1
|
Jiang T, Ren J, Li D, Luo Y, Huang Y, Gao T, Yang J, Yu J, Liu L, Yuan H. Pseudomonas syringae exacerbates apple replant disease caused by Fusarium. Microbiol Res 2025; 296:128124. [PMID: 40054134 DOI: 10.1016/j.micres.2025.128124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
Apple replant disease (ARD) causes significant economic losses globally, including in China. Analyzing the causes of this replant disease from the perspective of rhizosphere microecology is therefore essential. In this study, we examined rhizosphere soils from apple trees subjected to continuous cropping. The mechanisms underlying ARD were elucidated through high-throughput sequencing of the soil microbiome, co-occurrence network analysis using NetShift, and correlation analyses. Core bacterial microbes were isolated, and their roles in altering the microecological environment were verified through reinoculation experiments. The results indicated that the disease indices for apple seedlings cultivated increased in continuously cropped soils. Bacterial diversity decreased in continuously cropped apple orchards for 10 years (R10) and 15 years (R15), but the relative abundance of Pseudomonas increased. In contrast, fungal diversity increased, with the relative abundance of Fusarium also increasing. As a dominant genus, Pseudomonas exhibited significant network variation after 10 years of consecutive cultivation, suggesting that this microorganism may play a key role in the occurrence of ARD. Moreover, the correlation analysis revealed, for the first time, that Pseudomonas is negatively correlated with bacterial diversity but positively correlated with the relative abundance of Fusarium, indicating a close relationship between Pseudomonas and Fusarium in continuously cropped soil. Four key Pseudomonas amplicon sequence variants (ASVs) strains were isolated from the continuously cropped rhizosphere soil of apple trees, and reinoculation experiments verified that introducing Pseudomonas exacerbated the occurrence of replant diseases in both strawberry and apple, with significantly higher disease indices compared to single Fusarium inoculation. The findings of this study provide new and timely insights into the mechanism underlying the occurrence of ARD.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaxi Ren
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Dongmei Li
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Luo
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaru Huang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tongguo Gao
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiayi Yu
- Beijing Siliang Technology Limited Company, Beijing 100193, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Mayegowda SB, Gadilingappa MN. Microbial Siderophores: A New Insight on Healthcare Applications. BME FRONTIERS 2025; 6:0112. [PMID: 40124737 PMCID: PMC11927942 DOI: 10.34133/bmef.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Globally, increased illness and disorders have gained importance in improvising therapeutics to help extend the lifespan of an individual. In this scenario, understanding the mechanism of bacterial pathogenicity linked to the interaction between the host and the pathogen focusing on essential metal ions is necessary. Numerous studies indicate that the severity of a disease might be due to the reduced availability of iron, linked to abnormal production or lack of acquisition systems. However, several microbes produce siderophores as virulence factors, low-molecular-weight organic compounds for acquisition of iron by iron-chelating systems. In medical applications, siderophores are employed in novel strategies in order to design effective new drugs and vaccines, targeting and delivering antibiotics to target sites in multidrug-resistant pathogens. Meanwhile, some types of siderophores are used as drug delivery modalities and antimalarial, anticancer, and antibacterial agents, for example, by employing conjugation techniques such as Trojan horse delivery. Hence, the current review integrates several applications of siderophores with an overview covering taxonomy, organisms producing iron affinity carriers, and their acquisition mechanism. This understanding may delineate newer opportunities to adapt possible therapies and/or treatments against several multidrug-resistant pathogens, representing a crucial solution for public health problems worldwide.
Collapse
|
3
|
Wang Y, Song X, Pan X, Gao R, Yang X. The multifunctional fungus Phanerochaete chrysosporium enriches metabolites while degrading seed mucilage of a sand-fixing shrub. J Appl Microbiol 2025; 136:lxaf009. [PMID: 39779306 DOI: 10.1093/jambio/lxaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
AIMS The sand-fixing desert shrub Artemisia sphaerocephala produces a large amount of seed mucilage, which plays crucial roles in the adaptation of this species to desert environments. Seed mucilage has been shown to be degraded by Phanerochaete chrysosporium from habitat soils, but the process and products of this degradation remain unclear. To fill this gap, we explored the factors and processes involved in mucilage degradation. METHODS AND RESULTS We found that P. chrysosporium had the ability to produce iron carriers and to solubilize potassium and phosphorus. Mucilage degradation was affected by multiple factors, and the optimum conditions for mucilage degradation were 30°C, pH 4.5, 10 ml of fungal solution, and 1.0 g of mucilage substrate, with a degradation rate of 93.04% ± 4.87% at 20 days. The untargeted metabolome screened 300 significantly different metabolites during mucilage degradation, of which 291 were upregulated and 9 downregulated. The main degradation products were organoxides, lipids, lipid-like molecules, phenylpropanoids, polyketides, and organic acids. The most significantly affected pathway was the valine, leucine, and isoleucine biosynthetic pathway. CONCLUSIONS Our study has elucidated the mucilage degradation process and metabolites, which may help us to better understand the ecological functions of seed mucilage and the mechanisms of plant-microbe interactions in deserts.
