicon sequencing. Seven different freshwater sites across Dhaka were investigated for six consecutive months, and physiochemical parameters were measured in situ. Total abundance of V. cholerae was found to be relatively stable throughout the 6-month sampling period, with 2 × 105 to 4 × 105 genome copies/L at six sites and around 5 × 105 genome copies/L at the site located in the most densely populated part of Dhaka City. PG O1 V. cholerae was present in high abundance during the entire sampling period and composed between 24 and 92% of the total V. cholerae population, only showing occasional but sudden reductions in abundance. In instances where PG O1 lost its dominance, other lineages underwent a rapid expansion while the size of the total V. cholerae population remained almost unchanged. Intraspecies richness of V. cholerae was positively correlated with salinity, conductivity, and total dissolved solids (TDS), while it was negatively correlated with dissolved oxygen (DO) concentration in water. Interestingly, negative correlation was observed specifically between PG O1 and salinity, even though the changes in this variable were minor (0-0.8 ppt). Observations in this study suggest that at the subspecies level, population composition of naturally occurring V. cholerae can be influenced by fluctuations in environmental factors, which can lead to altered competition dynamics among the lineages.
Collapse
Affiliation(s)
- Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | | | - Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Fatema-Tuz Johura
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Paul C Kirchberger
- Department of Integrative Biology, University of Texas At Austin, Austin, TX, 78712, USA
| | - Eric Hill
- Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore
| | - Marzia Sultana
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Scro AK, Westphalen J, Kite-Powell HL, Brawley JW, Smolowitz RM. The effect of off-bottom versus on-bottom oyster culture on total and pathogenic Vibrio spp. abundances in oyster tissue, water and sediment samples. Int J Food Microbiol 2022; 379:109870. [DOI: 10.1016/j.ijfoodmicro.2022.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
|
18
|
Igere BE, Okoh AI, Nwodo UU. Non-serogroup O1/O139 agglutinable Vibrio cholerae: a phylogenetically and genealogically neglected yet emerging potential pathogen of clinical relevance. Arch Microbiol 2022; 204:323. [PMID: 35567650 PMCID: PMC9107296 DOI: 10.1007/s00203-022-02866-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/19/2022]
Abstract
Somatic antigen agglutinable type-1/139 Vibrio cholerae (SAAT-1/139-Vc) members or O1/O139 V. cholerae have been described by various investigators as pathogenic due to their increasing virulence potential and production of choleragen. Reported cholera outbreak cases around the world have been associated with these choleragenic V. cholerae with high case fatality affecting various human and animals. These virulent Vibrio members have shown genealogical and phylogenetic relationship with the avirulent somatic antigen non-agglutinable strains of 1/139 V. cholerae (SANAS-1/139- Vc) or O1/O139 non-agglutinating V. cholerae (O1/O139-NAG-Vc). Reports on implication of O1/O139-NAGVc members in most sporadic cholera/cholera-like cases of diarrhea, production of cholera toxin and transmission via consumption and/or contact with contaminated water/seafood are currently on the rise. Some reported sporadic cases of cholera outbreaks and observed change in nature has also been tracable to these non-agglutinable Vibrio members (O1/O139-NAGVc) yet there is a sustained paucity of research interest on the non-agglutinable V. cholerae members. The emergence of fulminating extraintestinal and systemic vibriosis is another aspect of SANAS-1/139- Vc implication which has received low attention in terms of research driven interest. This review addresses the need to appraise and continually expand research based studies on the somatic antigen non-serogroup agglutinable type-1/139 V. cholerae members which are currently prevalent in studies of water bodies, fruits/vegetables, foods and terrestrial environment. Our opinion is amassed from interest in integrated surveillance studies, management/control of cholera outbreaks as well as diarrhea and other disease-related cases both in the rural, suburban and urban metropolis.
Collapse
Affiliation(s)
- Bright E Igere
- Department of Microbiology and Biotechnology, Western Delta University, Oghara, Delta State, Nigeria.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Uchechukwu U Nwodo
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
19
|
Yudiati E, Azhar N, Achmad MJ, Sunaryo S, Susanto A, Yulianto B, Alghazeer RO, Alansari WS, Shamlan G. Alginate poly and oligosaccharide (AOS) from Sargassum sp. as immunostimulant in gnotobiotic artemia challenge tests and antibacterial diffusion disc assay against pathogenic Vibrio parahaemolyticus, V. vulnificus and V. harveyi. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alginate is a polysaccharide derived from Sargassum sp. and is a potent immunostimulant with antibacterial activity, including against Vibrio spp. This genus of bacteria is found in freshwater and marine environments and is a common infectious, pathogenic bacteria both for aquatic cultivans and humans. Here, we determined the ability of sodium alginate polysaccharides and oligosaccharides (AOS) to act as immunostimulants in Artemia challenge tests and antibacterial diffusion disc assays against Vibrio parahaemolyticus, V. vulnificus, and V. harveyi. The AOS was produced by thermal heating. Dry sodium alginates were weighed out from 4.21 to 6.47 grams with a yield varying from 21.05 to 32.35%. Alginate polysaccharides were challenged against V harveyi and showed 8 positive results. The highest inhibitor zone was 12.962±3.623 mm. Based on 18 tests, AOS showed 12 positive results, with the highest inhibitor zone being 10.250±0.09 mm. The encapsulated alginate against Vibrio parahaemolyticus, Vibrio harveyi, Vibrio vulnificus, and the non-challenged tests without any Vibrio spp. addition resulted in the best concentrations of 800 ppm (polysaccharide) and 600 ppm (oligosaccharide), respectively. The lower concentration of oligosaccharides alginate were more effective and has the potential to be superior as an antibacterial agent and immunestimulant, as opposed to alginate polysaccharide.
Collapse
Affiliation(s)
- Ervia Yudiati
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Nuril Azhar
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Muhammad Janib Achmad
- Faculty of Fisheries and Marine Science, Khairun University, Ternate City, North Maluku, Indonesia
| | - Sunaryo Sunaryo
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Adi Susanto
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Bambang Yulianto
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Indonesia
| | - Rabia O. Alghazeer
- Department of Chemistry, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Almejhim M, Aljeldah M, Elhadi N. Improved isolation and detection of toxigenic Vibrio parahaemolyticus from coastal water in Saudi Arabia using immunomagnetic enrichment. PeerJ 2021; 9:e12402. [PMID: 34760388 PMCID: PMC8559605 DOI: 10.7717/peerj.12402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background Vibrio parahaemolyticus is recognized globally as a cause of foodborne gastroenteritis and its widely disseminated in marine and coastal environment throughout the world. The main aim of this study was conducted to investigate the presence of toxigenic V. parahaemolyticus in costal water in the Eastern Province of Saudi Arabia by using immunomagnetic separation (IMS) in combination with chromogenic Vibrio agar medium and PCR targeting toxR gene of species level and virulence genes. Methods A total of 192 seawater samples were collected from five locations and enriched in alkaline peptone water (APW) broth. One-milliliter portion from enriched samples in APW were mixed with an immunomagnetic beads (IMB) coated with specific antibodies against V. parahaemolyticus polyvalent K antisera and separated beads with captured bacteria streaked on thiosulfate citrate bile salts sucrose (TCBS) agar and CHROMagar Vibrio (CaV) medium. Results Of the 192 examined seawater samples, 38 (19.8%) and 44 (22.9%) were positive for V. parahaemolyticus, producing green and mauve colonies on TCBS agar and CaV medium, respectively. Among 120 isolates of V. parahaemolyticus isolated in this study, 3 (2.5%) and 26 (21.7%) isolates of V. parahaemolyticus isolated without and with IMB treatment tested positive for the toxin regulatory (toxR) gene, respectively. Screening of the confirmed toxR gene-positive isolates revealed that 21 (17.5%) and 3 (2.5%) were positive for the thermostable direct hemolysin (tdh) encoding gene in strains isolated with IMB and without IMB treatment, respectively. None of the V. parahaemolyticus strains tested positive for the thermostable related hemolysin (trh) gene. In this study, we found that the CaV medium has no advantage over TCBS agar if IMB concentration treatment is used during secondary enrichment steps of environmental samples. The enterobacterial repetitive intergenic consensus (ERIC)-PCR DNA fingerprinting analysis revealed high genomic diversity, and 18 strains of V. parahaemolyticus were grouped and identified into four identical ERIC clonal group patterns. Conclusions The presented study reports the first detection of tdh producing V. parahaemolyticus in coastal water in the Eastern Province of Saudi Arabia.
