1
|
Grossman AS, Lei L, Botting JM, Liu J, Nahar N, Souza JGS, Liu J, McLean JS, He X, Bor B. Saccharibacteria deploy two distinct Type IV pili, driving episymbiosis, host competition, and twitching motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624915. [PMID: 39651235 PMCID: PMC11623550 DOI: 10.1101/2024.11.25.624915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
All cultivated Patescibacteria, or CPR, exist as obligate episymbionts on other microbes. Despite being ubiquitous in mammals and environmentally, molecular mechanisms of host identification and binding amongst ultrasmall bacterial episymbionts are largely unknown. Type 4 pili (T4P) are well conserved in this group and predicted to facilitate symbiotic interactions. To test this, we targeted T4P pilin genes in Saccharibacteria Nanosynbacter lyticus strain TM7x to assess their essentiality and roles in symbiosis. Our results revealed that N. lyticus assembles two distinct T4P, a non-essential thin pili that has the smallest diameter of any T4P and contributes to host-binding, episymbiont growth, and competitive fitness relative to other Saccharibacteria, and an essential thick pili whose functions include twitching motility. Identification of lectin-like minor pilins and modification of host cell walls suggest glycan binding mechanisms. Collectively our findings demonstrate that Saccharibacteria encode unique extracellular pili that are vital mediators of their underexplored episymbiotic lifestyle.
Collapse
Affiliation(s)
- Alex S Grossman
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Lei Lei
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610093, China
| | - Jack M Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jett Liu
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Nusrat Nahar
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - João Gabriel S Souza
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, Guarulhos, São Paulo 07023-070, Brazil
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jeffrey S McLean
- Department of Microbiology, University of Washington, Seattle WA, 98109, USA
- Department of Periodontics, University of Washington, Seattle WA, 98195, USA
- Department of Oral Health Sciences, University of Washington, Seattle WA, 98195, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| |
Collapse
|
2
|
Higo M, Kang DJ, Isobe K. Root-associated microbial community and diversity in napiergrass across radiocesium-contaminated lands after the Fukushima-Daiichi nuclear disaster in Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123051. [PMID: 38043771 DOI: 10.1016/j.envpol.2023.123051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The microbiome derived from soil associated with plant roots help in plant growth and stress resistance. It exhibits potential benefits for soil remediation and restoration of radioactive-cesium (137Cs)-contaminated soils. However, there is still limited information about the community and diversity of root-associated microbiome in 137Cs-contaminated soil after the Fukushima-Daiichi Nuclear Power Plant (FDNPP) disaster. To address this, a comparative analysis of communities and diversity of root-associated microbiomes was conducted in two field types after the FDNPP disaster. In 2013, we investigated the community and diversity of indigenous root-associated microbiome of napiergrass (Pennisetum purpureum) grown in both grassland and paddy fields of 137Cs-contaminated land-use type within a 30-km radius around the FDNPP. Results showed that the root-associated bacterial communities in napiergrass belonged to 32 phyla, 75 classes, 174 orders, 284 families, and 521 genera, whereas the root-associated fungal communities belonged to 5 phyla, 11 classes, 31 orders, 59 families, and 64 genera. The most frequently observed phylum in both grassland and paddy field was Proteobacteria (47.4% and 55.9%, respectively), followed by Actinobacteriota (23.8% and 27.9%, respectively) and Bacteroidota (10.1% and 11.3%, respectively). The dominant fungal phylum observed in both grassland and paddy field was Basidiomycota (75.9% and 94.2%, respectively), followed by Ascomycota (24.0% and 5.8%, respectively). Land-use type significantly affected the bacterial and fungal communities that colonize the roots of napiergrass. Several 137Cs-tolerant bacterial and fungal taxa were also identified, which may be potentially applied for the phytoremediation of 137Cs-contaminated areas around FDNPP. These findings contribute to a better understanding of the distribution of microbial communities in 137Cs-contaminated lands and their long-term ecosystem benefits for phytoremediation efforts.
Collapse
Affiliation(s)
- Masao Higo
- College of Bioresource Sciences, Nihon University, Kameino, 1866, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Dong-Jin Kang
- Teaching and Research Center for Bio-coexistence, Faculty of Agriculture and Life Sciences, Hirosaki University, Gosyogawara, Aomori, 037-0202, Japan.
| | - Katsunori Isobe
- College of Bioresource Sciences, Nihon University, Kameino, 1866, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
3
|
Momper L, Casar CP, Osburn MR. A metagenomic view of novel microbial and metabolic diversity found within the deep terrestrial biosphere at DeMMO: A microbial observatory in South Dakota, USA. Environ Microbiol 2023; 25:3719-3737. [PMID: 37964716 DOI: 10.1111/1462-2920.16543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
The deep terrestrial subsurface is a large and diverse microbial habitat and vast repository of biomass. However, in relation to its size and physical heterogeneity we have limited understanding of taxonomic and metabolic diversity in this realm. Here we present a detailed metagenomic analysis of samples from the Deep Mine Microbial Observatory (DeMMO) spanning depths from the surface to 1.5 km into the crust. From eight geochemically and spatially distinct fluid samples we reconstructed ~600 partial to near-complete metagenome-assembled genomes (MAGs), representing 50 distinct phyla and including 18 candidate phyla. These novel clades include members of the candidate phyla radiation, two new MAGs from OLB16, a phylum originally identified in DeMMO fluids and for which only one other MAG is currently available, and new MAGs from the Eisenbacteria, Omnitrophota, and Edwardsbacteria. We find that microbes spanning this expansive phylogenetic diversity and physical subsurface space gain a competitive edge by maintaining a wide variety of functional pathways, are often capable of numerous dissimilatory energy metabolisms and poised to take advantage of nutrients as they become available in isolated fracture fluids. Our results support and expand on emerging themes of tight nutrient cycling and genomic plasticity in deep subsurface biosphere taxa.
