1
|
Lin Y, Song Y, Zhang Y, Li X, Kan L, Han S. New insights on anti-tumor immunity of CD8 + T cells: cancer stem cells, tumor immune microenvironment and immunotherapy. J Transl Med 2025; 23:341. [PMID: 40097979 PMCID: PMC11912710 DOI: 10.1186/s12967-025-06291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025] Open
Abstract
Recent breakthroughs in tumor immunotherapy have confirmed the capacity of the immune system to fight several cancers. The effective means of treating cancer involves accelerating the death of tumor cells and improving patient immunity. Dynamic changes in the tumor immune microenvironment alter the actual effects of anti-tumor drug production and may trigger favorable or unfavorable immune responses by modulating tumor-infiltrating lymphocytes. Notably, CD8+ T cells are one of the primary tumor-infiltrating immune cells that provide anti-tumor response. Tumor cells and tumor stem cells will resist or evade destruction through various mechanisms as CD8+ T cells exert their anti-tumor function. This paper reviews the research on the regulation of tumor development and prognosis by cancer stem cells that directly or indirectly alter the role of tumor-infiltrating CD8+ T cells. We also discuss related immunotherapy strategies.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaodong Li
- Department of Neurosurgery, Siping Central People's Hospital, Siping, Jilin, 136000, China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Andour L, Hagenaars SC, Gregus B, Tőkes AM, Karancsi Z, Tollenaar RAEM, Kroep JR, Kulka J, Mesker WE. The prognostic value of the tumor-stroma ratio compared to tumor-infiltrating lymphocytes in triple-negative breast cancer: a review. Virchows Arch 2025; 486:427-444. [PMID: 39904885 PMCID: PMC11950021 DOI: 10.1007/s00428-025-04039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/17/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Previous literature extensively explored biomarkers to personalize treatment for breast cancer patients. The clinical need is especially high in patients with triple-negative breast cancer (TNBC) due to its aggressive nature and limited treatment modalities. This review aims to evaluate the value of tumor-infiltrating lymphocytes (TILs) and tumor-stroma ratio (TSR) as prognostic biomarkers in TNBC patients and assess their clinical potential. A literature search was conducted in PubMed, Embase, Emcare, Web of Science, and Cochrane Library. Papers comparing survival outcomes of TNBC patients with low/high or negative/positive TSR and immune cells were included. The most frequently mentioned subgroups of TILs were selected and reported in this review. Data from 43 articles on TILs and eight articles on TSR were included. Among TNBC patients, high CD8 expression was generally associated with better survival. Notable, the poor survival outcomes were related to high intra-tumoral PD-L1 expression, whereas high stromal PD-L1 expression more often was correlated with favorable outcomes. For the TSR, a high amount of stroma in the primary tumor of TNBC patients was consistently associated with worse survival. This review highlights that a high number of CD8-positive T-cells is a promising prognostic factor for TNBC patients. PD-L1 expression analyzed for intra-tumoral and stromal expression separately reports strong but contrasting information. Finally, the TSR shows potential to be an important prognostic marker, especially for TNBC patients. Utilizing both biomarkers, either on itself or combined, could enhance clinical decision-making and personalization of treatment.
Collapse
Affiliation(s)
- Layla Andour
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Sophie C Hagenaars
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Barbara Gregus
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Mária Tőkes
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Zsófia Karancsi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janina Kulka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
3
|
Serrano García L, Jávega B, Llombart Cussac A, Gión M, Pérez-García JM, Cortés J, Fernández-Murga ML. Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review. Front Immunol 2024; 15:1513421. [PMID: 39735530 PMCID: PMC11671371 DOI: 10.3389/fimmu.2024.1513421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality. Standard treatment for TNBC primarily relies on cytotoxic agents, such as taxanes, anthracyclines, and platinum compounds for both early and advanced stages of the disease. Several targeted therapies, including bevacizumab and sunitinib, have failed to demonstrate significant clinical benefit in TNBC. The emergence of immune checkpoint inhibitors (ICI) has revolutionized cancer treatment. By stimulating the immune system, ICIs induce a durable anti-tumor response across various solid tumors. TNBC is a particularly promising target for treatment with ICIs due to the higher levels of tumor-infiltrating lymphocytes (TIL), increased PD-L1 expression, and higher mutational burden, which generates tumor-specific neoantigens that activate immune cells. ICIs administered as monotherapy in advanced TNBC yields only a modest response; however, response rates significantly improve when ICIs are combined with cytotoxic agents, particularly in tumors expressing PD-L1. Pembrolizumab is approved for use in both early and advanced TNBC in combination with standard chemotherapy. However, more research is needed to identify more potent biomarkers, and to better elucidate the synergism of ICIs with other targeted agents. In this review, we explore the challenges of immunotherapy in TNBC, examining the mechanisms of tumor progression mediated by immune cells within the tumor microenvironment, and the signaling pathways involved in both primary and acquired resistance. Finally, we provide a comprehensive overview of ongoing clinical trials underway to investigate novel immune-targeted therapies for TNBC.