Collapse
Affiliation(s)
- Mariam Almejhim
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Nasreldin Elhadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
21
|
A Novel Cooperative Metallo-β-Lactamase Fold Metallohydrolase from Pathogen Vibrio vulnificus Exhibits β-Lactam Antibiotic-Degrading Activities. Antimicrob Agents Chemother 2021; 65:e0032621. [PMID: 34228542 DOI: 10.1128/aac.00326-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a pathogen that accounts for one of the highest mortality rates and is responsible for most reported seafood-related illnesses and deaths worldwide. Owing to the threats of pathogens with β-lactamase activity, it is important to identify and characterize β-lactamases with clinical significance. In this study, the protein sequence of the metallo-β-lactamase (MBL) fold metallohydrolase from V. vulnificus (designated Vmh) was analyzed, and its oligomeric state, β-lactamase activity, and metal binding ability were determined. BLASTp analysis indicated that the V. vulnificus Vmh protein showed no significant sequence identity with any experimentally identified Ambler class B MBLs or enzymes containing the MBL protein fold; it was also predicted to have a signal peptide of 19 amino acids at its N terminus and an MBL protein fold from amino acid residues 23 to 216. Recombinant V. vulnificus Vmh protein was overexpressed and purified. Analytical ultracentrifugation and electrospray ionization-mass spectrometry (MS) data demonstrated its monomeric state in an aqueous solution. Recombinant V. vulnificus Vmh protein showed broad degrading activities against β-lactam antibiotics, such as penicillins, cephalosporins, and imipenems, with kcat/Km values ranging from 6.23 × 102 to 1.02 × 104 M-1 s-1. The kinetic reactions of this enzyme exhibited sigmoidal behavior, suggesting the possibility of cooperativity. Zinc ions were required for the enzyme activity, which was abolished by adding the metal chelator EDTA. Inductively coupled plasma-MS indicated that this enzyme might bind two zinc ions per molecule as a cofactor.
Collapse
|
22
|
Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314-7340. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kristine M Chen
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
23
|
The Seasonal Microbial Ecology of Plankton and Plankton-Associated Vibrio parahaemolyticus in the Northeast United States. Appl Environ Microbiol 2021; 87:e0297320. [PMID: 33990304 PMCID: PMC8276809 DOI: 10.1128/aem.02973-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial ecology studies have proven to be important resources for improving infectious disease response and outbreak prevention. Vibrio parahaemolyticus is an ongoing source of shellfish-borne food illness in the Northeast United States, and there is keen interest in understanding the environmental conditions that coincide with V. parahaemolyticus disease risk, in order to aid harvest management and prevent further illness. Zooplankton and chitinous phytoplankton are associated with V. parahaemolyticus dynamics elsewhere; however, this relationship is undetermined for the Great Bay estuary (GBE), an important emerging shellfish growing region in the Northeast United States. A comprehensive evaluation of the microbial ecology of V. parahaemolyticus associated with plankton was conducted in the GBE using 3 years of data regarding plankton community, nutrient concentration, water quality, and V. parahaemolyticus concentration in plankton. The concentrations of V. parahaemolyticus associated with plankton were highly seasonal, and the highest concentrations of V. parahaemolyticus cultured from zooplankton occurred approximately 1 month before the highest concentrations of V. parahaemolyticus from phytoplankton. The two V. parahaemolyticus peaks corresponded with different water quality variables and a few highly seasonal plankton taxa. Importantly, V. parahaemolyticus concentrations and plankton community dynamics were poorly associated with nutrient concentrations and chlorophyll a, commonly applied proxy variables for assessing ecological health risks and human health risks from harmful plankton and V. parahaemolyticus elsewhere. Together, these statistical associations (or lack thereof) provide valuable insights to characterize the plankton-V. parahaemolyticus dynamic and inform approaches for understanding the potential contribution of plankton to human health risks from V. parahaemolyticus for the Northeast United States. IMPORTANCE The Vibrio-plankton interaction is a focal relationship in Vibrio disease research; however, little is known about this dynamic in the Northeast United States, where V. parahaemolyticus is an established public health issue. We integrated phototactic plankton separation with seasonality analysis to determine the dynamics of the plankton community, water quality, and V. parahaemolyticus concentrations. Distinct bimodal peaks in the seasonal timing of V. parahaemolyticus abundance from phyto- versus zooplankton and differing associations with water quality variables and plankton taxa indicate that monitoring and forecasting approaches should consider the source of exposure when designing predictive methods for V. parahaemolyticus. Helicotheca tamensis has not been previously reported in the GBE. Its detection during this study provides evidence of the changes occurring in the ecology of regional estuaries and potential mechanisms for changes in V. parahaemolyticus populations. The Vibrio monitoring approaches can be translated to aid other areas facing similar public health challenges.
Collapse
|
24
|
Padovan A, Siboni N, Kaestli M, King WL, Seymour JR, Gibb K. Occurrence and dynamics of potentially pathogenic vibrios in the wet-dry tropics of northern Australia. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105405. [PMID: 34242991 DOI: 10.1016/j.marenvres.2021.105405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Bacteria from the Vibrio genus are a ubiquitous component of coastal and estuarine ecosystems with several pathogenic Vibrio species displaying preferences for warm tropical waters. We studied the spatial and temporal abundance of three key human potential pathogens V. parahaemolyticus, V. cholerae and V. vulnificus in northern tropical Australia, over the wet and dry seasons, to identify environmental parameters influencing their abundance. Quantitative PCR (qPCR) analysis revealed that V. parahaemolyticus occurred more frequently and in higher abundance than V. cholerae and V. vulnificus across all locations examined. All three species were more abundant during the wet season, with V. parahaemolyticus abundance correlated to temperature and conductivity, whereas nutrient concentrations and turbidity best explained V. vulnificus abundance. In addition to these targeted qPCR analyses, we assessed the composition and dynamics of the entire Vibrio community using hsp60 amplicon sequencing. Using this approach, 42 Vibrio species were identified, including a number of other pathogenic species such as V. alginolyticus, V. mimicus and V. fluvialis. The Vibrio community was more diverse in the wet season, with temperature and dissolved oxygen as the key factors governing community composition. Seasonal differences were primarily driven by a greater abundance of V. parahaemolyticus and V. vulnificus during the wet season, while spatial differences were driven by different abundances of V. harveyi, V. campbellii, V. cholerae and V. navarrensis. When we related the abundance of Vibrio to other bacterial taxa, defined using 16S rRNA gene amplicon sequencing, V. parahaemolyticus was negatively correlated to several taxa, including members of the Rickettsiales and Saccharimonadales, while V. vulnificus was negatively correlated to Rhobacteriaceae and Cyanobiaceae. In contrast, V. alginolyticus, V. harveyi and V. mediterranei were all positively correlated to Cyanobacteria. These observations highlight the dynamic nature of Vibrio communities and expands current understanding of the processes governing the occurrence of potentially pathogenic Vibrio spp. in tropical coastal ecosystems.