Collapse
Affiliation(s)
- Yiyuan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian District, Beijing 100093, China
- The School of Life Sciences, Shanxi Normal University, 339 Taiyu Road, Xiadian District, Taiyuan 030031, China
| | - Xiaoxian Song
- The School of Life Sciences, Shanxi Normal University, 339 Taiyu Road, Xiadian District, Taiyuan 030031, China
| | - Xiaofang Pan
- The School of Life Sciences, Shanxi Normal University, 339 Taiyu Road, Xiadian District, Taiyuan 030031, China
| | - Ruiru Gao
- The School of Life Sciences, Shanxi Normal University, 339 Taiyu Road, Xiadian District, Taiyuan 030031, China
| | - Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian District, Beijing 100093, China
| |
Collapse
|
4
|
Dai S, Wu Y, Zhu N, Zhao Y, Mao M, Li Z, Zhu B, Zhao W, Yuan X. Rapid and accurate detection of Fusarium oxysporum f. sp. Lycopersici using one-pot, one-step LAMP-CRISPR/Cas12b method. FRONTIERS IN PLANT SCIENCE 2024; 15:1485884. [PMID: 39759228 PMCID: PMC11695371 DOI: 10.3389/fpls.2024.1485884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
Introduction Fusarium oxysporum f. sp. Lycopersici (Fol) is one of the most devastating plant pathogenic fungi, the causal agent of root rot for Atractylides macrocephala Koidz (AMK). An accurate rapid and convenient diagnosis for FoL detection is essential for determining management practices and preventing future losses for AMK. Methods Here, we developed a novel method for Fol detection by integrating loop-mediated isothermal amplification (LAMP) assay and CRISPR/Cas12b detection in one-pot, and the whole reaction can simultaneously amplify and detect the target gene of Fol in one-step. Results The total time of the present method is limited to 45 min and isothermally performed at 60°C. The limit of detection of this assay is 88.9 copies per reaction. The specificity of the LAMP-CRISPR/Cas12b method was 100% without any cross-reaction of other pathogens. A total of 24 nucleic acid samples were used to evaluate the performance of the LAMP-CRISPR/Cas12b method, including 12 with-Fol and 12 without-Fol. Compared with the gold standard results from real-time PCR, the present method provides a sensitivity of 100% (12/12), specificity of 100% (12/12), and consistency of 100% (24/24). Discussion Together, our preliminary results illustrated that the LAMP-CRISPR/Cas12b method is a rapid simple, and reliable tool for Fol diagnosis and could be applied in point-of-need phytopathogen detection.
Collapse
Affiliation(s)
- Shijie Dai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yangsheng Wu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Na Zhu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujin Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mingjiang Mao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zheming Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weichun Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Giannelli G, Del Vecchio L, Cirlini M, Gozzi M, Gazza L, Galaverna G, Potestio S, Visioli G. Exploring the rhizosphere of perennial wheat: potential for plant growth promotion and biocontrol applications. Sci Rep 2024; 14:22792. [PMID: 39354104 PMCID: PMC11445523 DOI: 10.1038/s41598-024-73818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Perennial grains, which remain productive for multiple years, rather than growing for only one season before harvest, have deep, dense root systems that can support a richness of beneficial microorganisms, which are mostly underexplored. In this work we isolated forty-three bacterial strains associated with the rhizosphere of the OK72 perennial wheat line, developed from a cross between winter common wheat and Thinopyrum ponticum. Identified using 16S rDNA sequencing, these bacteria were assessed for plant growth-promoting traits such as indole-3-acetic acid, siderophores and ACC-deaminase acid production, biofilm formation, and the ability to solubilize phosphate and proteins. Twenty-five strains exhibiting in vitro significant plant growth promoting traits, belong to wheat keystone genera Pseudomonas, Microbacterium, Variovorax, Pedobacter, Dyadobacter, Plantibacter, and Flavobacterium. Seven strains, including Aeromicrobium and Okibacterium genera, were able to promote root growth in a commercial annual wheat cultivar while strains from Pseudomonas genus inhibited the growth of Aspergillus flavus and Fusarium species, using direct antagonism assays. The same strains produced a high amount of 1-undecanol a volatile organic compound, which may aid in suppressing fungal growth. The study highlights the potential of these bacteria to form new commercial consortia, enhancing the health and productivity of annual wheat crops within sustainable agricultural practices.