Collapse
Affiliation(s)
- Lucía Serrano García
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Beatriz Jávega
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Antonio Llombart Cussac
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- Grupo Oncología Traslacional, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-Centro de Estudios Universitarios (CEU), Alfara del Patriarca, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
| | - María Gión
- Medical Oncology Department, Hospital Ramon y Cajal, Madrid, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - María Leonor Fernández-Murga
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| |
Collapse
|
4
|
Liu X, Zhao W, Jia Y, Shi Y, Wang X, Li S, Zhang P, Wang C, Hao C, Tong Z. A non-inferiority, phase III trial of gemcitabine plus capecitabine versus gemcitabine plus carboplatin as first-line therapy and tumor-infiltrating lymphocytes as a prognostic biomarker in patients with advanced triple-negative breast cancer. Ther Adv Med Oncol 2024; 16:17588359241240304. [PMID: 39634173 PMCID: PMC11615979 DOI: 10.1177/17588359241240304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/28/2024] [Indexed: 12/07/2024] Open
Abstract
Background Gemcitabine plus capecitabine (GX) shows survival benefit and manageable safety in patients with advanced triple-negative breast cancer (TNBC) but there is a paucity of phase III trial evidence. We aimed to compare the efficacy and safety of GX with gemcitabine plus carboplatin (GC) as first-line treatment for patients with advanced TNBC and validate the prognostic value of tumor-infiltrating lymphocytes (TILs). Methods Patients with advanced TNBC were randomly assigned 1:1 to receive gemcitabine (1000 mg/m2) on days 1 and 8 plus oral capecitabine (1000 mg/m2 twice a day) on days 1-14, or gemcitabine (1000 mg/m2) on days 1 and 8 plus carboplatin area under curve 2 on days 1 and 8. The primary endpoint was progression-free survival (PFS). TILs were analyzed by immunohistochemistry. The margin used to establish non-inferiority was 1.2. Results In all, 187 patients were randomly assigned, with 93 in GX and 94 in GC. Median PFS was 6.1 months in the GX arm compared with 6.3 months in the GC arm. The hazard ratio for PFS was 1.148, and a 95% CI was 0.856-1.539, exceeding the non-inferiority margin of 1.2. The median overall survival (OS) was 21.0 months in the GX arm compared with 21.5 months in the GC arm. The safety profile for the GX regimen was superior to the GC regimen, especially regarding hematological toxicity. Patients with high CD8+ TILs had significantly longer PFS and OS compared with patients with low CD8+ TILs. In the high CD8+ TIL group, the GC arm had prolonged PFS and OS compared with the GX arm. Conclusion The trial did not meet the prespecified criteria for the primary endpoint of PFS in patients with advanced TNBC. Moreover, the GC regimen showed better efficacy compared with the GX regimen in patients with high CD8+ TILs. However, the GX regimen should be considered in patients who cannot tolerate hematological toxicity. Trial registration ClinicalTrials.gov identifier: NCT02207335.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Weipeng Zhao
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongsheng Jia
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yehui Shi
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xu Wang
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shufen Li
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Wang
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chunfang Hao
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongsheng Tong
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin 300060, China
| |
Collapse
|
5
|
Sarangi P. Role of indoleamine 2, 3-dioxygenase 1 in immunosuppression of breast cancer. CANCER PATHOGENESIS AND THERAPY 2024; 2:246-255. [PMID: 39371092 PMCID: PMC11447360 DOI: 10.1016/j.cpt.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Breast cancer (BC) contributes greatly to global cancer incidence and is the main cause of cancer-related deaths among women globally. It is a complex disease characterized by numerous subtypes with distinct clinical manifestations. Immune checkpoint inhibitors (ICIs) are not effective in all patients and have been associated with tumor resistance and immunosuppression. Because amino acid (AA)-catabolizing enzymes have been shown to regulate immunosuppressive effects, this review investigated the immunosuppressive roles of indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan (Trp)-catabolizing enzyme, which is overexpressed in various metastatic tumors. It promotes immunomodulatory effects by depleting Trp in the regional microenvironment. This leads to a reduction in the number of immunogenic immune cells, such as effector T and natural killer (NK) cells, and an increase in tolerogenic immune cells, such as regulatory T (Treg) cells. The BC tumor microenvironment (TME) establishes a supportive niche where cancer cells can interact with immune cells and neighboring endothelial cells and is thus a feasible target for cancer therapy. In many immunological contexts, IDO1 regulates immune control by causing regional metabolic changes in the TME and tissue environment, which may further affect the maturation of systemic immunological tolerance. In the development of effective treatment targets and approaches, it is essential to understand the immunomodulatory effects exerted by AA-catabolizing enzymes, such as IDO1, on the components of the TME.
Collapse
Affiliation(s)
- Pratyasha Sarangi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
6
|
Degirmenci M, Diniz G, Kahraman DS, Sahbazlar M, Koral L, Varol U, Uslu R. Investigating the Correlation Between Long-Term Response in Patients with Metastatic HER2+ Breast Cancer and the Activity of Regulatory T Cells: A Retrospective Study. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:645-655. [PMID: 39355199 PMCID: PMC11444060 DOI: 10.2147/bctt.s470570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024]
Abstract
Background Trastuzumab is commonly utilized in the management of metastatic HER2-positive breast cancer. Our main goal was to examine the clinical outcomes and immune markers of patients who received trastuzumab and chemotherapy treatment. Methods Between 1995 and 2012, a total of 98 patients diagnosed with metastatic HER2-positive breast cancer were retrospectively analyzed at Ege University Hospital and Tepecik Training and Research Hospital. The clinicopathological characteristics and clinical outcomes of the patients were assessed, and the associations between response rates, survival and the immune profiles of tumor infiltrating lymphocytes were statistically evaluated. Results The average age of patients at the time of diagnosis was 50.1±10.3 (ranging from 30 to 79) years. The mean follow-up period for all patients was 97.9±53.8 months. Among the patients, complete response was observed in 24.5%, partial response in 61.2%, and stable disease in 8.2% of cases. The average progression-free survival was 50.3±26.9 months (ranging from 1 to 163 months), and the average overall survival was 88.8±59.4 months (ranging from 12 to 272 months). After analyzing all cases, it was found that patients who were younger (p=0.006), exhibited higher CD3-positivity (p=0.041), presented with higher FOXP3-positivity (p=0.025), showed complete or at least partial response to treatment (p=0.008), and experienced a long-term response to trastuzumab (and chemotherapy) treatment had longer survival (p=0.001). Conclusion Patients with HER2-positive breast cancer, who initially respond positively to palliative trastuzumab and chemotherapy treatment, can achieve long-term tumor remission lasting for several years.