Collapse
Affiliation(s)
- Anna Padovan
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia.
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - William L King
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia; The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
25
|
Orruño M, Parada C, Kaberdin VR, Arana I. The Effect of Visible Light on Cell Envelope Subproteome during Vibrio harveyi Survival at 20 °C in Seawater. Microorganisms 2021; 9:microorganisms9030594. [PMID: 33805730 PMCID: PMC8001661 DOI: 10.3390/microorganisms9030594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
A number of Vibrio spp. belong to the well-studied model organisms used to understand the strategies developed by marine bacteria to cope with adverse conditions (starvation, suboptimal temperature, solar radiation, etc.) in their natural environments. Temperature and nutrient availability are considered to be the key factors that influence Vibrio harveyi physiology, morphology, and persistence in aquatic systems. In contrast to the well-studied effects of temperature and starvation on Vibrio survival, little is known about the impact of visible light able to cause photooxidative stress. Here we employ V. harveyi ATCC 14126T as a model organism to analyze and compare the survival patterns and changes in the protein composition of its cell envelope during the long-term permanence of this bacterium in seawater microcosm at 20 °C in the presence and absence of illumination with visible light. We found that V. harveyi exposure to visible light reduces cell culturability likely inducing the entry into the Viable but Non Culturable state (VBNC), whereas populations maintained in darkness remained culturable for at least 21 days. Despite these differences, the starved cells in both populations underwent morphological changes by reducing their size. Moreover, further proteomic analysis revealed a number of changes in the composition of cell envelope potentially accountable for the different adaptation pattern manifested in the absence and presence of visible light.
Collapse
Affiliation(s)
- Maite Orruño
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Claudia Parada
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
| | - Vladimir R. Kaberdin
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- Correspondence:
| |
Collapse
|
26
|
Chen X, Du H, Chen S, Li X, Zhao H, Xu Q, Tang J, Jiang G, Zou S, Dong K, Adams JM, Li N, Jiang C. Patterns and drivers of Vibrio isolates phylogenetic diversity in the Beibu Gulf, China. J Microbiol 2020; 58:998-1009. [PMID: 33095386 DOI: 10.1007/s12275-020-0293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Members of the genus Vibrio are ubiquitous in aquatic environments and can be found either in a culturable or a viable but nonculturable (VBNC) state. Despite widespread concerns as to how to define the occurrence and dynamics of Vibrio populations by culture-independent approaches, further physiological research and relevant biotechnological developments will require the isolation and cultivation of the microbes from various environments. The present work provides data and perspectives on our understanding of culturable Vibrio community structure and diversity in the Beibu Gulf. Finally, we isolated 1,037 strains of Vibrio from 45 samples and identified 18 different species. Vibrio alginolyticus, V. cyclitrophicus, V. tasmaniensis, V. brasiliensis, and V. splendidus were the dominant species that had regional distribution characteristics. The correlation between the quantitative distribution and community structure of culturable Vibrio and environmental factors varied with the Vibrio species and geographical locations. Among them, salinity, nitrogen, and phosphorus were the main factors affecting the diversity of culturable Vibrio. These results help to fill a knowledge gap on Vibrio diversity and provide data for predicting and controlling pathogenic Vibrio outbreaks in the Beibu Gulf.
Collapse
Affiliation(s)
- Xing Chen
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Hong Du
- Shantou University, Guangdong, 515063, P. R. China
| | - Si Chen
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Xiaoli Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Qiangsheng Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Jinli Tang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Gonglingxia Jiang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Shuqi Zou
- Department of Biological Sciences, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Jonathan M Adams
- School of Geographical and Oceanographic Sciences, Nanjing University, Nanjing, P. R. China
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China.
| | - Chengjian Jiang
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
| |
Collapse
|
27
|
Collin B, Hernroth B. Experimental evaluation of survival of Vibrio parahaemolyticus in fertilized cold-water sediment. J Appl Microbiol 2020; 129:75-84. [PMID: 32086873 DOI: 10.1111/jam.14618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/08/2020] [Accepted: 02/19/2020] [Indexed: 11/28/2022]
Abstract
AIMS This experimental study focuses on survival and consistence of Vibrio parahaemolyticus in cold-water sediments and how increasing temperature and nutritional availability can affect growth. METHODS AND RESULTS A pathogenic strain of V. parahaemolyticus was inoculated in seawater microcosms containing bottom sediment. Gradually, during 14 days, the temperature was upregulated from 8 to 21°C. Culturable V. parahaemolyticus was only found in the sediment but declined over time and did not recover even after another 2 days at 37°C. Numbers of culturable bacteria matched the amount found by q-PCR indicating that they did not enter a dormant state, contrary to those in the water layer. After adding decaying phytoplankton as fertilizer to the microcosms of 8 and 21°C for 7 and 14 days, the culturability of the bacteria increased significantly in the sediments at both temperatures and durations of exposure. CONCLUSION The study showed that V. parahaemolyticus can stay viable in cold-water sediment and growth was stimulated by fertilizers rather than by temperature. SIGNIFICANCE AND IMPACT OF THE STUDY Vibrio parahaemolyticus is a common cause of seafood-borne gastroenteritis and is today recognized in connection to increasing ocean temperature. The results indicate that this pathogen should be considered a risk in well-fertilized environments, such as aquacultures, even during cold periods.
Collapse
Affiliation(s)
- B Collin
- Department of Natural Science, Kristianstad University, Kristianstad, Sweden
| | - B Hernroth
- Department of Natural Science, Kristianstad University, Kristianstad, Sweden.,The Royal Swedish Academy of Sciences, Kristineberg Marine Research Station, Fiskebäckskil, Sweden
| |
Collapse
|
28
|
Hartwick MA, Urquhart EA, Whistler CA, Cooper VS, Naumova EN, Jones SH. Forecasting Seasonal Vibrio parahaemolyticus Concentrations in New England Shellfish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224341. [PMID: 31703312 PMCID: PMC6888421 DOI: 10.3390/ijerph16224341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022]
Abstract
Seafood-borne Vibrio parahaemolyticus illness is a global public health issue facing resource managers and the seafood industry. The recent increase in shellfish-borne illnesses in the Northeast United States has resulted in the application of intensive management practices based on a limited understanding of when and where risks are present. We aim to determine the contribution of factors that affect V. parahaemolyticus concentrations in oysters (Crassostrea virginica) using ten years of surveillance data for environmental and climate conditions in the Great Bay Estuary of New Hampshire from 2007 to 2016. A time series analysis was applied to analyze V. parahaemolyticus concentrations and local environmental predictors and develop predictive models. Whereas many environmental variables correlated with V. parahaemolyticus concentrations, only a few retained significance in capturing trends, seasonality and data variability. The optimal predictive model contained water temperature and pH, photoperiod, and the calendar day of study. The model enabled relatively accurate seasonality-based prediction of V. parahaemolyticus concentrations for 2014–2016 based on the 2007–2013 dataset and captured the increasing trend in extreme values of V. parahaemolyticus concentrations. The developed method enables the informative tracking of V. parahaemolyticus concentrations in coastal ecosystems and presents a useful platform for developing area-specific risk forecasting models.