Collapse
Affiliation(s)
- Lily Momper
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
- Exponent, Inc, Menlo Park, California, USA
| | - Caitlin P Casar
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Magdalena R Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
4
|
Tagg AS, Sperlea T, Labrenz M, Harrison JP, Ojeda JJ, Sapp M. Year-Long Microbial Succession on Microplastics in Wastewater: Chaotic Dynamics Outweigh Preferential Growth. Microorganisms 2022; 10:microorganisms10091775. [PMID: 36144377 PMCID: PMC9506493 DOI: 10.3390/microorganisms10091775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Microplastics are a globally-ubiquitous aquatic pollutant and have been heavily studied over the last decade. Of particular interest are the interactions between microplastics and microorganisms, especially the pursuit to discover a plastic-specific biome, the so-called plastisphere. To follow this up, a year-long microcosm experimental setup was deployed to expose five different microplastic types (and silica beads control) to activated aerobic wastewater in controlled conditions, with microbial communities being measured four times over the course of the year using 16S rDNA (bacterial) and ITS (fungal) amplicon sequencing. The biofilm community shows no evidence of a specific plastisphere, even after a year of incubation. Indeed, the microbial communities (particularly bacterial) show a clear trend of increasing dissimilarity between plastic types as time increases. Despite little evidence for a plastic-specific community, there was a slight grouping observed for polyolefins (PE and PP) in 6–12-month biofilms. Additionally, an OTU assigned to the genus Devosia was identified on many plastics, increasing over time while showing no growth on silicate (natural particle) controls, suggesting this could be either a slow-growing plastic-specific taxon or a symbiont to such. Both substrate-associated findings were only possible to observe in samples incubated for 6–12 months, which highlights the importance of studying long-term microbial community dynamics on plastic surfaces.
Collapse
Affiliation(s)
- Alexander S. Tagg
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
- Correspondence:
| | - Theodor Sperlea
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Matthias Labrenz
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jesse P. Harrison
- CSC—IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Jesús J. Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Melanie Sapp
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Li X, Yang M, Mu T, Miao D, Liu J, Xing J. Composition and key-influencing factors of bacterial communities active in sulfur cycling of soda lake sediments. Arch Microbiol 2022; 204:317. [PMID: 35567694 DOI: 10.1007/s00203-022-02925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/20/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
Bacteria are important participants in sulfur cycle of the extremely haloalkaline environment, e.g. soda lake. The effects of physicochemical factors on the composition of sulfide-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in soda lake have remained elusive. Here, we surveyed the community structure of total bacteria, SOB and SRB based on 16S rRNA, soxB and dsrB gene sequencing, respectively, in five soda lakes with different physicochemical factors. The results showed that the dominant bacteria belonged to the phyla Proteobacteria, Bacteroidetes, Halanaerobiaeota, Firmicutes and Actinobacteria. SOB and SRB were widely distributed in lakes with different physicochemical characteristics, and the community composition were different. In general, salinity and inorganic nitrogen sources (NH4+-N, NO3--N) were the most significant factors. Specifically, the communities of SOB, mainly including Thioalkalivibrio, Burkholderia, Paracoccus, Bradyrhizobium, and Hydrogenophaga genera, were remarkably influenced by the levels of NH4+-N and salinity. Yet, for SRB communities, including Desulfurivibrio, Candidatus Electrothrix, Desulfonatronospira, Desulfonatronum, Desulfonatronovibrio, Desulfonatronobacter and so on, the most significant determinants were salinity and NO3--N. Besides, Rhodoplanes played a significant role in the interaction between SOB and SRB. From our results, the knowledge regarding the community structures of SOB and SRB in extremely haloalkaline environment was extended.