Collapse
Affiliation(s)
- Mustafa Degirmenci
- Department of Medical Oncology, Health Sciences University, Izmir, Turkey
| | - Gulden Diniz
- Department of Pathology, Izmir Democracy University, Izmir, Turkey
| | | | - Mustafa Sahbazlar
- Department of Medical Oncology, Celal Bayar University, Manisa, Turkey
| | - Lokman Koral
- Department of Medical Oncology, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Umut Varol
- Department of Medical Oncology, Izmir Democracy university, Izmir, Turkey
| | - Ruchan Uslu
- Department of Medical Oncology, izmir Medicana Hospital, Izmir, Turkey
| |
Collapse
|
7
|
Ma Y, Shi X, Zhao K, Hu S, Shi Y, Jiang Y, Liu Y, Lu L, Chang Y, Zhou F, Dai Y, Wu Z, Li S, Qian Z, Xu X, Li C, Shen B, Zhou G, Chen C, Wang X, Feng J. Optimal response to tislelizumab plus chemotherapy in metastatic triple-negative breast cancer: a case report and literature review. Front Oncol 2024; 14:1328844. [PMID: 38606104 PMCID: PMC11007123 DOI: 10.3389/fonc.2024.1328844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Metastatic triple-negative breast cancer (mTNBC) has the worst prognosis among breast cancer subtypes. Immune checkpoint inhibitors (ICIs) plus chemotherapy have promising survival benefits. Herein, we report a 51-year-old woman whose metastatic lesions were diagnosed as triple-negative subtype and who received tislelizumab plus eribulin treatment and achieved excellent efficacy. To our knowledge, this study is the first attempt to present tislelizumab in combination with eribulin for mTNBC treatment. New treatments resulting in prolonged survival and durable clinical responses would benefit mTNBC patients. Then, we summarize the possible influencing factors of the interaction between tislelizumab and eribulin.
Collapse
Affiliation(s)
- Yuxin Ma
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinhong Shi
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Kun Zhao
- Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, Jiangsu, China
| | - Shuyi Hu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yue Shi
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yingying Jiang
- Department of Oncology, Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Yiling Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Lin Lu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yuting Chang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fei Zhou
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yingying Dai
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zipeng Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Shiyi Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhiying Qian
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xia Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Chenchen Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Bo Shen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
- Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, Jiangsu, China
| | - Guoren Zhou
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Cheng Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xiaohua Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
- Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, Jiangsu, China
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
- Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, Jiangsu, China
| |
Collapse
|
8
|
Kakumoto A, Jamiyan T, Kuroda H, Harada O, Yamaguchi-Isochi T, Baba S, Kato Y, Nishihara H, Kawami H. Prognostic impact of tumor-associated neutrophils in breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:51-62. [PMID: 38577697 PMCID: PMC10988089 DOI: 10.62347/jqdq1527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES Neutrophils are the most common type of leukocyte in mammals and play an essential role in the innate immune system and anti-cancer responses. However, recent studies identified the presence of tumor-associated neutrophils (TANs) as a poor prognostic factor. The present study investigated whether relationships exist between TANs and the clinicopathological factors and genetic status of breast cancer. METHODS A total of 196 breast cancer patients with sufficient biopsy, breast-conserving surgery, or mastectomy specimens between 2014 and 2021 in Hokuto Hospital were included. RESULTS TANs were individually counted in the tumor stroma (TS) and tumor nest (TN). A higher density of TANs in both TS and TN correlated with tumor size (TS P = 0.010; TN P = 0.001), a high histological grade (TS P < 0.001; TN P < 0.001), the histological type (TS P = 0.009; TN P = 0.034), a high ratio of lymph node metastasis (TS P < 0.001; TN P < 0.001), an advanced stage of cancer (TS P < 0.001; TN P = 0.002), intrinsic subtypes (TS P < 0.001; TN P < 0.001), ERBB2 (TS P < 0.001; TN P < 0.001), MAP3K1 (TS P = 0.002; TN P = 0.023), and TP53 (TS P < 0.001; TN P < 0.001). A higher density of TANs in TS and TN also correlated with shorter disease-free survival and overall survival (P < 0.001). CONCLUSION The present results suggest that a higher density of TANs correlates with unfavorable prognostic factors in breast cancer. Further research on clinicopathological and genetic factors associated with TANs in breast cancer is needed.
Collapse
Affiliation(s)
- Akinari Kakumoto
- Department of Diagnostic Pathology, Tokyo Women’s Medical University Adachi Medical Center 4-33-1 KohokuAdachi-Ku, Tokyo 123-0872, Japan
| | - Tsengelmaa Jamiyan
- Department of Pathology and Forensic Medicine, Mongolian National University of Medical SciencesUlan Bator 14210, Mongolia
| | - Hajime Kuroda
- Department of Diagnostic Pathology, Tokyo Women’s Medical University Adachi Medical Center 4-33-1 KohokuAdachi-Ku, Tokyo 123-0872, Japan
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
| | - Oi Harada
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
- Breast Center, Showa UniversityTokyo 142-8666, Japan
| | | | - Shogo Baba
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
| | - Yasutaka Kato
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
- Genomics Unit, Keio Cancer Center, Clinical and Translational Research Center, Keio University School of MedicineTokyo 160-8582, Japan
| | - Hiroshi Nishihara
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
- Genomics Unit, Keio Cancer Center, Clinical and Translational Research Center, Keio University School of MedicineTokyo 160-8582, Japan
| | - Hiroyuki Kawami
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
- Center for Breast Diseases and Breast Cancer, Hokuto Hospital and ClinicObihiro, Hokkaido 080-0833, Japan
| |
Collapse
|
9
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Jacobs C, Shah S, Lu WC, Ray H, Wang J, Hockaden N, Sandusky G, Nephew KP, Lu X, Cao S, Carpenter RL. HSF1 Inhibits Antitumor Immune Activity in Breast Cancer by Suppressing CCL5 to Block CD8+ T-cell Recruitment. Cancer Res 2024; 84:276-290. [PMID: 37890164 PMCID: PMC10790131 DOI: 10.1158/0008-5472.can-23-0902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. SIGNIFICANCE The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies.