Collapse
Affiliation(s)
| | | | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Gozzi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Laura Gazza
- Research Centre for Engineering and Agro-Food Processing, CREA, Rome, Italy
| | | | - Silvia Potestio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
6
|
Almuhawish MA, Kotb E, Alkhaldi E, Ahmed AA. Production and Antibacterial Activity of Atypical Siderophore from Pseudomonas sp. QCS59 Recovered from Harpachene schimperi. Pharmaceuticals (Basel) 2024; 17:1126. [PMID: 39338291 PMCID: PMC11434927 DOI: 10.3390/ph17091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Among sixty-eight pseudomonads, isolate QCS59 from the rhizosphere of H. schimperi was selected based on its siderophore level. Production was optimal in Kings B supplemented with 2% peptone and 0.5% fructose at pH 6.5 and 25 °C for 72 h. Additionally, the threshold potential of iron was found at a concentration of 10 µM. After purification, the acidified siderophore presented a maximum absorption peak of 360 nm, while the neutral form presented a maximum of 414 nm, confirming its pyoverdine (PVD) nature. Furthermore, a major peak appeared at a retention time (RT) of 27.5 min during RP-HPLC, confirming its homogeneity. Interestingly, it demonstrated effective antibacterial activity, especially against Escherichia coli ATCC 8739, with a minimum inhibitory concentration (MIC) of 6.3 µg/mL and a minimum bactericidal concentration (MBC) of 12.5 µg/mL. At ½ the MIC value, it inhibited 82.1% of well-established biofilms of Salmonella enterica. There was an increase in malondialdehyde (MDA) and antioxidative enzymes, especially catalase (CAT) in the treated bacteria because of the peroxidation of membrane lipids and oxidative stress, respectively. SEM proved cellular lysis and surface malformation in most of the treated bacteria. This study concludes that QCS59 siderophore is a promising antibacterial candidate for treating wastewater bacteria and skin pathogens.
Collapse
Affiliation(s)
- Mashael A. Almuhawish
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Essam Kotb
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Eida Alkhaldi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Asmaa A. Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University, Cairo P.O. Box 11751, Egypt;
| |
Collapse
|
7
|
Gomes AFR, Almeida MC, Sousa E, Resende DISP. Siderophores and metallophores: Metal complexation weapons to fight environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173044. [PMID: 38723971 DOI: 10.1016/j.scitotenv.2024.173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Siderophores are small molecules of organic nature, released by bacteria to chelate iron from the surrounding environment and subsequently incorporate it into the cytoplasm. In addition to iron, these secondary metabolites can complex with a wide variety of metals, which is why they are commonly studied in the environment. Heavy metals can be very toxic when present in large amounts on the planet, affecting public health and all living organisms. The pollution caused by these toxic metals is increasing, and therefore it is urgent to find practical, sustainable, and economical solutions for remediation. One of the strategies is siderophore-assisted bioremediation, an innovative and advantageous alternative for various environmental applications. This research highlights the various uses of siderophores and metallophores in the environment, underscoring their significance to ecosystems. The study delves into the utilization of siderophores and metallophores in both marine and terrestrial settings (e.g. bioremediation, biocontrol of pathogens, and plant growth promotion), such as bioremediation, biocontrol of pathogens, and plant growth promotion, providing context for the different instances outlined in the existing literature and highlighting their relevance in each field. The study delves into the structures and types of siderophores focusing on their singular characteristics for each application and methodologies used. Focusing on recent developments over the last two decades, the opportunities and challenges associated with siderophores and metallophores applications in the environment were mapped to arm researchers in the fight against environmental pollution.
Collapse
Affiliation(s)
- Ana F R Gomes
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Mariana C Almeida
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Gomes AF, Sousa E, Resende DISP. A Practical Toolkit for the Detection, Isolation, Quantification, and Characterization of Siderophores and Metallophores in Microorganisms. ACS OMEGA 2024; 9:26863-26877. [PMID: 38947835 PMCID: PMC11209696 DOI: 10.1021/acsomega.4c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Siderophores are well-recognized low-molecular-weight compounds produced by numerous microorganisms to acquire iron from the surrounding environments. These secondary metabolites can form complexes with other metals besides iron, forming soluble metallophores; because of that, they are widely investigated in either the medicinal or environmental field. One of the bottlenecks of siderophore research is related to the identification of new siderophores from microbial sources. Herein we have compiled a comprehensive range of standard and updated methodologies that have been developed over the past few years to provide a comprehensive toolbox in this area to current researchers.
