1
|
Malik D, Kumar S, Sindhu SS. Unlocking the potential of ecofriendly guardians for biological control of plant diseases, crop protection and production in sustainable agriculture. 3 Biotech 2025; 15:82. [PMID: 40071128 PMCID: PMC11891127 DOI: 10.1007/s13205-025-04243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Several beneficial microbial strains inhibit the growth of different phytopathogens and commercialized worldwide as biocontrol agents (BCAs) for plant disease management. These BCAs employ different strategies for growth inhibition of pathogens, which includes production of antibiotics, siderophores, lytic enzymes, bacteriocins, hydrogen cyanide, volatile organic compounds, biosurfactants and induction of systemic resistance. The efficacy of antagonistic strains could be further improved through genetic engineering for better disease suppression in sustainable farming practices. Some antagonistic microbial strains also possess plant-growth-promoting activities and their inoculation improved plant growth in addition to disease suppression. This review discusses the characterization of antagonistic microbes and their antimicrobial metabolites, and the application of these BCAs for disease control. The present review also provides a comprehensive summary of the genetic organization and regulation of the biosynthesis of different antimicrobial metabolites in antagonistic strains. Use of molecular engineering to improve production of metabolites in BCAs and their efficacy in disease control is also discussed. The application of these biopesticides will reduce use of conventional pesticides in disease control and help in achieving sustainable and eco-friendly agricultural systems.
Collapse
Affiliation(s)
- Diksha Malik
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
2
|
Kumar S, Diksha, Sindhu SS, Kumar R. Harnessing phosphate-solubilizing microorganisms for mitigation of nutritional and environmental stresses, and sustainable crop production. PLANTA 2025; 261:95. [PMID: 40131541 DOI: 10.1007/s00425-025-04669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
MAIN CONCLUSION Phosphate-solubilizing microorganisms enhance nutrients availability, mitigate environmental stresses, and increase plant growth. The bioengineering of phosphate-solubilizing microbes and host plants may further improve their efficacy for increasing crop yield. Unsustainable agricultural practices are followed in current crop production systems worldwide for resolving food demand issues of ever-increasing human population. In addition, global food crop production is further affected due to continuous climatic change, erratic rains, and environmental stresses during the recent past causing threat to microbial as well as plant biodiversity. The application of plant beneficial microorganisms into agricultural practices has emerged recently as an innovative and sustainable approach to increase crop yield with limited resources and in vulnerable environment. These beneficial microbes improve crop productivity by enhancing nutrients' availability and mitigation of abiotic stresses along with suppression of plant diseases. However, there have been limited studies on the stress ameliorative role of phosphate-solubilizing microorganisms (PSMs), and there is still a need to elucidate the contribution of PSMs in improving plant health and crop productivity under harsh environmental conditions. This review summarizes the role of PSMs in improving phosphorus availability in soil through solubilization or mineralization of organic phosphate, and by assisting plants in amelioration of environmental stresses. Other beneficial activities of PSMs, such as release of phytohormones, production of ACC deaminase, strengthening of antioxidant system, and induction of systemic resistance, also contribute toward stress mitigation and plant growth promotion under stressful environments. Improvement in efficacy of PSMs and host plants using genetic engineering techniques has been discussed leading to increases in crop yields. However, further research is needed to develop sustainable climate-resilient approach by improving plant growth-promoting activities of PSMs even under environmental stresses to increase soil fertility and crop production in different agroecosystems.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Diksha
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| | - Rakesh Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
3
|
Shalovylo YI, Yusypovych YM, Kit OY, Kovaleva VA. Isolation and Characterization of Multi-Trait Plant Growth-Promoting Endophytic Bacteria from Scots Pine Tissues. J Microbiol Biotechnol 2024; 35:e2408056. [PMID: 39894467 PMCID: PMC11813345 DOI: 10.4014/jmb.2408.08056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 02/04/2025]
Abstract
Scots pine (Pinus sylvestris) is a globally significant tree species with considerable economic importance in forestry. A major challenge in afforestation, particularly in stressful environments, is growing seedlings with high viability and stress resistance. Recent studies suggest that Pseudomonas strains can alleviate stress and promote growth in crops, though limited evidence exists for trees. This study aimed to assess the plant growth-promoting (PGP) properties of Pseudomonas strains isolated from Scots pine stems using in vitro assays, and to evaluate their potential as bioinoculants through a two-year long field trial. From over sixty bacterial isolates originating from Scots pine stem tissues, only four were selected as being similar to Pseudomonas bacteria. Through 16S rRNA gene sequencing, the isolates were identified as Pseudomonas putida P57, Pseudomonas lurida P88 and 10-1, and Stenotrophomonas maltophilia P77. All isolates inhibited fungal pathogens Botrytis cinerea and Fusarium sporotrichiella, and exhibited PGP activities including nitrogen fixation and production of IAA (1.24-17.74 mg/l), ammonia (4.06-12.71 μM/ml), and siderophores, with the highest value of 1.44 ± 0.19 for the P. lurida P88 strain. Additionally, the Pseudomonas strains demonstrated phosphate solubilization capacity. We revealed that bioinoculation with strains P57 and P88 enhanced field germination of seeds by 35-45% and increased aerial biomass of two-year-old seedlings by 80-140%. Both strains adhered to seed surface and colonized roots and stems at levels of 2.4-3.2 log CFU/g fresh tissue up to two years post-inoculation. These findings highlight the potential of these bacterial strains as effective bioinoculants for improving Scots pine seedling growth under natural conditions.