Collapse
Affiliation(s)
- Curteisha Jacobs
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Sakhi Shah
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Wen-Cheng Lu
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - John Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Natasha Hockaden
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - George Sandusky
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Xin Lu
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard L. Carpenter
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Medical Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
11
|
Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther 2023; 8:386. [PMID: 37806986 PMCID: PMC10560686 DOI: 10.1038/s41392-023-01619-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Individual variability in drug response (IVDR) can be a major cause of adverse drug reactions (ADRs) and prolonged therapy, resulting in a substantial health and economic burden. Despite extensive research in pharmacogenomics regarding the impact of individual genetic background on pharmacokinetics (PK) and pharmacodynamics (PD), genetic diversity explains only a limited proportion of IVDR. The role of gut microbiota, also known as the second genome, and its metabolites in modulating therapeutic outcomes in human diseases have been highlighted by recent studies. Consequently, the burgeoning field of pharmacomicrobiomics aims to explore the correlation between microbiota variation and IVDR or ADRs. This review presents an up-to-date overview of the intricate interactions between gut microbiota and classical therapeutic agents for human systemic diseases, including cancer, cardiovascular diseases (CVDs), endocrine diseases, and others. We summarise how microbiota, directly and indirectly, modify the absorption, distribution, metabolism, and excretion (ADME) of drugs. Conversely, drugs can also modulate the composition and function of gut microbiota, leading to changes in microbial metabolism and immune response. We also discuss the practical challenges, strategies, and opportunities in this field, emphasizing the critical need to develop an innovative approach to multi-omics, integrate various data types, including human and microbiota genomic data, as well as translate lab data into clinical practice. To sum up, pharmacomicrobiomics represents a promising avenue to address IVDR and improve patient outcomes, and further research in this field is imperative to unlock its full potential for precision medicine.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China.
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, PR China.
- Central Laboratory of Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, 410013, PR China.
| |
Collapse
|
12
|
Yao G, Huang J, Zhang Q, Hu D, Yuan F, Han G. Excellent response of refractory triple-negative breast cancer to sintilimab plus chemotherapy: a case report. Immunotherapy 2023; 15:221-228. [PMID: 36789554 DOI: 10.2217/imt-2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high propensity for invasion and a high incidence of lymph node metastasis. Systemic chemotherapy is considered the primary treatment for patients with TNBC; however, immune checkpoint inhibitors in addition to chemotherapy have been associated with better outcomes. Sintilimab, an anti-PD-1 antibody, was developed in China. Herein, the authors report a 49-year-old woman diagnosed with TNBC with extensive lung and sternal metastases. Treatment with sintilimab plus paclitaxel and carboplatin was found highly effective after failure of first-line chemotherapy. This combinational therapy can be considered for the treatment of TNBC after necessary investigations and clinical trials.
Collapse
Affiliation(s)
- Guojun Yao
- Radiotherapy Center of Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Junping Huang
- Oncology department of HuBei Jianghan Oilfield General Hospital, China
| | - Qu Zhang
- Radiotherapy Center of Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Desheng Hu
- Radiotherapy Center of Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Feng Yuan
- Breast Cancer Center of Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Guang Han
- Radiotherapy Center of Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
13
|
Sun Y, Wang Y, Lu F, Zhao X, Nie Z, He B. The prognostic values of FOXP3 + tumor-infiltrating T cells in breast cancer: a systematic review and meta-analysis. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1830-1843. [PMID: 36692642 DOI: 10.1007/s12094-023-03080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Tumor microenvironment is infiltrated by many immune cells, of which Regulatory T (Treg) cells are usually considered as negative regulators of the immune responses. However, the effect of FOXP3+ (forkhead box transcription factor 3) Treg cells infiltrated into the tumor areas on the prognosis of breast cancer is controversial. This meta-analysis aimed to dissect the potential values of FOXP3+ tumor-infiltrating lymphocytes (TILs) as a prognosis predictor of breast cancer. METHODS After systematic retrieval of all relevant studies, 28 eligible articles were identified for meta-analysis. Odd ratio (OR), hazard ratio (HR), and 95% confidence interval (CI) were obtained for pooled analyses of pathological complete response (pCR), overall survival (OS), and corresponding forest plots and funnel plots were plotted, respectively. RESULTS Pooled results revealed that patients with higher levels of FOXP3+ TILs experienced better pCR (OR: 1.24, 95% CI 1.09-1.41) and OS (HR: 0.79, 95% CI 0.64-0.97). Subgroup analysis revealed that elevated FOXP3+ TILs were significantly associated with improved pCR (OR: 1.20, 95% CI 1.02-1.40) and OS (HR: 0.22, 95% CI 0.06-0.88) in human epidermal growth factor receptor 2 positive (HER2+) breast cancer patients. Furthermore, FOXP3+ TILs in the stromal area were statistically correlated with the favorable pCR (OR: 1.22, 95% CI 1.08-1.38) and OS (HR: 0.68, 95% CI 0.49-0.96). CONCLUSIONS The predictive role of FOXP3+ TILs in the prognosis of breast cancer is influenced by various factors such as molecular subtype of breast cancer and the location of Treg. In HER2+ breast cancer and triple-negative breast cancer, FOXP3+ TILs are associated with better pCR and OS. Additionally, FOXP3+ TILs in stromal represent a favourable prognosis.