Collapse
Affiliation(s)
- Xiangyuan Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Maohua Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Delu Miao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinlong Liu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Bioleaching of metals from waste printed circuit boards using bacterial isolates native to abandoned gold mine. Biometals 2021; 34:1043-1058. [PMID: 34213670 DOI: 10.1007/s10534-021-00326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
In the present study, native bacterial strains isolated from abandoned gold mine and Chromobacterium violaceum (MTCC-2656) were applied for bioleaching of metals from waste printed circuit boards (WPCBs). Toxicity assessment and dose-response analysis of WPCBs showed EC50 values of 128.9, 98.7, and 90.8 g/L for Bacillus sp. SAG3, Bacillus megaterium SAG1 and Lysinibacillus sphaericus SAG2, respectively, whereas, for C. violaceum EC50 was 83.70 g/L. This indicates the viable operation range and technological feasibility of metals bioleaching from WPCBs using mine isolates. The influencing factors such as pH, pulp density, temperature, and precursor molecule (glycine) were optimized by one-factor at a time method (OFAT). The maximum metal recovery occurred at an initial pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C and a glycine concentration of 5 g/L, except for L. sphaericus which showed optimum activity at initial pH of 8.0. Under optimal conditions the metals recovery of Cu and Au from WPCBs were recorded as 87.5 ± 8% and 73.6 ± 3% for C. violaceum and 72.7 ± 5% and 66.6 ± 6% for B. megaterium, respectively. Kinetic modeling results showed that the data was best described by first order reaction kinetics, where the rate of metal solubilization from WPCBs depended upon microbial lixiviant production. This is the first report on bioleaching of metals from e-waste using bacterial isolates from the gold mine of Solan, HP. Our study demonstrated the potential of bioleaching for resource recovery from WPCBs dust, aimed to be disposed at landfills, and its effectiveness in extraction of elements those are at high supply risk and demand.
Collapse
|
7
|
Metagenomics and Culture Dependent Insights into the Distribution of Firmicutes across Two Different Sample Types Located in the Black Hills Region of South Dakota, USA. Microorganisms 2021; 9:microorganisms9010113. [PMID: 33418927 PMCID: PMC7825136 DOI: 10.3390/microorganisms9010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Firmicutes is almost a ubiquitous phylum. Several genera of this group, for instance, Geobacillus, are recognized for decomposing plant organic matter and for producing thermostable ligninolytic enzymes. Amplicon sequencing was used in this study to determine the prevalence and genetic diversity of the Firmicutes in two distinctly related environmental samples—South Dakota Landfill Compost (SDLC, 60 °C), and Sanford Underground Research Facility sediments (SURF, 45 °C). Although distinct microbial community compositions were observed, there was a dominance of Firmicutes in both the SDLC and SURF samples, followed by Proteobacteria. The abundant classes of bacteria in the SDLC site, within the phylum Firmicutes, were Bacilli (83.2%), and Clostridia (2.9%). In comparison, the sample from the SURF mine was dominated by the Clostridia (45.8%) and then Bacilli (20.1%). Within the class Bacilli, the SDLC sample had more diversity (a total of 11 genera with more than 1% operational taxonomic unit, OTU). On the other hand, SURF samples had just three genera, about 1% of the total population: Bacilli, Paenibacillus, and Solibacillus. With specific regard to Geobacillus, it was found to be present at a level of 0.07% and 2.5% in SURF and SDLC, respectively. Subsequently, culture isolations of endospore-forming Firmicutes members from these samples led to the isolation of a total of 117 isolates. According to colony morphologies, and identification based upon 16S rRNA and gyrB gene sequence analysis, we obtained 58 taxonomically distinct strains. Depending on the similarity indexes, a gyrB sequence comparison appeared more useful than 16S rRNA sequence analysis for inferring intra- and some intergeneric relationships between the isolates.
Collapse
|
8
|
Govil T, Sharma W, Chauhan NK, Kumar S, Salem DR, Sani RK. "MINES" method for genomic DNA extraction from deep biosphere biofilms. J Microbiol Methods 2019; 167:105730. [PMID: 31676422 DOI: 10.1016/j.mimet.2019.105730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 01/24/2023]
Abstract
Successful and efficient extraction of high quality, high molecular weight genomic DNA from the environmental samples is an essential primary step to understand the genetic, metabolic and evolutionary characteristics of the microbial communities. Deep mine biofilm samples that contain high amounts of mucoid exopolysaccharide often pose difficulties to obtaining refined community DNA. To circumvent this hindrance, we report our "MINES" method which we developed for optimal biofilm DNA recovery suitable for all types of high-resolution downstream applications. The method is also suitable for samples collected from landfill compost, kitchen digest (KD), and for Gram-positive Geobacillus sp. strain WSUCF1 and Gram-negative E. coli DH5α strains. In one form of the method, use of a gentle preprocessing technique to loosen the mucoid layer, combined with a multi-lytic polyzyme treatment to maximize yields from all cell types in the biofilm sample, yielded >1 μg of high molecular weight DNA (16-20 kb) per gram of the biofilm sample, with an A260/280 and A260/230 ratio of about 2. Furthermore, amplification of 16S rRNA genes as well as restriction digestion with BamHI and HindIII suggest that the newly developed method can minimize any inhibitory effects of contaminants. Results indicate that it is an appropriate methodology for the extraction of total genomic DNA for functional metagenomic studies and may be applicable to other environmental samples from which DNA extraction is challenging. IMPORTANCE: Our present knowledge of microorganisms and their enzymes from deep mine subsurfaces is based largely on laboratory studies of pure microbial cultures. These methods tend only to hit nearly 1% of the entire microbial community. In this regard, metagenomics, has emerged as a strategic approach to explore unculturable microbes through the sequencing and analysis of DNA extracted from the environmental samples. This research paper discusses our "MINES" method for genomic DNA extraction from deep biosphere biofilm samples.