Collapse
Affiliation(s)
- Ana F.
R. Gomes
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Kotb E, Al-Abdalall AH, Ababutain I, AlAhmady NF, Aldossary S, Alkhaldi E, Alghamdi AI, Alzahrani HAS, Almuhawish MA, Alshammary MN, Ahmed AA. Anticandidal Activity of a Siderophore from Marine Endophyte Pseudomonas aeruginosa Mgrv7. Antibiotics (Basel) 2024; 13:347. [PMID: 38667023 PMCID: PMC11047651 DOI: 10.3390/antibiotics13040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
An endophytic symbiont P. aeruginosa-producing anticandidal siderophore was recovered from mangrove leaves for the first time. Production was optimal in a succinate medium supplemented with 0.4% citric acid and 15 µM iron at pH 7 and 35 °C after 60 h of fermentation. UV spectra of the acidic preparation after purification with Amberlite XAD-4 resin gave a peak at 400 nm, while the neutralized form gave a peak at 360 nm. A prominent peak with RP-HPLC was obtained at RT 18.95 min, confirming its homogeneity. It was pH stable at 5.0-9.5 and thermally stable at elevated temperatures, which encourages the possibility of its application in extreme environments. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against Candida spp. Were in the range of 128 µg/mL and lower. It enhanced the intracellular iron accumulation with 3.2-4.2-fold (as judged by atomic absorption spectrometry) with a subsequent increase in the intracellular antioxidative enzymes SOD and CAT. Furthermore, the malondialdehyde (MDA) concentration due to cellular lipid peroxidation increased to 3.8-fold and 7.3-fold in C. albicans and C. tropicalis, respectively. The scanning electron microscope (SEM) confirmed cellular damage in the form of roughness, malformation, and production of defensive exopolysaccharides and/or proteins after exposure to siderophore. In conclusion, this anticandidal siderophore may be a promising biocontrol, nonpolluting agent against waterborne pathogens and pathogens of the skin. It indirectly kills Candida spp. by ferroptosis and mediation of hyperaccumulation of iron rather than directly attacking the cell targets, which triggers the activation of antioxidative enzymes.
Collapse
Affiliation(s)
- Essam Kotb
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Amira H. Al-Abdalall
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibtisam Ababutain
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nada F. AlAhmady
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sahar Aldossary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Eida Alkhaldi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Azzah I. Alghamdi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
| | - Mashael A. Almuhawish
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Moudhi N. Alshammary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
| | - Asmaa A. Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University, Cairo P.O. Box 11751, Egypt
| |
Collapse
|
10
|
Kumar R, Singh A, Shukla E, Singh P, Khan A, Singh NK, Srivastava A. Siderophore of plant growth promoting rhizobacterium origin reduces reactive oxygen species mediated injury in Solanum spp. caused by fungal pathogens. J Appl Microbiol 2024; 135:lxae036. [PMID: 38341275 DOI: 10.1093/jambio/lxae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
AIMS The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Ekta Shukla
- Department of Botany, Sunbeam College for Women, U.P., Bhagwanpur, Varanasi 221005, India
| | - Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Naveen Kumar Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| |
Collapse
|
11
|
Pisco-Ortiz C, González-Almario A, Uribe-Gutiérrez L, Soto-Suárez M, Amaya-Gómez CV. Suppression of tomato wilt by cell-free supernatants of Acinetobacter baumannii isolates from wild cacao from the Colombian Amazon. World J Microbiol Biotechnol 2023; 39:297. [PMID: 37658991 PMCID: PMC10475004 DOI: 10.1007/s11274-023-03719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is one of the most limiting diseases of this crop. The use of fungicides and varieties resistant to the pathogen has not provided adequate control of the disease. In this study, siderophore-producing bacteria isolated from wild cocoa trees from the Colombian Amazon were characterized to identify prominent strategies for plant protection. The isolates were taxonomically classified into five different genera. Eight of the fourteen were identified as bacteria of the Acinetobacter baumannii complex. Isolates CBIO024, CBIO086, CBIO117, CBIO123, and CBIO159 belonging to this complex showed the highest efficiency in siderophore synthesis, producing these molecules in a range of 91-129 µmol/L deferoxamine mesylate equivalents. A reduction in disease severity of up to 45% was obtained when plants were pretreated with CBIO117 siderophore-rich cell-free supernatant (SodSid). Regarding the mechanism of action that caused antagonistic activity against Fol, it was found that plants infected only with Fol and plants pretreated with SodSid CBIO117 and infected with Fol showed higher levels of PR1 and ERF1 gene expression than control plants. In contrast, MYC2 gene expression was not induced by the SodSid CBIO117 application. However, it was upregulated in plants infected with Fol and plants pretreated with SodSid CBIO117 and infected with the pathogen. In addition to the disease suppression exerted by SodSid CBIO117, the results suggest that the mechanism underlying this effect is related to an induction of systemic defense through the salicylic acid, ethylene, and priming defense via the jasmonic acid pathway.