Collapse
Affiliation(s)
- Meghan A. Hartwick
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, NH 03824, USA; (M.A.H.); (E.A.U.); (C.A.W.)
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Erin A. Urquhart
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, NH 03824, USA; (M.A.H.); (E.A.U.); (C.A.W.)
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Cheryl A. Whistler
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, NH 03824, USA; (M.A.H.); (E.A.U.); (C.A.W.)
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Elena N. Naumova
- Division of Nutrition Data Sciences, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA;
| | - Stephen H. Jones
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, NH 03824, USA; (M.A.H.); (E.A.U.); (C.A.W.)
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
- Correspondence: ; Tel.: +1-(603)-862-5124
| |
Collapse
|
29
|
Ndraha N, Hsiao HI. The risk assessment of Vibrio parahaemolyticus in raw oysters in Taiwan under the seasonal variations, time horizons, and climate scenarios. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Ability of Vibrio vulnificus isolated from fish of the Lagoa dos Patos estuary in south Brazil to form biofilms after sublethal stress and bacterial resistance to antibiotics and sanitizers. Int J Food Microbiol 2019; 303:19-25. [DOI: 10.1016/j.ijfoodmicro.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/26/2019] [Accepted: 05/10/2019] [Indexed: 01/22/2023]
|
31
|
Modeling the Potential of Submarine Groundwater Discharge to Facilitate Growth of Vibrio cholerae Bacteria. HYDROLOGY 2019. [DOI: 10.3390/hydrology6020039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Submarine groundwater discharge (SGD), the discharge of terrestrial groundwater to the ocean, can govern the coastal benthic environment. Bacteria such as Vibrio cholerae inhabit coastal waters and sediments, whose growth can be influenced by SGD. In particular, salinity changes introduced by SGD could have a positive effect on the abundance but also virulence of non-halophilic V. cholera bacteria dwelling in coastal waters and shallow marine sediments. Here we assess potential effects of SGD on the environmental properties that favor V. cholerae in a numerical modeling study representing multiple scenarios. Approaching natural systems, simulation results reveal a high sensitivity of non-halophilic Vibrio cholerae growth to SGD and its primary driving factors. This dependency leads to highest growth potential at high groundwater inflow and low hydraulic conductivity of the aquifer as well as for steep sea-side boundary slopes. Besides its minor impact on the extent of SGD in our model, dispersion is a crucial limiting factor for V. cholerae habitat. We conclude that there is a close connection between the driving factors of SGD and low salinity zones along a coastal slope, and recommend taking these into consideration for evaluating local V. cholerae outbreaks.
Collapse
|
32
|
Froelich B, Gonzalez R, Blackwood D, Lauer K, Noble R. Decadal monitoring reveals an increase in Vibrio spp. concentrations in the Neuse River Estuary, North Carolina, USA. PLoS One 2019; 14:e0215254. [PMID: 31013284 PMCID: PMC6478372 DOI: 10.1371/journal.pone.0215254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
A decade long study was conducted to investigate the ecological, biological, and temporal conditions that affect concentrations of Vibrio spp. bacteria in a well-studied lagoonal estuary. Water samples collected from the Neuse River Estuary in eastern North Carolina from 2004-2014 (with additional follow-up samples from Fall of 2018) were analyzed to determine Vibrio spp. concentrations, as well as the concentrations of inorganic and organic nutrients, fecal indicator bacteria, phytoplankton biomass, and a wide range of other physio-chemical estuarine parameters. A significant increase in Vibrio spp. was observed to occur in the estuary over the examined period. Strikingly, over this long duration study period, this statistically significant increase in total culturable Vibrio spp. concentrations does not appear to be correlated with changes in salinity, temperature, or dissolved oxygen, the three most commonly cited influential factors that predict estuarine Vibrio spp. abundance. Furthermore, shorter term (~3 years) data on specific Vibrio species (V. vulnificus and V. parahaemolyticus)show that while Vibrio spp. are increasing overall as a genus, the numbers of some key potentially pathogenic species are decreasing as a part of the total population, further supporting the concept that quantification of the entire genus is not a worthwhile use of resources toward predicting levels of specific potentially pathogenic species of public health concern. The significant increase in this concentration of Vibrio spp. in the studied estuary appears to be related to nitrogen and carbon in the system, indicating a continued need for further research.
Collapse
Affiliation(s)
- Brett Froelich
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences; Morehead City, NC, United States of America
| | - Raul Gonzalez
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences; Morehead City, NC, United States of America
| | - Denene Blackwood
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences; Morehead City, NC, United States of America
| | - Kellen Lauer
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences; Morehead City, NC, United States of America
| | - Rachel Noble
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences; Morehead City, NC, United States of America
| |
Collapse
|
33
|
Tsuchioka H, Izumiyama S, Endo T, Wada T, Harada H, Hashimoto A. Hydroxyapatite powder cake filtration reduces false positives associated with halophilic bacteria when evaluating Escherichia coli in seawater using Colilert-18. J Microbiol Methods 2019; 159:69-74. [PMID: 30797892 DOI: 10.1016/j.mimet.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Escherichia coli is an important fecal indicator bacterium that is used to evaluate the microbiological quality of water. The Colilert-18 (Quanti-Tray/2000) is a widely used, rapid, and simple quantitative method for detecting E. coli in drinking water, bathing water, and wastewater. However, Colilert-18 method is less reliable for seawater; false positives are often caused by halophilic bacteria such as Vibrio. While false positives can be avoided by diluting the sample by 10 times or more, the resulting decrease in detection limit makes it difficult to quantify E. coli in seawater. In this study, we combined cake filtration, using hydroxyapatite powder, with the Colilert-18 method to remove salinity without diluting the water sample. When quantifying E. coli in river water, the E. coli concentration obtained from the cake filtration/Colilert-18 method showed a high quantitative value of 90% or more, on average, compared to the concentration obtained with the original Colilert-18 method. The E. coli concentrations in seawater determined using the developed method were similar to those determined using the modified m-TEC method, with no false positives. Highly reliable quantitative values can be obtained using the proposed method because it is possible to measure 100 times as much sample compared to the dilution method. Thus, the developed method is expected to be a powerful tool that can eliminate the problem of false positives.