Collapse
Affiliation(s)
- Yalan Sun
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Ying Wang
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Fang Lu
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xianghong Zhao
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Bangshun He
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China. .,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
14
|
Mutka M, Joensuu K, Eray M, Heikkilä P. Quantities of CD3+, CD8+ and CD56+ lymphocytes decline in breast cancer recurrences while CD4+ remain similar. Diagn Pathol 2023; 18:3. [PMID: 36627701 PMCID: PMC9830729 DOI: 10.1186/s13000-022-01278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Much is known about tumor infiltrating lymphocytes (Tils) in primary breast cancer, as this has been the focus of much research in recent years, but regarding recurrent breast cancer, only few studies have been done. Our aim was to compare the quantities of Tils in primary breast carcinomas and their corresponding recurrences and to analyze the differences in the tumor Tils compositions in correlations with recurrence-free times and the clinicopathology of the tumor. METHODS One hundred thirty-seven breast cancer patients self-paired for primary- tumor-recurrence were divided into three groups based on the length of the recurrence-free interval. H&E-staining and immunohistochemical staining with antiCD3, antiCD4, antiCD8 and antiCD56 were performed. Differences in Tils between primaries and recurrences, between the recurrence-free interval groups, and between different clinicopathologic parameters were statistically analyzed. RESULTS Fewer stromal CD3+, CD8+ and CD56+ lymphocytes were found at recurrences compared to the primaries. No significant change in the percentage of CD4+ stromal lymphocytes. ER-negative primaries, PR-negative or HER2-positive tumors had more Tils in some subgroups. Ductal primaries had more Tils than lobular primaries and G3 tumors had more Tils than lower-grade tumors. The corresponding differences at recurrences could either not be detected or they were reversed. The fastest recurring group had generally more Tils than the slower groups. CONCLUSIONS CD4+ cell numbers did not decline from primary to recurrence in contrast to all other subclasses of lymphocytes. The proportion of CD4+ cells was higher in recurrences than in primaries. Tumors with a higher grade and proliferation rate had higher percentages of Tils. HER2+ and hormone receptor negative tumors tended to have higher Tils scores. In recurrences these differences were not seen or they were reversed.
Collapse
Affiliation(s)
- Minna Mutka
- grid.7737.40000 0004 0410 2071Department of Pathology, HUSLAB, Helsinki University Hospital and University of Helsinki, FIN-00290 Helsinki, Finland
| | - Kristiina Joensuu
- grid.7737.40000 0004 0410 2071University of Helsinki, FIN-00290 Helsinki, Finland
| | - Mine Eray
- grid.7737.40000 0004 0410 2071Department of Pathology, HUSLAB, Helsinki University Hospital and University of Helsinki, FIN-00290 Helsinki, Finland
| | - Päivi Heikkilä
- grid.7737.40000 0004 0410 2071Department of Pathology, HUSLAB, Helsinki University Hospital and University of Helsinki, FIN-00290 Helsinki, Finland
| |
Collapse
|
15
|
The Landscape of Tumor-Infiltrating Immune Cells in Feline Mammary Carcinoma: Pathological and Clinical Implications. Cells 2022; 11:cells11162578. [PMID: 36010653 PMCID: PMC9406662 DOI: 10.3390/cells11162578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
Feline mammary carcinoma (FMC) shares key molecular and clinicopathological features with human breast cancer. We have herein studied the inflammatory infiltrate of FMC in order to uncover potential therapeutic targets and prognostic markers. To this end, the expression of different markers (CD3, CD4, CD8, CD20, CD56, FoxP3, CD68 and CD163) was analyzed in total, stromal (s) and intratumoral (i) tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs), in 73 feline mammary carcinomas. The results revealed that higher percentages of sCD8+ TILs were associated with longer disease-free survival (p = 0.05) and overall survival (p = 0.021). Additionally, higher percentages of iCD4+ TILs correlated with positive lymph node status (p = 0.003), whereas CD163+ TAMs were associated with undifferentiated tumors (p = 0.013). In addition, sCD3+ (p = 0.033), sCD8+ (p = 0.044) and sCD68+ (p = 0.023) immune cells were enriched in triple negative normal-like carcinomas compared to other subtypes. Altogether, our results suggest that specific subsets of immune cells may play a major role in clinical outcome of cats with mammary carcinoma, resembling what has been reported in human breast cancer. These data further support the relevance of the feline model in breast cancer studies.
Collapse
|
16
|
da Silva JL, de Albuquerque LZ, Rodrigues FR, de Mesquita GG, Chaves CBP, Bonamino MH, de Melo AC. The prevalence and prognostic impact of tumor-infiltrating lymphocytes in uterine carcinosarcoma. BMC Cancer 2021; 21:1306. [PMID: 34876047 PMCID: PMC8650400 DOI: 10.1186/s12885-021-09026-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To examine the prevalence and prognostic role of tumor microenvironment (TME) markers in uterine carcinosarcoma (UCS) through immunohistochemical characterization. METHODS The internal database of our institution was queried out for women with UCS who underwent surgery and thereafter postoperative chemotherapy with carboplatin and paclitaxel between January 2012 and December 2017. Tissue microarrays containing surgical samples of UCS from 57 women were assessed by immunohistochemistry for CD3, CD4, CD8, FOXP3, PD-1, PD-L1, and PD-L2. RESULTS The mean age was 65.3 years (range, 49 to 79 years). For the epithelial component (E), CD3_E and CD4_E were highly expressed in 38 (66.7%) and in 40 (70.1%) patients, respectively, and were significantly associated with more advanced stages (p = 0.038 and p = 0.025, respectively). CD8_E was highly expressed in 42 (73.7%) patients, FOXP3_E 16 (28.1%), PD-1_E 35 (61.4%), PD-L1_E 27 (47.4%) and PD-L2_E 39 (68.4%). For the sarcomatous component (S), the prevalence of high expression was: CD3_S 6 (10.5%), CD4_S 20 (35.1%), CD8_S 44 (77.2%), FOXP3_S 8 (14%), PD-1_S 14 (24.6%), PD-L1_S 14 (24.6%) and PD-L2_S 8 (14%). By multivariate analysis, the CD8/FOXP3_S ratio (p = 0.026), CD4_E (p = 0.010), PD-L1_E (p = 0.013) and PD-L1_S (p = 0.008) markers significantly influenced progression-free survival. CD4/FOXP3_S ratio (p = 0.043), PD-1_E (p = 0.011), PD-L1_E (p = 0.036) and PD-L1_S (p = 0.028) had a significant association with overall survival. CONCLUSION Some differences in UCS clinical outcomes may be due to the subtype of TILs and PD-1/PD-L1 axis immune checkpoint signaling.