Collapse
Affiliation(s)
- Carolina Pisco-Ortiz
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Villavicencio, Meta, Colombia
| | | | - Liz Uribe-Gutiérrez
- Centro de investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Mauricio Soto-Suárez
- Centro de investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Carol V Amaya-Gómez
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Villavicencio, Meta, Colombia.
| |
Collapse
|
12
|
Hua LQ, Yang SQ, Xia ZF, Zeng H. Application of Sophora alopecuroides organic fertilizer changes the rhizosphere microbial community structure of melon plants and increases the fruit sugar content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:164-175. [PMID: 35837792 DOI: 10.1002/jsfa.12126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sophora alopecuroides L. is a leguminous plant commonly found in northwest China. In Xinjiang, the fresh herb of S. alopecuroides is often applied as a green fertilizer to the rhizosphere of melon (Cucumis melo) plants at the end of their flowering period, to improve the taste of the fruits. However, the effects of S. alopecuroides-based fertilizers on the microbial community structure of soil and crop-root systems are unclear. In order to study the sweetening mechanism of the S. alopecuroides organic fertilizer, three different varieties of melon were selected. The untreated plants were used as the control (CK) group, and the plants treated with S. alopecuroides-based organic fertilizer were selected as the treatment (T) group. The physical and chemical properties, enzyme activities and microbial community structure of the rhizosphere samples were also determined, and a correlation analysis with the fruit sweetness index was conducted. RESULTS Sugar content of group T was at least 40% higher than that of group CK. The increase in fruit sugar content positively correlated with the increase in the abundance of beneficial microorganisms, including Pseudomonas, Bacillus, Mycobacterium, Burkholderia, Streptomyces, Acinetobacter, Proteobacteria, Lysobacter, Actinomycetes, Penicillium and Aspergillus. CONCLUSION Sophora alopecuroides organic fertilizer could alter the composition and function of bacterial and fungal communities and promote the growth of beneficial bacteria in the melon plant rhizosphere. Further, it could increase the content of soluble solids and sugar in the fruits to achieve a sweetening effect. This fertilizer can be applied as a fruit sweetener in melon cultivation, improving the sugar content of the fruit and consequently the sweetness. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling-Qi Hua
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China
| | - Sheng-Qiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Zhan-Feng Xia
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China
| | - Hong Zeng
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise, People's Republic of China
| |
Collapse
|
13
|
Volatiles from Pseudomonas palleroniana Strain B-BH16-1 Suppress Aflatoxin Production and Growth of Aspergillus flavus on Coix lacryma-jobi during Storage. Toxins (Basel) 2023; 15:toxins15010077. [PMID: 36668896 PMCID: PMC9861347 DOI: 10.3390/toxins15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Semen coicis is not only a traditional Chinese medicine (TCM), but also a typical food in China, with significant medical and healthcare value. Because semen coicis is rich in starch and oil, it can be easily contaminated with Aspergillus flavus and its aflatoxins (AFs). Preventing and controlling the contamination of semen coicis with Aspergillus flavus and its aflatoxins is vital to ensuring its safety as a drug and as a food. In this study, the endosphere bacteria Pseudomonas palleroniana strain B-BH16-1 produced volatiles that strongly inhibited the mycelial growth and spore formation activity of A. flavus. Gas chromatography-mass spectrometry profiling revealed three volatiles emitted from B-BH16-1, of which 1-undecene was the most abundant. We obtained authentic reference standards for these three volatiles; these significantly reduced mycelial growth and sporulation in Aspergillus, with dimethyl disulfide showing the most robust inhibitory activity. Strain B-BH16-1 was able to completely inhibit the biosynthesis of aflatoxins in semen coicis samples during storage by emitting volatile bioactive components. The microscope revealed severely damaged mycelia and a complete lack of sporulation. This newly identified plant endophyte bacterium was able to strongly inhibit the sporulation and growth of Aspergillus and the synthesis of associated mycotoxins, thus not only providing valuable information regarding an efficient potential strategy for the prevention of A. flavus contamination in TCM and food, but potentially also serving as a reference in the control of toxic fungi.