Collapse
Affiliation(s)
- Hiroaki Tsuchioka
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan; Hiroshima Environment and Health Association, Hiroshima, Japan
| | - Shinji Izumiyama
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuro Endo
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaomi Wada
- Hiroshima Environment and Health Association, Hiroshima, Japan
| | - Hiroyuki Harada
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Atsushi Hashimoto
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan.
| |
Collapse
|
34
|
Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana. BMC Infect Dis 2019; 19:76. [PMID: 30665342 PMCID: PMC6341726 DOI: 10.1186/s12879-019-3714-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Cholera has been endemic in Ghana since its detection in 1970. It has been shown that long-term survival of the bacteria may be attained in aquatic environments. Consequently, cholera outbreaks may be triggered predominantly in densely populated urban areas. We investigated clinical and environmental isolates of Vibrio cholerae O1 in Accra to determine their virulence genes, antibiotic susceptibility patterns and environmental factors maintaining their persistence in the environment. Methods Water samples from various sources were analyzed for the presence of V. cholerae O1 using culture methods. Forty clinical isolates from a previous cholera outbreak were included in the study for comparison. Antibiotic susceptibility patterns of the bacteria were determined by disc diffusion. Virulence genes were identified by analyzing genes for ctx, tcpA (tcpAEl Tor tcpACl), zot, ompW, rbfO1 and attRS using PCR. Physicochemical characteristics of water were investigated using standard methods. One-way ANOVA and student t - test were employed to analyze the relationship between physicochemical factors and the occurrence of V. cholerae O1. Results Eleven V. cholerae O1 strains were successfully isolated from streams, storage tanks and wells during the study period. All isolates were resistant to one or more of the eight antibiotics used. Multidrug resistance was observed in over 97% of the isolates. All isolates had genes for at least one virulence factor. Vibrio cholerae toxin gene was detected in 82.4% of the isolates. Approximately 81.8% of the isolates were positive for tcpAEl Tor gene, but also harbored the tcpAcl gene. Isolates were grouped into thirteen genotypes based on the genes analyzed. High temperature, salinity, total dissolved solids and conductivity was found to significantly correlate positively with isolation of V. cholerae O1. V. cholerae serotype Ogawa biotype El tor is the main biotype circulating in Ghana with the emergence of a hybrid strain. Conclusions Multidrug resistant V. cholerae O1 with different genotypes and pathogenicity are present in water sources and co-exist with non O1/O139 in the study area. Electronic supplementary material The online version of this article (10.1186/s12879-019-3714-z) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Oyelade AA, Adelowo OO, Fagade OE. bla NDM-1-producing Vibrio parahaemolyticus and V. vulnificus isolated from recreational beaches in Lagos, Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33538-33547. [PMID: 30267350 DOI: 10.1007/s11356-018-3306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Twenty-six strains of Vibrio parahaemolyticus and 14 strains of V. vulnificus isolated from selected beaches in Lagos State, Nigeria, were examined for virulence and antimicrobial resistance genes. The V. parahaemolyticus isolates were further serotyped and subjected to pulsed field gel electrophoresis (PFGE). Five strains of V. vulnificus and one of V. parahaemolyticus carried the New Delhi-metallo-beta-lactamase gene blaNDM-1, seven strains carried blaTEM, and four strains of V. vulnificus and one of V. parahaemolyticus carried blaCMY. Real-time PCR assay for detection of virulence genes tdh and trh in the V. parahaemolyticus isolates showed that five isolates were positive for tdh, two for trh, and one isolate carried both genes. Ten V. parahaemolyticus serogroups and 23 pulsotypes were identified from 26 isolates based on O and K antigens typing and PFGE. Five of the isolates belong to the pandemic strains O1:Kut and O3:K6, and three belonged to the highly virulent O4:Kut serotype. Nineteen of the isolates showed distinct PFGE banding patterns. These results highlighted the importance of Nigerian recreational beaches as reservoirs of antimicrobial resistance genes of global public health interest, such as blaNDM-1.
Collapse
Affiliation(s)
- Abolade A Oyelade
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria.
- New Jersey Department of Environmental Protection, Leeds Point Office, Leeds Point, NJ, USA.
| | | | | |
Collapse
|
36
|
Environmental Calcium Initiates a Feed-Forward Signaling Circuit That Regulates Biofilm Formation and Rugosity in Vibrio vulnificus. mBio 2018; 9:mBio.01377-18. [PMID: 30154262 PMCID: PMC6113621 DOI: 10.1128/mbio.01377-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The second messenger c-di-GMP is a key regulator of bacterial physiology. The V. vulnificus genome encodes nearly 100 proteins predicted to make, break, and bind c-di-GMP. However, relatively little is known regarding the environmental signals that regulate c-di-GMP levels and biofilm formation in V. vulnificus. Here, we identify calcium as a primary environmental signal that specifically increases intracellular c-di-GMP concentrations, which in turn triggers brp-mediated biofilm formation. We show that PAPS, a metabolic intermediate of the sulfate assimilation pathway, acts as a second messenger linking environmental calcium and sulfur source availability to the production of another intracellular second messenger (c-di-GMP) to regulate biofilm and rugose colony formation, developmental pathways that are associated with environmental persistence and efficient bivalve colonization by this potent human pathogen. Poor clinical outcomes (disfigurement, amputation, and death) and significant economic losses in the aquaculture industry can be attributed to the potent opportunistic human pathogen Vibrio vulnificus. V. vulnificus, as well as the bivalves (oysters) it naturally colonizes, is indigenous to estuaries and human-inhabited coastal regions and must endure constantly changing environmental conditions as freshwater and seawater enter, mix, and exit the water column. Elevated cellular c-di-GMP levels trigger biofilm formation, but relatively little is known regarding the environmental signals that initiate this response. Here, we show that calcium is a primary environmental signal that specifically increases intracellular c-di-GMP concentrations, which in turn triggers expression of the brp extracellular polysaccharide that enhances biofilm formation. A transposon screen for the loss of calcium-induced PbrpA expression revealed CysD, an enzyme in the sulfate assimilation pathway. Targeted disruption of the pathway indicated that the production of a specific metabolic intermediate, 3′-phosphoadenosine 5′-phosphosulfate (PAPS), was required for calcium-induced PbrpA expression and that PAPS was separately required for development of the physiologically distinct rugose phenotype. Thus, PAPS behaves as a second messenger in V. vulnificus. Moreover, c-di-GMP and BrpT (the activator of brp expression) acted in concert to bias expression of the sulfate assimilation pathway toward PAPS and c-di-GMP accumulation, establishing a feed-forward regulatory loop to boost brp expression. Thus, this signaling network links extracellular calcium and sulfur availability to the intracellular second messengers PAPS and c-di-GMP in the regulation of V. vulnificus biofilm formation and rugosity, survival phenotypes underpinning its evolution as a resilient environmental organism.
Collapse
|
37
|
Khan B, Clinton SM, Hamp TJ, Oliver JD, Ringwood AH. Potential impacts of hypoxia and a warming ocean on oyster microbiomes. MARINE ENVIRONMENTAL RESEARCH 2018; 139:27-34. [PMID: 29753492 DOI: 10.1016/j.marenvres.2018.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Bushra Khan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sandra M Clinton
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Timothy J Hamp
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - James D Oliver
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Amy H Ringwood
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
38
|
Vibrio Ecology in the Neuse River Estuary, North Carolina, Characterized by Next-Generation Amplicon Sequencing of the Gene Encoding Heat Shock Protein 60 ( hsp60). Appl Environ Microbiol 2018; 84:AEM.00333-18. [PMID: 29678912 DOI: 10.1128/aem.00333-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Of marine eubacteria, the genus Vibrio is intriguing because member species are relevant to both marine ecology and human health. Many studies have touted the relationships of Vibrio to environmental factors, especially temperature and salinity, to predict total Vibrio abundance but lacked the taxonomic resolution to identify the relationships among species and the key drivers of Vibrio dynamics. To improve next-generation sequencing (NGS) surveys of Vibrio, we have conducted both 16S small subunit rRNA and heat shock protein 60 (hsp60) amplicon sequencing of water samples collected at two well-studied locations in the Neuse River Estuary, NC. Samples were collected between May and December 2016 with enhanced sampling efforts in response to two named storms. Using hsp60 sequences, 21 Vibrio species were identified, including the potential human pathogens V. cholerae, V. parahaemolyticus, and V. vulnificus Changes in the Vibrio community mirrored seasonal and storm-related changes in the water column, especially in response to an influx of nutrient-rich freshwater to the estuary after Hurricane Matthew, which initiated dramatic changes in the overall Vibrio community. Individual species dynamics were wide ranging, indicating that individual Vibrio taxa have unique ecologies and that total Vibrio abundance predictors are insufficient for risk assessments of potentially pathogenic species. Positive relationships between Vibrio, dinoflagellates, and Cyanobacteria were identified, as were intraspecies associations, which further illuminated the interactions of cooccurring Vibrio taxa along environmental gradients.IMPORTANCE The objectives of this research were to utilize a novel approach to improve sequence-based surveys of Vibrio communities and to demonstrate the usefulness of this approach by presenting an analysis of Vibrio dynamics in the context of environmental conditions, with a particular focus on species that cause disease in humans and on storm effects. The methods presented here enabled the analysis of Vibrio dynamics with excellent taxonomic resolution and could be incorporated into future ecological studies and risk prediction strategies for potentially pathogenic species. Next-generation sequencing of hsp60 and other innovative sequence-based approaches are valuable tools and show great promise for studying Vibrio ecology and associated public health risks.