Collapse
Affiliation(s)
- Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Wageesha Sharma
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Neeraj K Chauhan
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Sudhir Kumar
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; Composite and Nanocomposite Advanced Manufacturing Centre - Biomaterials (CNAM-Bio), Rapid City, SD 57701, USA; Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; Composite and Nanocomposite Advanced Manufacturing Centre - Biomaterials (CNAM-Bio), Rapid City, SD 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| |
Collapse
|
9
|
Bibra M, Kumar S, Wang J, Bhalla A, Salem DR, Sani RK. Single pot bioconversion of prairie cordgrass into biohydrogen by thermophiles. BIORESOURCE TECHNOLOGY 2018; 266:232-241. [PMID: 29982043 DOI: 10.1016/j.biortech.2018.06.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present work was to use a thermophilic consortium for H2 production using lignocellulosic biomass in a single pot. The thermophilic consortium, growing at 60 °C utilized both glucose and xylose, making it an ideal source of microbes capable of utilizing and fermenting both hexose and pentose sugars. The optimization of pH, temperature, and substrate concentration increased the H2 production from 1.07 mmol H2/g of prairie cordgrass (PCG) to 2.2 mmol H2/g PCG by using the thermophilic consortium. A sequential cultivation of a thermostable lignocellulolytic enzyme producing strain Geobacillus sp. strain WSUCF1 (aerobic) with the thermophilic consortium (anaerobic) further increased H2 production with PCG 3-fold (3.74 mmol H2/g PCG). A single pot sequential culturing of aerobic and anaerobic microbes can be sustainable and advantageous for industrial scale production of biofuels.
Collapse
Affiliation(s)
- Mohit Bibra
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Sudhir Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Jia Wang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Aditya Bhalla
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI 48823, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| |
Collapse
|
10
|
Kou S, Vincent G, Gonzalez E, Pitre FE, Labrecque M, Brereton NJB. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial. Front Microbiol 2018; 9:366. [PMID: 29545788 PMCID: PMC5838024 DOI: 10.3389/fmicb.2018.00366] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/16/2018] [Indexed: 11/27/2022] Open
Abstract
Industrial and agricultural activities have caused extensive metal contamination of land throughout China and across the globe. The pervasive nature of metal pollution can be harmful to human health and can potentially cause substantial negative impact to the biosphere. To investigate the impact of anthropogenic metal pollution found in high concentrations in industrial, agricultural, and urban environments, 16S ribosomal RNA gene amplicon sequencing was used to track change in the amplified microbial community after metal contamination in a large-scale field experiment in Shanghai. A total of 1,566 operational taxonomic units (OTUs) identified from 448,108 sequences gathered from 20 plots treated as controls or with lead, zinc, copper, or all three metals. Constrained Analysis of Principal Coordinates ordination did not separate control and lead treatment but could separate control/lead, zinc, copper, and three metal treatment. DESeq2 was applied to identify 93 significantly differentially abundant OTUs varying in 211 pairwise instances between the treatments. Differentially abundant OTUs representing genera or species belonging to the phyla Chloroflexi, Cyanobacteria, Firmicutes, Latescibacteria, and Planctomycetes were almost universally reduced in abundance due to zinc, copper, or three metal treatment; with three metal treatment abolishing the detection of some OTUs, such as Leptolyngbya, Desmonostoc muscorum, and Microcoleus steenstrupii. The greatest increases due to metal treatment were observed in Bacteroidetes, Actinobacteria, Chlamydiae, Nitrospirae, and Proteobacteria (α, β, δ, and γ); the most (relative) abundant being uncharacterized species within the genera Methylobacillus, Solirubrobacter, and Ohtaekwangia. Three metal treatment alone resulted in identification of 22 OTUs (genera or species) which were not detected in control soil, notably including Yonghaparkia alkaliphila, Pedobacter steynii, Pseudolabrys taiwanensis, Methylophilus methylotrophus, Nitrosospira, and Lysobacter mobilis. The capacity to track alterations of an amplified microbial community at high taxonomic resolution using modern bioinformatic approaches, as well as identifying where that resolution is lost for technical or biological reasons, provides an insight into the complexity of the microbial world resisting anthropogenic pollution. While functional assessment of uncharacterized organisms within environmental samples is technically challenging, an important step is observing those organisms able to tolerate extreme stress and to recognize the extent to which important amplifiable community members still require characterization.