Collapse
|
14
|
Kong WL, Wang YH, Lu LX, Li PS, Zhang Y, Wu XQ. Rahnella aquatilis JZ-GX1 alleviates iron deficiency chlorosis in Cinnamomum camphora by secreting desferrioxamine and reshaping the soil fungal community. FRONTIERS IN PLANT SCIENCE 2022; 13:960750. [PMID: 36186024 PMCID: PMC9520127 DOI: 10.3389/fpls.2022.960750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Plant growth-promoting rhizobacteria are important for improving plant iron nutrition, but the interactions among inoculants, host plants and soil microorganisms have not been greatly explored. Rahnella aquatilis JZ-GX1 was applied to treat the increasingly serious iron deficiency chlorosis in Cinnamomum camphora, and the resulting improvement in chlorosis was determined by assessing the contents of chlorophyll, active iron, Fe2+ and antioxidant enzymes in leaves, the effects on the soil microbial community and the metabolism in the rhizosphere by high-throughput sequencing techniques and liquid chromatography-mass spectrometry (LC-MS). The results showed that inoculation with JZ-GX1 significantly increased the chlorophyll content of C. camphora, which promoted the redistribution of active iron in roots and leaves, increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and thus reduced membrane damage in iron-deficient C. camphora caused by reactive oxygen species. According to genome prediction and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis, the JZ-GX1 strain could secrete desferrioxamine (DFO), and the concentration of DFO in C. camphora rhizosphere was 21-fold higher than that in uninoculated soil. The exogenous application of DFO increased the SPAD and Fe2+ contents in leaves. In addition, the inoculant affected the fungal community structure and composition in the C. camphora rhizosphere soil and increased the abundances of specific taxa, such as Glomus, Mortierella, Trichoderma, and Penicillium. Therefore, R. aquatilis JZ-GX1 application promoted iron absorption in C. camphora trees by secreting DFO and alleviated iron deficiency chlorosis through interactions with the local fungal community.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lan-Xiang Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Pu-Sheng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Giannelli G, Bisceglie F, Pelosi G, Bonati B, Cardarelli M, Antenozio ML, Degola F, Visioli G. Phyto-Beneficial Traits of Rhizosphere Bacteria: In Vitro Exploration of Plant Growth Promoting and Phytopathogen Biocontrol Ability of Selected Strains Isolated from Harsh Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020230. [PMID: 35050118 PMCID: PMC8779669 DOI: 10.3390/plants11020230] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 05/04/2023]
Abstract
Beneficial interactions between plants and some bacterial species have been long recognized, as they proved to exert various growth-promoting and health-protective activities on economically relevant crops. In this study, the growth promoting and antifungal activity of six bacterial strains, Paenarthrobacter ureafaciens, Beijerinckia fluminensis, Pseudomonas protegens, Arthrobacter sp., Arthrobacter defluii, and Arthrobacter nicotinovorans, were investigated. The tested strains resulted positive for some plant growth promoting (PGP) traits, such as indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate-deaminase (ACC-deaminase), siderophore production, and solubilization of phosphates. The effect of the selected bacteria on Arabidopsis thaliana seedlings growth was assessed using different morphological parameters. Bacterial activity against the phytopathogenic fungal species Aspergillus flavus, Fusarium proliferatum, and Fusarium verticillioides was also assessed, since these cause major yield losses in cereal crops and are well-known mycotoxin producers. Strains Pvr_9 (B. fluminensis) and PHA_1 (P. protegens) showed an important growth-promoting effect on A. thaliana coupled with a high antifungal activity on all the three fungal species. The analysis of bacterial broths through ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) confirmed the presence of potential PGP-compounds, among these are desferrioxamine B, aminochelin, asperchrome B, quinolobactin siderophores, and salicylic acid.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Franco Bisceglie
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
- C.I.R.C.M.S.B.-Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Parma Local Unit, 43124 Parma, Italy
| | - Giorgio Pelosi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
- C.I.R.C.M.S.B.-Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Parma Local Unit, 43124 Parma, Italy
| | - Beatrice Bonati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | | | - Maria Luisa Antenozio
- IBPM-CNR, P.le A. Moro 5, 00185 Roma, Italy
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, 00185 Roma, Italy
| | - Francesca Degola
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Giovanna Visioli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
16
|