Collapse
|
39
|
Bliem R, Reischer G, Linke R, Farnleitner A, Kirschner A. Spatiotemporal Dynamics of Vibrio cholerae in Turbid Alkaline Lakes as Determined by Quantitative PCR. Appl Environ Microbiol 2018; 84:e00317-18. [PMID: 29625977 PMCID: PMC5960970 DOI: 10.1128/aem.00317-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022] Open
Abstract
In recent years, global warming has led to a growing number of Vibrio cholerae infections in bathing water users in regions formerly unaffected by this pathogen. It is therefore of high importance to monitor V. cholerae in aquatic environments and to elucidate the main factors governing its prevalence and abundance. For this purpose, rapid and standardizable methods that can be performed by routine water laboratories are prerequisite. In this study, we applied a recently developed multiplex quantitative PCR (qPCR) strategy (i) to monitor the spatiotemporal variability of V. cholerae abundance in two small soda pools and a large lake that is intensively used for recreation and (ii) to elucidate the main factors driving V. cholerae dynamics in these environments. V. cholerae was detected with qPCR at high concentrations of up to 970,000 genomic units 100 ml-1 during the warm season, up to 2 orders of magnitude higher than values obtained by cultivation. An independent cytometric approach led to results comparable to qPCR data but with significantly more positive samples due to problems with DNA recovery for qPCR. Not a single sample was positive for toxigenic V. cholerae, indicating that only nontoxigenic V. cholerae (NTVC) was present. Temperature was the main predictor of NTVC abundance, but the quality and quantity of dissolved organic matter were also important environmental correlates. Based on this study, we recommend using the developed qPCR strategy for quantification of toxigenic and nontoxigenic V. cholerae in bathing waters with the need for improvements in DNA recovery.IMPORTANCE There is a definitive need for rapid and standardizable methods to quantify waterborne bacterial pathogens. Such methods have to be thoroughly tested for their applicability to environmental samples. In this study, we critically tested a recently developed multiplex qPCR strategy for its applicability to determine the spatiotemporal variability of V. cholerae abundance in lakes with a challenging water matrix. Several qPCR protocols for V. cholerae detection have been developed in the laboratory, but comprehensive studies on the application to environmental samples are extremely scarce. In our study, we demonstrate that our developed qPCR approach is a valuable tool but that there is a need for improvement in DNA recovery for complex water matrices. Furthermore, we found that nontoxigenic V. cholerae is present in very high numbers in the investigated ecosystems, while toxigenic V. cholerae is apparently absent. Such information is of importance for public health.
Collapse
Affiliation(s)
- Rupert Bliem
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria
- Armament and Defence Technology Agency, NBC & Environmental Protection Technology Division, Vienna, Austria
| | - Georg Reischer
- Technische Universität Wien, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Rita Linke
- Technische Universität Wien, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Andreas Farnleitner
- Technische Universität Wien, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Alexander Kirschner
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| |
Collapse
|
40
|
Ghenem L, Elhadi N. Isolation, molecular characterization, and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from coastal water in the Eastern Province of Saudi Arabia. JOURNAL OF WATER AND HEALTH 2018; 16:57-69. [PMID: 29424719 DOI: 10.2166/wh.2017.361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic marine microbe that causes gastroenteritis, wound infections, and septicemia in humans. Since the emergence of the pandemic clone O3:K6, V. parahaemolyticus has become a globally well-known pathogen. In this study, 375 seawater samples collected from the Eastern coast of Saudi Arabia were tested for the presence of V. parahaemolyticus. Three hundred and forty samples were determined positive for V. parahaemolyticus using traditional microbiological techniques. The genes toxR and tlh were detected via polymerase chain reaction (PCR) in 41 isolates from 23 samples (6%). Thermostable direct hemolysin (tdh) and thermostable direct hemolysin-related hemolysin (tdh) are the most common virulence genes associated with V. parahaemolyticus. As such, four isolates were tdh+ (1%) and another four were trh+ (1%). No evidence of pandemic clones was detected using group-specific PCR (GS-PCR). Samples were tested for antibiotic susceptibility against 28 agents. The vast majority of samples exhibited high resistance to carbenicillin (98%), ampicillin (88%), and cephalothin (76%). The multiple antibiotics resistance index was >0.2 for 35% of the isolates. The results of this study confirm the presence of V. parahaemolyticus in the Eastern coast of Saudi Arabia. This is the first report of tdh+ and trh+ isolates from this area.
Collapse
Affiliation(s)
- Lubna Ghenem
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Kingdom of Saudi Arabia E-mail:
| | - Nasreldin Elhadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Kingdom of Saudi Arabia E-mail:
| |
Collapse
|
41
|
Sullivan TJ, Neigel JE. Effects of temperature and salinity on prevalence and intensity of infection of blue crabs, Callinectes sapidus, by Vibrio cholerae, V. parahaemolyticus, and V. vulnificus in Louisiana. J Invertebr Pathol 2017; 151:82-90. [PMID: 29126967 DOI: 10.1016/j.jip.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/22/2017] [Accepted: 11/02/2017] [Indexed: 11/17/2022]
Abstract
Coastal marine and estuarine environments are experiencing higher average temperatures, greater frequency of extreme temperature events, and altered salinities. These changes are expected to stress organisms and increase their susceptibility to infectious diseases. However, beyond these generalities, little is known about how environmental factors influence host-pathogen relationships in the marine realm. We investigated the prevalence and intensity of infections by Vibrio cholerae, V. parahaemolyticus, and V. vulnificus in blue crabs, Callinectes sapidus, from Louisiana saltmarshes in relation to temperature and salinity. We evaluated relationships for single measurements taken at the time of collection and for more complex measurements representing accumulated exposure to physiologically-stressful environmental conditions for up to 31 days prior to collection. We found that: (1) prevalence of infection varied across the Louisiana coast, (2) prevalence of all three Vibrio species was influenced by temperature and salinity, and (3) measurements that represent accumulated exposure to extreme conditions are useful predictors of infection prevalence and can provide insights into underlying biological mechanisms.