Collapse
Affiliation(s)
- Shumeng Kou
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Gilles Vincent
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill University and Genome Quebec Innovation Centre, Montréal, QC, Canada
| | - Frederic E. Pitre
- Institut de Recherche en Biologie Végétale, Montreal Botanical Garden, Montréal, QC, Canada
| | - Michel Labrecque
- Institut de Recherche en Biologie Végétale, Montreal Botanical Garden, Montréal, QC, Canada
| | | |
Collapse
|
11
|
Theodorakopoulos N, Février L, Barakat M, Ortet P, Christen R, Piette L, Levchuk S, Beaugelin-Seiller K, Sergeant C, Berthomieu C, Chapon V. Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination. FEMS Microbiol Ecol 2017. [DOI: 10.1093/femsec/fix079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
12
|
Ntougias S, Polkowska Ż, Nikolaki S, Dionyssopoulou E, Stathopoulou P, Doudoumis V, Ruman M, Kozak K, Namieśnik J, Tsiamis G. Bacterial Community Structures in Freshwater Polar Environments of Svalbard. Microbes Environ 2016; 31:401-409. [PMID: 27725345 PMCID: PMC5158112 DOI: 10.1264/jsme2.me16074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two thirds of Svalbard archipelago islands in the High Arctic are permanently covered with glacial ice and snow. Polar bacterial communities in the southern part of Svalbard were characterized using an amplicon sequencing approach. A total of 52,928 pyrosequencing reads were analyzed in order to reveal bacterial community structures in stream and lake surface water samples from the Fuglebekken and Revvatnet basins of southern Svalbard. Depending on the samples examined, bacterial communities at a higher taxonomic level mainly consisted either of Bacteroidetes, Betaproteobacteria, and Microgenomates (OP11) or Planctomycetes, Betaproteobacteria, and Bacteroidetes members, whereas a population of Microgenomates was prominent in 2 samples. At the lower taxonomic level, bacterial communities mostly comprised Microgenomates, Comamonadaceae, Flavobacteriaceae, Legionellales, SM2F11, Parcubacteria (OD1), and TM7 members at different proportions in each sample. The abundance of OTUs shared in common among samples was greater than 70%, with the exception of samples in which the proliferation of Planctomycetaceae, Phycisphaeraceae, and Candidatus Methylacidiphilum spp. lowered their relative abundance. A multi-variable analysis indicated that As, Pb, and Sb were the main environmental factors influencing bacterial profiles. We concluded that the bacterial communities in the polar aquatic ecosystems examined mainly consisted of freshwater and marine microorganisms involved in detritus mineralization, with a high proportion of zooplankton-associated taxa also being identified.
Collapse
Affiliation(s)
- Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Blanco Y, Rivas LA, García-Moyano A, Aguirre J, Cruz-Gil P, Palacín A, van Heerden E, Parro V. Deciphering the prokaryotic community and metabolisms in South African deep-mine biofilms through antibody microarrays and graph theory. PLoS One 2014; 9:e114180. [PMID: 25531640 PMCID: PMC4273990 DOI: 10.1371/journal.pone.0114180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
In the South African deep mines, a variety of biofilms growing in mine corridor walls as water seeps from intersections or from fractures represents excellent proxies for deep-subsurface environments. However, they may be greatly affected by the oxygen inputs through the galleries of mining activities. As a consequence, the interaction between the anaerobic water coming out from the walls with the oxygen inputs creates new conditions that support rich microbial communities. The inherent difficulties for sampling these delicate habitats, together with transport and storage conditions may alter the community features and composition. Therefore, the development of in situ monitoring methods would be desirable for quick evaluation of the microbial community. In this work, we report the usefulness of an antibody-microarray (EMChip66) immunoassay for a quick check of the microbial diversity of biofilms located at 1.3 km below surface within the Beatrix deep gold mine (South Africa). In addition, a deconvolution method, previously described and used for environmental monitoring, based on graph theory and applied on antibody cross-reactivity was used to interpret the immunoassay results. The results were corroborated and further expanded by 16S rRNA gene sequencing analysis. Both culture-independent techniques coincided in detecting features related to aerobic sulfur-oxidizers, aerobic chemoorganotrophic Alphaproteobacteria and metanotrophic Gammaproteobacteria. 16S rRNA gene sequencing detected phylotypes related to nitrate-reducers and anaerobic sulfur-oxidizers, whereas the EMChip66 detected immunological features from methanogens and sulfate-reducers. The results reveal a diverse microbial community with syntrophic metabolisms both anaerobic (fermentation, methanogenesis, sulphate and nitrate reduction) and aerobic (methanotrophy, sulphur oxidation). The presence of oxygen-scavenging microbes might indicate that the system is modified by the artificial oxygen inputs from the mine galleries.
Collapse
Affiliation(s)
- Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Luis A. Rivas
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Antonio García-Moyano
- TIA/UFS Metagenomics Platform, Department of Biotechnology, University of the Free State, P. O. Box 339, Bloemfontein, 9300, South Africa
| | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Patricia Cruz-Gil
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Arantxa Palacín
- Centro de Biotecnología y Genómica de Plantas, Campus de Montegancedo, Autopista M40, km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Esta van Heerden
- TIA/UFS Metagenomics Platform, Department of Biotechnology, University of the Free State, P. O. Box 339, Bloemfontein, 9300, South Africa
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Osburn MR, LaRowe DE, Momper LM, Amend JP. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA. Front Microbiol 2014; 5:610. [PMID: 25429287 PMCID: PMC4228859 DOI: 10.3389/fmicb.2014.00610] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/27/2014] [Indexed: 11/13/2022] Open
Abstract
The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and Σ S2- from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly expand our understanding of the deep terrestrial biosphere.