Chen J, Hu L, Chen N, Jia R, Ma Q, Wang Y. The Biocontrol and Plant Growth-Promoting Properties of Streptomyces alfalfae XN-04 Revealed by Functional and Genomic Analysis. Front Microbiol 2021; 12:745766. [PMID: 34630371 PMCID: PMC8493286 DOI: 10.3389/fmicb.2021.745766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt of cotton, caused by the pathogenic fungal Fusarium oxysporum f. sp. vasinfectum (Fov), is a devastating disease of cotton, dramatically affecting cotton production and quality. With the increase of pathogen resistance, controlling Fusarium wilt disease has become a significant challenge. Biocontrol agents (BCAs) can be used as an additional solution to traditional crop breeding and chemical control. In this study, an actinomycete with high inhibitory activity against Fov was isolated from rhizosphere soil and identified as Streptomyces alfalfae based on phylogenetic analyses. Next, an integrative approach combining genome mining and metabolites detection was applied to decipher the significant biocontrol and plant growth-promoting properties of XN-04. Bioinformatic analysis and bioassays revealed that the antagonistic activity of XN-04 against Fov was associated with the production of various extracellular hydrolytic enzymes and diffusible antifungal metabolites. Genome analysis revealed that XN-04 harbors 34 secondary metabolite biosynthesis gene clusters. The ability of XN-04 to promote plant growth was correlated with an extensive set of genes involved in indoleacetic acid biosynthesis, 1-aminocyclopropane-1-carboxylic acid deaminase activity, phosphate solubilization, and iron metabolism. Colonization experiments indicated that EGFP-labeled XN-04 had accumulated on the maturation zones of cotton roots. These results suggest that S. alfalfae XN-04 could be a multifunctional BCA and biofertilizer used in agriculture.
Collapse
Affiliation(s)
- Jing Chen
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lifang Hu
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Na Chen
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruimin Jia
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qing Ma
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Sheng M, Jia H, Zhang G, Zeng L, Zhang T, Long Y, Lan J, Hu Z, Zeng Z, Wang B, Liu H. Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans. J Microbiol Biotechnol 2020; 30:689-699. [PMID: 32482934 PMCID: PMC9728291 DOI: 10.4014/jmb.1910.10066] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
Brevibacillus brevis GZDF3 is a gram-positive, plant growth-promoting rhizosphere bacterium (PGPR) isolated from the rhizosphere soil of Pinellia ternata (an important herb in traditional Chinese medicine). The GZDF3 strain produces certain active compounds, such as siderophores, which are the final metabolite products of non-ribosomal peptide synthetase (NRPS) and independent non-ribosomal peptide synthetase (NIS) activity. With the present study, we attempted to investigate the siderophore production characteristics and conditions of Bacillus sp. GZDF3. The antibacterial activity of the siderophores on pathogenic fungi was also investigated. Optimal conditions for the synthesis of siderophores were determined by single factor method, using sucrose 15 g/l, asparagine 2 g/l, 32°C, and 48 h. The optimized sucrose asparagine medium significantly increased the production of siderophores, from 27.09% to 54.99%. Moreover, the effects of different kinds of metal ions on siderophore production were explored here. We found that Fe3+ and Cu2+ significantly inhibited the synthesis of siderophores. The preliminary separation and purification of siderophores by immobilized-metal affinity chromatography (IMAC) provides strong antibacterial activity against Candida albicans. The synergistic effect of siderophores and amphotericin B was also demonstrated. Our results have shown that the GZDF3 strain could produce a large amount of siderophores with strong antagonistic activity, which is helpful in the development of new biological control agents.
Collapse
Affiliation(s)
- Miaomiao Sheng
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
| | - Huake Jia
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
| | - Gongyou Zhang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
| | - Lina Zeng
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Tingting Zhang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Jing Lan
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Zuquan Hu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Zhu Zeng
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
| | - Bing Wang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, P.R. China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 55005, Guizhou, P.R. China
| |
Collapse
|
18
|
Wang Z, Xue J, Sun H, Zhao M, Wang Y, Chu J, Zhuang Y. Evaluation of mixing effect and shear stress of different impeller combinations on nemadectin fermentation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Forest Tree Associated Bacterial Diffusible and Volatile Organic Compounds against Various Phytopathogenic Fungi. Microorganisms 2020; 8:microorganisms8040590. [PMID: 32325752 PMCID: PMC7232321 DOI: 10.3390/microorganisms8040590] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) can potentially be used as an alternative strategy to control plant diseases. In this study, strain ST-TJ4 isolated from the rhizosphere soil of a healthy poplar was found to have a strong antifungal activity against 11 phytopathogenic fungi in agriculture and forestry. Strain ST-TJ4 was identified as Pseudomonas sp. based on 16S rRNA-encoding gene sequences. The bacterium can produce siderophores, cellulase, and protease, and has genes involved in the synthesis of phenazine, 1-phenazinecarboxylic acid, pyrrolnitrin, and hydrogen cyanide. Additionally, the volatile compounds released by strain ST-TJ4 can inhibit the mycelial growth of plant pathogenic fungi more than diffusible substances can. Based on volatile compound profiles of strain ST-TJ4 obtained from headspace collection and GC-MS/MS analysis, 1-undecene was identified. In summary, the results suggested that Pseudomonas sp. ST-TJ4 can be used as a biocontrol agent for various plant diseases caused by phytopathogenic fungi.