Collapse
Affiliation(s)
- Timothy J Sullivan
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA.
| | - Joseph E Neigel
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| |
Collapse
|
42
|
Environmental Determinants of Vibrio parahaemolyticus in the Chesapeake Bay. Appl Environ Microbiol 2017; 83:AEM.01147-17. [PMID: 28842541 DOI: 10.1128/aem.01147-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/19/2017] [Indexed: 12/29/2022] Open
Abstract
Vibrio parahaemolyticus naturally occurs in brackish and marine waters and is one of the leading causes of seafood-borne illness. Previous work studying the ecology of V. parahaemolyticus has often been limited in geographic extent and lacked a full range of environmental measures. This study used a unique large data set of surface water samples in the Chesapeake Bay (n = 1,385) collected from 148 monitoring stations from 2007 to 2010. Water was analyzed for more than 20 environmental parameters, with additional meteorological and surrounding land use data. The V. parahaemolyticus-specific genetic markers thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) were assayed using quantitative PCR (qPCR), and interval-censored regression models with nonlinear effects were estimated to account for limits of detection and quantitation. tlh was detected in 19.6% of water samples; tdh or trh markers were not detected. The results confirmed previously reported positive associations for V. parahaemolyticus abundance with temperature and turbidity and negative associations with high salinity (>10 to 23‰). Furthermore, the salinity relationship was determined to be a function of both low temperature and turbidity, with an increase of either nullifying the high salinity effect. Associations with dissolved oxygen and phosphate also appeared stronger when samples were taken near human developments. A renewed focus on the V. parahaemolyticus ecological paradigm is warranted to protect public health.IMPORTANCE Vibrio parahaemolyticus is one of the leading causes of seafood-borne illness in the United States and across the globe. Exposure is often through consuming raw or undercooked shellfish. Given the natural presence of the bacterium in the marine environment, an improved understanding of its environmental determinants is necessary for future preventative measures. This analysis of environmental Vibrio parahaemolyticus is one of only a few that utilize a large data set measured over a wide geographic and temporal range. The analysis also includes a large number of environmental parameters for Vibrio modeling, many of which have previously only been tested sporadically, and some of which have not been considered before. The results of the analysis revealed previously unknown relationships between salinity, turbidity, and temperature that provide significant insight into the abundance and persistence of V. parahaemolyticus bacterium in the environment. This information will be essential for developing environmental forecast models for the bacterium.
Collapse
|
43
|
Thickman JD, Gobler CJ. The ability of algal organic matter and surface runoff to promote the abundance of pathogenic and non-pathogenic strains of Vibrio parahaemolyticus in Long Island Sound, USA. PLoS One 2017; 12:e0185994. [PMID: 29020074 PMCID: PMC5636122 DOI: 10.1371/journal.pone.0185994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023] Open
Abstract
Food safety is a major concern in the shellfish industry, as severe illness can result from consuming shellfish that have accumulated waterborne pathogens. Shellfish harvesting areas are typically monitored for indicator bacteria such as fecal coliforms that serve as proxies for enteric pathogens although these indicators have shown little relation to some naturally occurring pathogenic bacteria such as Vibrio parahaemolyticus. To examine the dynamics and ecology of pathogenic and non-pathogenic strains of V. parahaemolyticus and address the relevance of indicator bacteria in predicting V. parahaemolyticus concentrations, field surveys and experiments were carried out in western Long Island Sound, NY, USA, a region that has experienced recent outbreaks of shellfish contaminated with V. parahaemolyticus. Pathogenic and non-pathogenic strains were quantified via PCR detection of marker genes and most probable number techniques. Field survey data showed little correspondence between fecal coliforms and V. parahaemolyticus, but significant correlations between V. parahaemolyticus and an alternative indicator, enterococci, and between V. parahaemolyticus and short-term (48 h) rainfall were observed. Experiments demonstrated that enrichment of seawater with phytoplankton-derived dissolved organic matter significantly increased the concentration of total V. parahaemolyticus and the presence pathogenic V. parahaemolyticus, but higher temperatures did not. Collectively, these study results suggest that fecal coliforms may fail to account for the full suite of important shellfish pathogens but that enterococci could provide a potential alternative or supplement to shellfish sanitation monitoring. Given the ability of algal-derived dissolved organic matter to promote the growth of pathogenic V. parahaemolyticus, restricting nutrient inputs into coastal water bodies that promote algal blooms may indirectly decrease the proliferation of V. parahaemolyticus and protect public health.
Collapse
Affiliation(s)
- Jake D. Thickman
- School of Marine and Atmospheric Sciences at Stony Brook University, Southampton, New York, United States of America
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences at Stony Brook University, Southampton, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Girard L, Peuchet S, Servais P, Henry A, Charni-Ben-Tabassi N, Baudart J. Spatiotemporal Dynamics of Total Viable Vibrio spp. in a NW Mediterranean Coastal Area. Microbes Environ 2017; 32:210-218. [PMID: 28724850 PMCID: PMC5606690 DOI: 10.1264/jsme2.me17028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A cellular approach combining Direct Viable Counting and Fluorescent In Situ Hybridization using a one-step multiple-probe technique and Solid Phase Cytometry (DVC-FISH-SPC) was developed to monitor total viable vibrios and cover the detection of a large diversity of vibrios. FISH combined three probes in the same assay and targeted sequences located at different positions on the 16S rRNA of Vibrio and Aliivibrio members. We performed a 10-month in situ study to investigate the weekly dynamics of viable vibrios relative to culturable counts at two northwestern Mediterranean coastal sites, and identified the key physicochemical factors for their occurrence in water using a multivariate analysis. Total viable and culturable cell counts showed the same temporal pattern during the warmer season, whereas the ratios between both methods were inverted during the colder seasons (<15°C), indicating that some of the vibrio community had entered into a viable but non-culturable (VBNC) state. We confirmed that Seawater Surface Temperature explained 51–62% of the total variance in culturable counts, and also showed that the occurrence of viable vibrios is controlled by two variables, pheopigment (15%) and phosphate (12%) concentrations, suggesting that other unidentified factors play a role in maintaining viability.
Collapse
Affiliation(s)
- Léa Girard
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique de Banyuls sur mer, F-66650 Banyuls sur Mer
| | - Sébastien Peuchet
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique de Banyuls sur mer, F-66650 Banyuls sur Mer
| | - Pierre Servais
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles
| | | | | | - Julia Baudart
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique de Banyuls sur mer, F-66650 Banyuls sur Mer
| |
Collapse
|
45
|
Bartlett TM, Bratton BP, Duvshani A, Miguel A, Sheng Y, Martin NR, Nguyen JP, Persat A, Desmarais SM, VanNieuwenhze MS, Huang KC, Zhu J, Shaevitz JW, Gitai Z. A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis. Cell 2017; 168:172-185.e15. [PMID: 28086090 DOI: 10.1016/j.cell.2016.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/05/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022]
Abstract
Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.