Collapse
Affiliation(s)
- Magdalena R Osburn
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA ; Department of Earth and Planetary Sciences, Northwestern University Evanston, IL, USA
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | - Lily M Momper
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA ; Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
16
|
Rodrigues VD, Torres TT, Ottoboni LMM. Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons. Antonie van Leeuwenhoek 2014; 106:879-90. [PMID: 25129578 DOI: 10.1007/s10482-014-0257-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/08/2014] [Indexed: 11/24/2022]
Abstract
Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.
Collapse
Affiliation(s)
- Viviane D Rodrigues
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas-UNICAMP, POB 6010, Campinas, SP, 13083-875, Brazil,
| | | | | |
Collapse
|
17
|
Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Øvreås L. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One 2013; 8:e72577. [PMID: 24023625 PMCID: PMC3758324 DOI: 10.1371/journal.pone.0072577] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Soda lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. This makes them valuable model systems for studying the connection between community structure and abiotic parameters such as pH and salinity. For the first time, we apply high-throughput sequencing to accurately estimate phylogenetic richness and composition in five soda lakes, located in the Ethiopian Rift Valley. The lakes were selected for their contrasting pH, salinities and stratification and several depths or spatial positions were covered in each lake. DNA was extracted and analyzed from all lakes at various depths and RNA extracted from two of the lakes, analyzed using both amplicon- and shotgun sequencing. We reveal a surprisingly high biodiversity in all of the studied lakes, similar to that of freshwater lakes. Interestingly, diversity appeared uncorrelated or positively correlated to pH and salinity, with the most “extreme” lakes showing the highest richness. Together, pH, dissolved oxygen, sodium- and potassium concentration explained approximately 30% of the compositional variation between samples. A diversity of prokaryotic and eukaryotic taxa could be identified, including several putatively involved in carbon-, sulfur- or nitrogen cycling. Key processes like methane oxidation, ammonia oxidation and ‘nitrifier denitrification’ were also confirmed by mRNA transcript analyses.
Collapse
Affiliation(s)
- Anders Lanzén
- Department of Biology and Centre for Geobiology, University of Bergen, Bergen, Norway
- Computational Biology Unit, Uni Computing, Uni Research AS, Bergen, Norway
- * E-mail:
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dominika Chmolowska
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - Inge Jonassen
- Computational Biology Unit, Uni Computing, Uni Research AS, Bergen, Norway
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Lise Øvreås
- Department of Biology and Centre for Geobiology, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Wouters K, Moors H, Boven P, Leys N. Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water. FEMS Microbiol Ecol 2013; 86:458-73. [DOI: 10.1111/1574-6941.12171] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/14/2013] [Accepted: 06/20/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Katinka Wouters
- Expert Group for Molecular and Cellular Biology; Institute of Environment, Health and Safety; Belgian Nuclear Research Centre SCK•CEN; Mol Belgium
| | - Hugo Moors
- Expert Group for Molecular and Cellular Biology; Institute of Environment, Health and Safety; Belgian Nuclear Research Centre SCK•CEN; Mol Belgium
| | - Patrick Boven
- Expert Group for Molecular and Cellular Biology; Institute of Environment, Health and Safety; Belgian Nuclear Research Centre SCK•CEN; Mol Belgium
| | - Natalie Leys
- Expert Group for Molecular and Cellular Biology; Institute of Environment, Health and Safety; Belgian Nuclear Research Centre SCK•CEN; Mol Belgium
| |
Collapse
|
19
|
Lavalleur HJ, Colwell FS. Microbial characterization of basalt formation waters targeted for geological carbon sequestration. FEMS Microbiol Ecol 2013; 85:62-73. [DOI: 10.1111/1574-6941.12098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/31/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Heather J. Lavalleur
- College of Earth, Ocean, and Atmospheric Sciences; Oregon State University; Corvallis; OR; USA
| | - Frederick S. Colwell
- College of Earth, Ocean, and Atmospheric Sciences; Oregon State University; Corvallis; OR; USA
| |
Collapse
|
20
|
Ragon M, Van Driessche AES, García-Ruíz JM, Moreira D, López-García P. Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico. Front Microbiol 2013; 4:37. [PMID: 23508882 PMCID: PMC3589807 DOI: 10.3389/fmicb.2013.00037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 11/13/2022] Open
Abstract
The Naica Mine in northern Mexico is famous for its giant gypsum crystals, which may reach up to 11 m long and contain fluid inclusions that might have captured microorganisms during their formation. These crystals formed under particularly stable geochemical conditions in cavities filled by low salinity hydrothermal water at 54-58°C. We have explored the microbial diversity associated to these deep, saline hydrothermal waters collected in the deepest (ca. 700-760 m) mineshafts by amplifying, cloning and sequencing small-subunit ribosomal RNA genes using primers specific for archaea, bacteria, and eukaryotes. Eukaryotes were not detectable in the samples and the prokaryotic diversity identified was very low. Two archaeal operational taxonomic units (OTUs) were detected in one sample. They clustered with, respectively, basal Thaumarchaeota lineages and with a large clade of environmental sequences branching at the base of the Thermoplasmatales within the Euryarchaeota. Bacterial sequences belonged to the Candidate Division OP3, Firmicutes and the Alpha- and Beta-proteobacteria. Most of the lineages detected appear autochthonous to the Naica system, since they had as closest representatives environmental sequences retrieved from deep sediments or the deep subsurface. In addition, the high GC content of 16S rRNA gene sequences belonging to the archaea and to some OP3 OTUs suggests that at least these lineages are thermophilic. Attempts to amplify diagnostic functional genes for methanogenesis (mcrA) and sulfate reduction (dsrAB) were unsuccessful, suggesting that those activities, if present, are not important in the aquifer. By contrast, genes encoding archaeal ammonium monooxygenase (AamoA) were amplified, suggesting that Naica Thaumarchaeota are involved in nitrification. These organisms are likely thermophilic chemolithoautotrophs adapted to thrive in an extremely energy-limited environment.