Collapse
Affiliation(s)
- Jesse Lopes da Silva
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.
- Gynecologic Oncology Section, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.
| | - Lucas Zanetti de Albuquerque
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Guilherme Gomes de Mesquita
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Division of Pathology, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Cláudia Bessa Pereira Chaves
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Gynecologic Oncology Section, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Martín Hernán Bonamino
- Immunology and Tumor Biology Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Andreia Cristina de Melo
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Kuroda H, Jamiyan T, Yamaguchi R, Kakumoto A, Abe A, Harada O, Masunaga A. Tumor microenvironment in triple-negative breast cancer: the correlation of tumor-associated macrophages and tumor-infiltrating lymphocytes. Clin Transl Oncol 2021; 23:2513-2525. [PMID: 34089486 PMCID: PMC8557183 DOI: 10.1007/s12094-021-02652-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Immune cells such as cytotoxic T cells, helper T cells, B cells or tumor-associated macrophages (TAMs) contribute to the anti-tumor response or pro-tumorigenic effect in triple negative breast cancer (TNBC). The interrelation of TAMs, T and B tumor-infiltrating lymphocytes (TILs) in TNBC has not been fully elucidated. METHODS We evaluated the association of tumor-associated macrophages, T and B TILs in TNBC. RESULTS TNBCs with a high CD68+, CD163+ TAMs and low CD4+, CD8+, CD20+ TILs had a significantly shorter relapse-free survival (RFS) and overall survival (OS) than those with low CD68+, CD163+ TAMs and high CD4+, CD8+, CD20+ TILs. TNBCs with high CD68+ TAMs/low CD8+ TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD68+ TAMs/high CD8+ TILs, low CD68+ TAMs/high CD8+ TILs, and low CD68+/low CD8+. TNBCs with high CD163+ TAMs/low CD8+, low CD20 + TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD163+ TAMs/high CD8+ TILs and high CD163+ TAMs /high CD20+ TILs. CONCLUSIONS Our study suggests that TAMs further create an optimal tumor microenvironment (TME) for growth and invasion of cancer cells when evasion of immunoreactions due to T and B TILs occurs. In TNBCs, all these events combine to affect prognosis. The process of TME is highly complex in TNBCs and for an improved understanding, larger validation studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- H Kuroda
- Department of Diagnostic Pathology, Tokyo Women's Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo, 116-8567, Japan.
- Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Japan.
| | - T Jamiyan
- Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Japan
- Department of Pathology and Forensic Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - R Yamaguchi
- Department of Pathology & Laboratory Medicine, Kurume University Medical Center, Kurume, Japan
| | - A Kakumoto
- Department of Diagnostic Pathology, Tokyo Women's Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo, 116-8567, Japan
- Department of Diagnostic Pathology, Nasu Red Cross Hospital, Otawara, Japan
| | - A Abe
- Breast Center, Dokkyo Medical University, Mibu, Japan
| | - O Harada
- Breast Center, Showa University, Tokyo, Japan
| | - A Masunaga
- Department of Diagnostic Pathology, Tokyo Women's Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo, 116-8567, Japan
| |
Collapse
|
18
|
da Silva JL, de Albuquerque LZ, Rodrigues FR, de Mesquita GG, Fernandes PV, Thuler LCS, de Melo AC. Prognostic Influence of Residual Tumor-Infiltrating Lymphocyte Subtype After Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Front Oncol 2021; 11:636716. [PMID: 34858800 PMCID: PMC8630741 DOI: 10.3389/fonc.2021.636716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study aimed to examine the prevalence and prognostic role of tumor microenvironment (TME) in triple-negative breast cancer (TNBC) after neoadjuvant chemotherapy (NACT) through immunohistochemical characterization. METHODS The internal database of the Brazilian National Cancer Institute for women diagnosed with TNBC who underwent NACT and thereafter curative surgery between January 2010 and December 2014 was queried out. Core biopsy specimens and tissue microarrays containing surgical samples of TNBC from 171 and 134 women, respectively, were assessed by immunohistochemistry for CD3, CD4, CD8, CD14, CD56, CD68, CD117, FOXP3, PD-1, PD-L1, and PD-L2. Immune cell profiles were analyzed and correlated with response and survival. RESULTS Mean age was 50.5 years, and most cases were clinical stage III [143 cases (83.6%)]. According to the multivariate analysis, only Ki67 and clinical stage significantly influenced the pattern of response to systemic treatment (p = 0.019 and p = 0.033, respectively). None of the pre-NACT IHC markers showed a significant association with event-free survival (EFS) or overall survival (OS). As for post-NACT markers, patients with high CD14 had significantly shorter EFS (p = 0.015), while patients with high CD3 (p = 0.025), CD4 (p = 0.025), CD8 (p = 0.030), CD14 (p = 0.015), FOXP3 (p = 0.005), high CD4/FOXP3 (p = 0.034), and CD8/FOXP3 (p = 0.008) showed longer EFS. Only high post-NACT CD4 showed significantly influenced OS (p = 0.038). CONCLUSION The present study demonstrated that the post-NACT TIL subtype can be a determining factor in the prognosis of patients with TNBC.