Collapse
Affiliation(s)
- Thomas M Bartlett
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Amit Duvshani
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Amanda Miguel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ying Sheng
- Department of Microbiology, Nanjing Agricultural University, Nanjing 210014, China
| | - Nicholas R Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey P Nguyen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alexandre Persat
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing 210014, China; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
46
|
Khandeparker L, Eswaran R, Gardade L, Kuchi N, Mapari K, Naik SD, Anil AC. Elucidation of the tidal influence on bacterial populations in a monsoon influenced estuary through simultaneous observations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:41. [PMID: 28035613 DOI: 10.1007/s10661-016-5687-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
The influence of tides on bacterial populations in a monsoon influenced tropical estuary was assessed through fine resolution sampling (1 to 3 h) during spring and neap tides from mouth to the freshwater end at four stations during pre-monsoon, monsoon and post-monsoon seasons. Higher abundance of total bacterial count (TBC) in surface water near the river mouth, compared to the upstream, during pre-monsoon was followed by an opposite scenario during the monsoon When seasonally compared, it was during the post-monsoon season when TBC in surface water was highest, with simultaneous decrease in their count in the river sediment. The total viable bacterial count (TVC) was influenced by the depth-wise stratification of salinity, which varied with tidal fluctuation, usually high and low during the neap and spring tides respectively. The abundance of both the autochthonous Vibrio spp. and allochthonous coliform bacteria was influenced by the concentrations of dissolved nutrients and suspended particulate matter (SPM). It is concluded that depending on the interplay of riverine discharge and tidal amplitude, sediment re-suspension mediated increase in SPM significantly regulates bacteria populations in the estuarine water, urging the need of systematic regular monitoring for better prediction of related hazards, including those associated with the rise in pathogenic Vibrio spp. in the changing climatic scenarios.
Collapse
Affiliation(s)
| | - Ranjith Eswaran
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Laxman Gardade
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Nishanth Kuchi
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Kaushal Mapari
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Sneha D Naik
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | | |
Collapse
|
47
|
Raszl S, Froelich B, Vieira C, Blackwood A, Noble R. Vibrio parahaemolyticusandVibrio vulnificusin South America: water, seafood and human infections. J Appl Microbiol 2016; 121:1201-1222. [DOI: 10.1111/jam.13246] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/27/2016] [Accepted: 07/24/2016] [Indexed: 11/29/2022]
Affiliation(s)
- S.M. Raszl
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Florianopolis Brazil
| | - B.A. Froelich
- Institute of Marine Sciences; The University of North Carolina at Chapel Hill (UNC-CH); Morehead City NC USA
| | - C.R.W. Vieira
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Florianopolis Brazil
| | - A.D. Blackwood
- Institute of Marine Sciences; The University of North Carolina at Chapel Hill (UNC-CH); Morehead City NC USA
| | - R.T. Noble
- Institute of Marine Sciences; The University of North Carolina at Chapel Hill (UNC-CH); Morehead City NC USA
| |
Collapse
|
48
|
Machado A, Bordalo AA. Detection and Quantification of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in Coastal Waters of Guinea-Bissau (West Africa). ECOHEALTH 2016; 13:339-349. [PMID: 26940502 DOI: 10.1007/s10393-016-1104-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/27/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
V. cholerae, V. parahaemolyticus, and V. vulnificus are recognized human pathogens. Although several studies are available worldwide, both on environmental and clinical contexts, little is known about the ecology of these vibrios in African coastal waters. In this study, their co-occurrence and relationships to key environmental constraints in the coastal waters of Guinea-Bissau were examined using the most probable number-polymerase chain reaction (MPN-PCR) approach. All Vibrio species were universally detected showing higher concentrations by the end of the wet season. The abundance of V. cholerae (ISR 16S-23S rRNA) ranged 0-1.2 × 10(4) MPN/L, whereas V. parahaemolyticus (toxR) varied from 47.9 to 1.2 × 10(5) MPN/L. Although the presence of genotypes associated with virulence was found in environmental V. cholerae isolates, ctxA+ V. cholerae was detected, by MPN-PCR, only on two occasions. Enteropathogenic (tdh+ and trh+) V. parahaemolyticus were detected at concentrations up to 1.2 × 10(3) MPN/L. V. vulnificus (vvhA) was detected simultaneously in all surveyed sites only at the end of the wet season, with maximum concentrations of 1.2 × 10(5) MPN/L. Our results suggest that sea surface water temperature and salinity were the major environmental controls to all Vibrio species. This study represents the first detection and quantification of co-occurring Vibrio species in West African coastal waters, highlighting the potential health risk associated with the persistence of human pathogenic Vibrio species.
Collapse
Affiliation(s)
- Ana Machado
- Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences (ICBAS-UP), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | - Adriano A Bordalo
- Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences (ICBAS-UP), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| |
Collapse
|
49
|
Abstract
Vibrio vulnificus, carrying a 50% fatality rate, is the most deadly of the foodborne pathogens. It occurs in estuarine and coastal waters and it is found in especially high numbers in oysters and other molluscan shellfish. The biology of V. vulnificus, including its ecology, pathogenesis, and molecular genetics, has been described in numerous reviews. This article provides a brief summary of some of the key aspects of this important human pathogen, including information on biotypes and genotypes, virulence factors, risk factor requirements and the role of iron in disease, association with oysters, geographic distribution, importance of salinity and water temperature, increasing incidence associated with global warming. This article includes some of our findings as presented at the "Vibrios in the Environment 2010" conference held in Biloxi, MS.
Collapse
|
50
|
Siboni N, Balaraju V, Carney R, Labbate M, Seymour JR. Spatiotemporal Dynamics of Vibrio spp. within the Sydney Harbour Estuary. Front Microbiol 2016; 7:460. [PMID: 27148171 PMCID: PMC4829023 DOI: 10.3389/fmicb.2016.00460] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/21/2016] [Indexed: 01/22/2023] Open
Abstract
Vibrio are a genus of marine bacteria that have substantial environmental and human health importance, and there is evidence that their impact may be increasing as a consequence of changing environmental conditions. We investigated the abundance and composition of the Vibrio community within the Sydney Harbour estuary, one of the most densely populated coastal areas in Australia, and a region currently experiencing rapidly changing environmental conditions. Using quantitative PCR (qPCR) and Vibrio-specific 16S rRNA amplicon sequencing approaches we observed significant spatial and seasonal variation in the abundance and composition of the Vibrio community. Total Vibrio spp. abundance, derived from qPCR analysis, was higher during the late summer than winter and within locations with mid-range salinity (5-26 ppt). In addition we targeted three clinically important pathogens: Vibrio cholerae, V. Vulnificus, and V. parahaemolyticus. While toxigenic strains of V. cholerae were not detected in any samples, non-toxigenic strains were detected in 71% of samples, spanning a salinity range of 0-37 ppt and were observed during both late summer and winter. In contrast, pathogenic V. vulnificus was only detected in 14% of samples, with its occurrence restricted to the late summer and a salinity range of 5-26 ppt. V. parahaemolyticus was not observed at any site or time point. A Vibrio-specific 16S rRNA amplicon sequencing approach revealed clear shifts in Vibrio community composition across sites and between seasons, with several Vibrio operational taxonomic units (OTUs) displaying marked spatial patterns and seasonal trends. Shifts in the composition of the Vibrio community between seasons were primarily driven by changes in temperature, salinity and NO2, while a range of factors including pH, salinity, dissolved oxygen (DO) and NOx (Nitrogen Oxides) explained the observed spatial variation. Our evidence for the presence of a spatiotemporally dynamic Vibrio community within Sydney Harbour is notable given the high levels of human use of this waterway, and the significant increases in seawater temperature predicted for this region.
Collapse
Affiliation(s)
- Nachshon Siboni
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| | - Varunan Balaraju
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
- School of Life Sciences, The ithree institute, University of Technology Sydney, UltimoNSW, Australia
| | - Richard Carney
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| | - Maurizio Labbate
- School of Life Sciences, The ithree institute, University of Technology Sydney, UltimoNSW, Australia
| | - Justin R. Seymour
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| |
Collapse
|