Collapse
|
20
|
Maximization of Siderophores Production from Biocontrol Agents, Pseudomonas aeruginosa F2 and Pseudomonas fluorescens JY3 Using Batch and Exponential Fed-Batch Fermentation. Processes (Basel) 2020. [DOI: 10.3390/pr8040455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Twenty fluorescent Pseudomonas isolates were tested for their ability to produce siderophores on chrome azurol S (CAS) agar plates and their antagonistic activity against six plant pathogenic fungal isolates was assessed. Scaling-up production of siderophores from the promising isolates, P. aeruginosa F2 and P. fluorescens JY3 was performed using batch and exponential fed-batch fermentation. Finally, culture broth of the investigated bacterial isolates was used for the preparation of two economical bioformulations for controlling Fusarium oxysporum and Rhizoctonia solani. The results showed that both isolates yielded high siderophore production and they were more effective in inhibiting the mycelial growth of the tested fungi compared to the other bacterial isolates. Exponential fed-batch fermentation gave higher siderophore concentrations (estimated in 10 µL), which reached 67.05% at 46 h and 45.59% at 48 h for isolates F2 and JY3, respectively, than batch fermentation. Formulated P. aeruginosa F2 and P. fluorescens JY3 decreased the damping-off percentage caused by F. oxysporum with the same percentage (80%), while, the reduction in damping-off percentage caused by R. solani reached 87.49% and 62.5% for F2 and JY3, respectively. Furthermore, both formulations increased the fresh and dry weight of shoots and roots of wheat plants. In conclusion, bio-friendly formulations of siderophore-producing fluorescent Pseudomonas isolates can be used as biocontrol agents for controlling some plant fungal diseases.
Collapse
|
21
|
Reyes-Perez JJ, Hernandez-Montiel LG, Vero S, Noa-Carrazana JC, Quiñones-Aguilar EE, Rincón-Enríquez G. Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action. Journal of Food Science and Technology 2019; 56:4992-4999. [PMID: 31741523 DOI: 10.1007/s13197-019-03971-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/05/2018] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
The marine bacterium Stenotrophomonas rhizophila was assessed in vitro and in vivo as biocontrol agent against anthracnose disease of mango fruit caused by Colletotrichum gloeosporioides. The results showed that in vitro inhibition of the colony diameter and spore germination of the phytopathogen was due to the production of VOCs, competition for nutrients, and lytic enzymes. When a concentration of 1 × 108 cells ml-1 of the antagonist bacterium was applied to the fruit, disease incidence was reduced by 95%, and the lesion diameter of anthracnose decreased by 85%, which offered greater protection than the synthetic fungicide. This is the first report of antagonistic mechanisms of the marine bacterium S. rhizophila against anthracnose disease in mango, which in this study was found to be more effective than the synthetic fungicide.
Collapse
Affiliation(s)
- J J Reyes-Perez
- 1Campus Ingeniero Manuel Agustín Haz Álvarez, Universidad Técnica Estatal de Quevedo, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsáchilas, Quevedo, Los Ríos Ecuador.,2Universidad Técnica de Cotopaxi, extensión La Maná, Av. Los Almendros y calle Pujili Sector La Virgen, La Maná, Ecuador
| | - L G Hernandez-Montiel
- 3Centro de Investigaciones Biológicas del Noroeste S.C., Calle Instituto Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, Baja California Sur Mexico
| | - S Vero
- 4Facultad de Química, Universidad de la Republica, Gral. Flores 2124, Montevideo, Uruguay
| | - J C Noa-Carrazana
- Instituto de Biotecnología y Ecología Aplicada, Zona Universitaria, C.P. 91090 Xalapa, Veracruz Mexico
| | - E E Quiñones-Aguilar
- 6Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| | - G Rincón-Enríquez
- 6Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| |
Collapse
|