Collapse
Affiliation(s)
- Jesse Lopes da Silva
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Lucas Zanetti de Albuquerque
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Guilherme Gomes de Mesquita
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Division of Pathology, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Luiz Claudio Santos Thuler
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Andreia Cristina de Melo
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Tumor microenvironment of human breast cancer, and feline mammary carcinoma as a potential study model. Biochim Biophys Acta Rev Cancer 2021; 1876:188587. [PMID: 34237352 DOI: 10.1016/j.bbcan.2021.188587] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023]
Abstract
In recent years, the tumor microenvironment (TME) has been a research hotspot, as it is composed of distinct cellular and non-cellular elements that may influence the diagnosis, prognosis, and treatment of breast cancer patients. Cancer cells are able to escape immune control through an immunoediting process which depends on complex communication networks between immune and cancer cells. Thus, a better understanding of the immune cell infiltrate in the breast cancer microenvironment is crucial for the development of more effective therapeutic approaches. In this review article, we overview the different actors that orchestrate the complexity of the TME, including tumor infiltrating lymphocytes (TILs), natural killer cells, tumor infiltrating dendritic cells (TIDCs), tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), cancer associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), distinct pro-angiogenic factors and immune checkpoint biomarkers. Additionally, we summarize the recent advances in the TME of feline mammary carcinoma (FMC). FMC has been proposed as a reliable cancer model for the study of human breast cancer, as they share clinicopathological, histopathological and epidemiological features, as well as the pathways involved in cancer initiation and progression.
Collapse
|
20
|
Zheng H, Siddharth S, Parida S, Wu X, Sharma D. Tumor Microenvironment: Key Players in Triple Negative Breast Cancer Immunomodulation. Cancers (Basel) 2021; 13:cancers13133357. [PMID: 34283088 PMCID: PMC8269090 DOI: 10.3390/cancers13133357] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network composed of various cells, signaling molecules, and extra cellular matrix. TME plays a crucial role in triple negative breast cancer (TNBC) immunomodulation and tumor progression, paradoxically, acting as an immunosuppressive as well as immunoreactive factor. Research regarding tumor immune microenvironment has contributed to a better understanding of TNBC subtype classification. Shall we treat patients precisely according to specific subtype classification? Moving beyond traditional chemotherapy, multiple clinical trials have recently implied the potential benefits of immunotherapy combined with chemotherapy. In this review, we aimed to elucidate the paradoxical role of TME in TNBC immunomodulation, summarize the subtype classification methods for TNBC, and explore the synergistic mechanism of chemotherapy plus immunotherapy. Our study may provide a new direction for the development of combined treatment strategies for TNBC. Abstract Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related to immunomodulation. As we know, the most effective approach to treat TNBC so far is still chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will be interesting to investigate the relationship between chemotherapy-induced TME changes and TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment options for TNBC.
Collapse
Affiliation(s)
- Hongmei Zheng
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
- Correspondence: (H.Z.); (X.W.)
| | - Sumit Siddharth
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Sheetal Parida
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Xinhong Wu
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- Correspondence: (H.Z.); (X.W.)
| | - Dipali Sharma
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| |
Collapse
|
21
|
Hayase E, Jenq RR. Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Med 2021; 13:107. [PMID: 34162429 PMCID: PMC8220726 DOI: 10.1186/s13073-021-00923-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that block immune inhibitory pathways. Administration of ICIs augments T cell-mediated immune responses against tumor, resulting in improved overall survival in cancer patients. It has emerged that the intestinal microbiome can modulate responses to ICIs via the host immune system and that the use of antibiotics can lead to reduced efficacy of ICIs. Recently, reports that fecal microbiota transplantation can lead to ICI therapy responses in patients previously refractory to therapy suggest that targeting the microbiome may be a viable strategy to reprogram the tumor microenvironment and augment ICI therapy. Intestinal microbial metabolites may also be linked to response rates to ICIs. In addition to response rates, certain toxicities that can arise during ICI therapy have also been found to be associated with the intestinal microbiome, including in particular colitis. A key mechanistic question is how certain microbes can enhance anti-tumor responses or, alternatively, predispose to ICI-associated colitis. Evidence has emerged that the intestinal microbiome can modulate outcomes to ICI therapies via two major mechanisms, including those that are antigen-specific and those that are antigen-independent. Antigen-specific mechanisms occur when epitopes are shared between microbial and tumor antigens that could enhance, or, alternatively, reduce anti-tumor immune responses via cross-reactive adaptive immune cells. Antigen-independent mechanisms include modulation of responses to ICIs by engaging innate and/or adaptive immune cells. To establish microbiome-based biomarkers of outcomes and specifically modulate the intestinal microbiome to enhance efficacy of ICIs in cancer immunotherapy, further prospective interventional studies will be required.
Collapse
Affiliation(s)
- Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- CPRIT Scholar in Cancer Research, Houston, TX, USA.
| |
Collapse
|
22
|
Fan P, Li X, Feng Y, Cai H, Dong D, Peng Y, Yao X, Guo Y, Ma M, Dong T, Wang R. PD-1 Expression Status on CD8+ Tumour Infiltrating Lymphocytes Associates With Survival in Cervical Cancer. Front Oncol 2021; 11:678758. [PMID: 34150643 PMCID: PMC8212040 DOI: 10.3389/fonc.2021.678758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the expansion of PD-1 checkpoint blockade to multiple types of cancer, whether the programmed cell death 1 (PD-1) expression status on CD8+ tumour infiltrating lymphocytes (TILs) could be a prognostic factor in cervical cancer is still unclear. In this study, we performed ex vivo phenotypic analysis of PD-1 expression on CD8+ TILs by flow cytometry from 47 treatment-naïve cervical cancer patients. With a median follow-up of 26.1 months (95% confidence interval [CI], 24-28.2 months), we then linked the quantitative cellular expression results to progression-free survival and overall survival. Based on the intensity of PD-1 expression, we further categorised the cervical cancer patients into PD-1high expressers (29.8%, 14/47) and PD-1low expressers (70.2%, 33/47). Multivariate analysis revealed that PD-1high expressers are correlated with early recurrence (HR, 5.91; 95% CI, 1.03-33.82; P= 0.046). Univariate analysis also demonstrated that PD-1high expressers are associated with poor overall survival in cervical cancer (HR, 5.365; 95% CI, 1.55-18.6; P=0.008). Moreover, our study also demonstrated that CD8+/CD4+ TIL ratio and HPV infection status are risk factors for early relapse and mortality in cervical cancer patients. In conclusion, this study confirms that PD-1 expression status is an independent prognostic factor for progression free survival in cervical cancer. These findings could be important in predicting the relapse of cervical cancer as a cellular diagnosis method and could be important knowledge for the selection of prospective PD-1 blockade candidates.