Collapse
Affiliation(s)
- Marie Ragon
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud Orsay, France
| | | | | | | | | |
Collapse
|
21
|
Rastogi G, Gurram RN, Bhalla A, Gonzalez R, Bischoff KM, Hughes SR, Kumar S, Sani RK. Presence of glucose, xylose, and glycerol fermenting bacteria in the deep biosphere of the former Homestake gold mine, South Dakota. Front Microbiol 2013; 4:18. [PMID: 23919089 PMCID: PMC3573265 DOI: 10.3389/fmicb.2013.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/27/2013] [Indexed: 11/24/2022] Open
Abstract
Eight fermentative bacterial strains were isolated from mixed enrichment cultures of a composite soil sample collected at 1.34 km depth from the former Homestake gold mine in Lead, SD, USA. Phylogenetic analysis of their 16S rRNA gene sequences revealed that these isolates were affiliated with the phylum Firmicutes belonging to genera Bacillus and Clostridium. Batch fermentation studies demonstrated that isolates had the ability to ferment glucose, xylose, or glycerol to industrially valuable products such as ethanol and 1,3-propanediol (PDO). Ethanol was detected as the major fermentation end product in glucose-fermenting cultures at pH 10 with yields of 0.205–0.304 g of ethanol/g of glucose. While a xylose-fermenting strain yielded 0.189 g of ethanol/g of xylose and 0.585 g of acetic acid/g of xylose at the end of fermentation. At pH 7, glycerol-fermenting isolates produced PDO (0.323–0.458 g of PDO/g of glycerol) and ethanol (0.284–0.350 g of ethanol/g of glycerol) as major end products while acetic acid and succinic acid were identified as minor by-products in fermentation broths. These results suggest that the deep biosphere of the former Homestake gold mine harbors bacterial strains which could be used in bio-based production of ethanol and PDO.
Collapse
Affiliation(s)
- Gurdeep Rastogi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology Rapid City, SD, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
The prokaryotic community of a historically mining-impacted tropical stream sediment is as diverse as that from a pristine stream sediment. Extremophiles 2013; 17:301-9. [PMID: 23389654 DOI: 10.1007/s00792-013-0517-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Mining negatively affects the environment by producing large quantities of metallic tailings, such as those contaminated with arsenic, with harmful consequences for human and aquatic life. A culture-independent molecular analysis was performed to assess the prokaryotic diversity and community structural changes of the tropical historically metal-contaminated Mina stream (MS) and the relatively pristine Mutuca stream (MTS) sediments. A total of 234 bacterial operational taxonomic units (OTUs) were affiliated with 14 (MS) and 17 (MTS) phyla and 53 OTUs were associated with two archaeal phyla. Although the bacterial community compositions of these sediments were markedly distinct, no significant difference in the diversity indices between the bacterial communities was observed. Additionally, the rarefaction and diversity indices indicated a higher bacterial diversity than archaeal diversity. Most of the OTUs were affiliated with the Proteobacteria and Bacteroidetes phyla. Alphaproteobacteria, Gemmatimonadetes and Actinobacteria were only found in the MS clone library. Crenarchaeal 16S rDNA sequences constituted 75 % of the MS archaeal clones, whereas Euryarchaeota were dominant in the MTS clones. Despite the markedly different characteristics of these streams, their bacterial communities harbor high diversity, suggesting that historically mining-impacted sediments promote diversity. The findings also provide basis for further investigation of members of Alphaproteobacteria as potential biological indicators of arsenic-rich sediments.
Collapse
|
23
|
Dunfield PF, Tamas I, Lee KC, Morgan XC, McDonald IR, Stott MB. Electing a candidate: a speculative history of the bacterial phylum OP10. Environ Microbiol 2012; 14:3069-80. [DOI: 10.1111/j.1462-2920.2012.02742.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Zhao J, Wu X, Nie C, Wu T, Dai W, Liu H, Yang R. Analysis of unculturable bacterial communities in tea orchard soils based on nested PCR-DGGE. World J Microbiol Biotechnol 2012; 28:1967-79. [DOI: 10.1007/s11274-011-0999-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
25
|
Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 2011; 93:993-1003. [DOI: 10.1007/s00253-011-3800-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/23/2011] [Accepted: 11/27/2011] [Indexed: 01/29/2023]
|
26
|
Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. BIORESOURCE TECHNOLOGY 2010; 101:8798-806. [PMID: 20599378 DOI: 10.1016/j.biortech.2010.06.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/15/2010] [Accepted: 06/01/2010] [Indexed: 05/05/2023]
Abstract
The composition of thermophilic (60 degrees C) mixed cellulose-degrading enrichment culture initiated from compost samples was examined by constructing a 16S rRNA gene clone library and the presence of sequences related to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria were identified. Eight isolates capable of degrading cellulose, carboxymethyl cellulose (CMC), or ponderosa pine sawdust were identified as belonging to the genera Geobacillus, Thermobacillus, Cohnella, and Thermus. A compost isolate WSUCF1 (Geobacillus sp.) was selected based on its higher growth rate and cellulase activity compared to others in liquid minimal medium containing cellulose as a source of carbon and energy. Strain WSUCF1 and a previously isolated thermophilic cellulose-degrading deep gold mine strain DUSELR13 (Bacillus sp.) were examined for their enzyme properties and kinetics. The optimal pH for carboxymethyl cellulase (CMCase) activity was 5.0 for both isolates. The optimum temperatures for CMCase of WSUCFI and DUSELR13 were 70 and 75 degrees C, respectively. For CMC, the DUSELR13 and WSUCF1 CMCases had K(m) values of 3.11 and 1.08mg/ml, respectively. Most remarkably, WSUCF1 and DUSELR13 retained 89% and 78% of the initial CMCase activities, respectively, after incubation at 70 degrees C for 1day. These thermostable enzymes would facilitate development of more efficient and cost-effective forms of the simultaneous saccharification and fermentation process to convert lignocellulosic biomass into biofuels.
Collapse
Affiliation(s)
- Gurdeep Rastogi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Rastogi G, Osman S, Kukkadapu R, Engelhard M, Vaishampayan PA, Andersen GL, Sani RK. Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former Homestake gold mine, South Dakota. MICROBIAL ECOLOGY 2010; 60:539-550. [PMID: 20386898 DOI: 10.1007/s00248-010-9657-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 03/13/2010] [Indexed: 05/29/2023]
Abstract
A microbial census on deep biosphere (1.34 km depth) microbial communities was performed in two soil samples collected from the Ross and number 6 Winze sites of the former Homestake gold mine, Lead, South Dakota using high-density 16S microarrays (PhyloChip). Soil mineralogical characterization was carried out using X-ray diffraction, X-ray photoelectron, and Mössbauer spectroscopic techniques which demonstrated silicates and iron minerals (phyllosilicates and clays) in both samples. Microarray data revealed extensive bacterial diversity in soils and detected the largest number of taxa in Proteobacteria phylum followed by Firmicutes and Actinobacteria. The archael communities in the deep gold mine environments were less diverse and belonged to phyla Euryarchaeota and Crenarchaeota. Both the samples showed remarkable similarities in microbial communities (1,360 common OTUs) despite distinct geochemical characteristics. Fifty-seven phylotypes could not be classified even at phylum level representing a hitherto unidentified diversity in deep biosphere. PhyloChip data also suggested considerable metabolic diversity by capturing several physiological groups such as sulfur-oxidizer, ammonia-oxidizers, iron-oxidizers, methane-oxidizers, and sulfate-reducers in both samples. High-density microarrays revealed the greatest prokaryotic diversity ever reported from deep subsurface habitat of gold mines.
Collapse
Affiliation(s)
- Gurdeep Rastogi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Waddell EJ, Elliott TJ, Sani RK, Vahrenkamp JM, Roggenthen WM, Anderson CM, Bang SS. Phylogenetic evidence of noteworthy microflora from the subsurface of the former Homestake gold mine, Lead, South Dakota. ENVIRONMENTAL TECHNOLOGY 2010; 31:979-91. [PMID: 20662386 PMCID: PMC3565620 DOI: 10.1080/09593331003789511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Molecular characterization of subsurface microbial communities in the former Homestake gold mine, South Dakota, was carried out by 16S rDNA sequence analysis using a water sample and a weathered soil-like sample. Geochemical analyses indicated that both samples were high in sulphur, rich in nitrogen and salt, but with significantly different metal concentrations. Microbial diversity comparisons unexpectedly revealed three distinct operational taxonomic units (OTUs) belonging to the archaeal phylum Thaumarchaeota, typically identified from marine environments, and one OTU belonging to a potentially novel phylum that fell sister to Thaumarchaeota. To our knowledge this is only the second report of Thaumarchaeota in a terrestrial environment. The majority of the clones from Archaea sequence libraries fell into two closely related OTUs and were grouped most closely to an ammonia-oxidizing, carbon-fixing and halophilic thaumarchaeote genus, Nitrosopumilus. The two samples showed neither Euryarchaeota nor Crenarchaeota members that have often been identified from other subsurface terrestrial ecosystems. Bacteria OTUs containing the highest percentage of sequences were related to sulphur-oxidizing bacteria of the orders Chromatiales and Thiotrichales. Community members of Bacteria from individual Homestake ecosystems were heterogeneous and distinctive to each community, with unique phylotypes identified within each sample.
Collapse
Affiliation(s)
- Evan J. Waddell
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| | - Terran J. Elliott
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| | | | - William M. Roggenthen
- Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| | | | - Sookie S. Bang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| |
Collapse
|