Collapse
Affiliation(s)
- Peiwen Fan
- The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, China.,Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumuqi, China
| | - Xi Li
- CAMS Oxford Institute (COI), University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit (HIU), MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Yaning Feng
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumuqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumuqi, China
| | - Hongchao Cai
- The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, China.,Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumuqi, China
| | - Danning Dong
- The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, China.,Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumuqi, China
| | - Yanchun Peng
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumuqi, China.,CAMS Oxford Institute (COI), University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit (HIU), MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Xuan Yao
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumuqi, China.,CAMS Oxford Institute (COI), University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit (HIU), MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Yuping Guo
- The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumuqi, China
| | - Miaomiao Ma
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumuqi, China
| | - Tao Dong
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumuqi, China.,CAMS Oxford Institute (COI), University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit (HIU), MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ruozheng Wang
- The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, China.,Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumuqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumuqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumuqi, China
| |
Collapse
|
23
|
Tumor Microenvironment Subtypes and Immune-Related Signatures for the Prognosis of Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650107. [PMID: 34124255 PMCID: PMC8189770 DOI: 10.1155/2021/6650107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
Objective To better understand the immune-related heterogeneity of tumor microenvironment (TME) and establish a prognostic model for breast cancer in clinical practice. Methods For the 2620 breast cancer cases obtained from The Cancer Genome Atlas and the Molecular Taxonomy of Breast Cancer International Consortium, the CIBERSORT algorithm was performed to identify the immunological pattern, which underwent consensus clustering to curate TME subtypes, and biological profiles were explored by enrichment analysis. Random forest analysis, least absolute shrinkage, and selection operator analysis, in addition to uni- and multivariate COX regression analyses, were successively employed to precisely select the significant genes with prediction values for the introduction of the prognostic model. Results Three TME subtypes with distinct molecular and clinical features were identified by an unsupervised clustering approach, of which the molecular heterogeneity could be the result of cell cycle dysfunction and the variation of cytotoxic T lymphocyte activity. A total of 15 significant genes were proposed to construct the prognostic immune-related score system, and a predictive model was established in combination with clinicopathological characteristics for the survival of breast cancer patients. For immunological signatures, proactivity of CD8 T lymphocytes and hyperangiogenesis could be attributed to heterogeneous survival profiles. Conclusions We developed and validated a prognostic model based on immune-related signatures for breast cancer. This promising model is justified for validation and optimized in future clinical practice.
Collapse
|
24
|
Kuroda H, Jamiyan T, Yamaguchi R, Kakumoto A, Abe A, Harada O, Masunaga A. Tumor-infiltrating B cells and T cells correlate with postoperative prognosis in triple-negative carcinoma of the breast. BMC Cancer 2021; 21:286. [PMID: 33726701 PMCID: PMC7968181 DOI: 10.1186/s12885-021-08009-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background In this study, we investigated CD20+ TILs in triple-negative breast cancer (TNBC) and their relationship with T lymphocyte subsets (CD4+, CD8+, CD25+, and FOXP3+), including their combined prognostic value using an immunohistochemical staining method. Methods We investigated 107 patients with TNBC for whom a full-face section stained by hematoxylin and eosin between 2006 and 2018 at Dokkyo Medical University Hospital was available. Results The strongest association of infiltrating CD20+ TILs was with CD4+ TILs. There was a significant relationship between CD20+ and CD4+ TILs (r = 0.177; p < 0.001), CD8+ TILs (r = 0.085; p = 0.002), and FOXP3+ TILs (r = 0.0043; p = 0.032). No significant relationships were observed between the CD20+ and CD25+ TILs (r = 0.012; p = 0.264). Multivariate analysis revealed that only the CD20+/FOXP3 ratio was an independent factor for relapse-free survival (p < 0.001) and overall survival (p < 0.001). Patients with tumors highly infiltrated by CD4+, CD8+, and CD20+ TILs had a good prognosis. In contrast, those with tumors weakly infiltrated by CD20+ TILs but highly infiltrated by CD25+ and FOXP3+ TILs had a poor prognosis. Conclusions CD20+ TILs may support an increase in CD4+ and CD8+ TILs, which altered the anti-tumor response, resulting in a positive prognosis. CD20+ TILs correlated with FOXP3+ Treg lymphocytes, which were reported to be correlated with a poor prognosis. Our study suggested that TIL-B cells have dual and conflicting roles in TIL-T immune reactions in TNBC.
Collapse
Affiliation(s)
- Hajime Kuroda
- Department of Diagnostic Pathology, Tokyo Women's Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo, 116-8567, Japan. .,Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Japan.
| | - Tsengelmaa Jamiyan
- Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Japan.,Department of Pathology and Forensic Medicine, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Rin Yamaguchi
- Department of Pathology & Laboratory Medicine, Kurume University Medical Center, Kurume, Japan
| | - Akinari Kakumoto
- Department of Diagnostic Pathology, Tokyo Women's Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo, 116-8567, Japan.,Department of Diagnostic Pathology, Nasu Red Cross Hospital, Otawara, Japan
| | - Akihito Abe
- Breast Center, Dokkyo Medical University, Mibu, Japan
| | - Oi Harada
- Breast center, Showa University, Tokyo, Japan
| | - Atsuko Masunaga
- Department of Diagnostic Pathology, Tokyo Women's Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo, 116-8567, Japan
| |
Collapse
|