Collapse
Affiliation(s)
- Yuliia I. Shalovylo
- Ukrainian National Forestry University, 103 Gen Chuprynky Str., Lviv 79057, Ukraine
- Sudova Vyshnya Lyceum Named after Tadei Dmytrasevych, Lviv Region, Ukraine
| | - Yurii M. Yusypovych
- Ukrainian National Forestry University, 103 Gen Chuprynky Str., Lviv 79057, Ukraine
| | - Oleh Y. Kit
- Ukrainian National Forestry University, 103 Gen Chuprynky Str., Lviv 79057, Ukraine
| | - Valentina A. Kovaleva
- Ukrainian National Forestry University, 103 Gen Chuprynky Str., Lviv 79057, Ukraine
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanova Str., Lviv 79005, Ukraine
| |
Collapse
|
4
|
Abd-Alla MH, Nafady NA, Hassan AA, Bashandy SR. Isolation and characterization of non-rhizobial bacteria and arbuscular mycorrhizal fungi from legumes. BMC Microbiol 2024; 24:454. [PMID: 39506644 PMCID: PMC11539435 DOI: 10.1186/s12866-024-03591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigates non-rhizobial endophytic bacteria in the root nodules of chickpea (Cicer arietinum L), faba bean (Vicia faba), and cowpea (Vigna unguiculata L. Walp), as well as arbuscular mycorrhizal fungi in the rhizospheric soil of chickpea and faba bean. Out of the 34 endophytic bacterial populations examined, 31 strains were identified as non-rhizobial based on nodulation tests. All strains were assessed for their plant growth-promoting (PGP) activities in vitro. The results revealed that most isolates exhibited multiple PGP activities, such as nitrogen fixation, indole-3-acetic acid (IAA) and ammonia (NH3) production, phosphate solubilization, and exopolysaccharide production. The most effective PGP bacteria were selected for 16S rRNA analysis. Additionally, a total of 36 species of native arbuscular mycorrhizal fungi (AMF) were identified. Acaulospora (100%) and Scutellospora (91.66%) were the most prevalent genera in Cicer arietinum L. and Vicia faba L. plants, respectively. Acaulospora also exhibited the highest spore density and relative abundance in both plants. Moreover, the root colonization of Cicer arietinum L. and Vicia faba L. plants by hyphae, vesicles, and arbuscules (HVA) was significant. The findings of this study provide valuable insights into non-rhizobial endophytic bacteria associated with legume root nodules and the diversity of AMF. These organisms have great potential for PGP and can be manipulated by co-inoculation with rhizobia to enhance their biofertilizer effectiveness. This manipulation is crucial for promoting sustainable agriculture, improving crop growth, and advancing biofertilizer technology.
Collapse
Affiliation(s)
- Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Nivien A Nafady
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Amany A Hassan
- Botany and Microbiology Department, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
| | - Shymaa R Bashandy
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
5
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
6
|
Alam M, Pandit B, Moin A, Iqbal UN. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol 2024; 64:343-366. [PMID: 39011025 PMCID: PMC11246410 DOI: 10.1007/s12088-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.
Collapse
Affiliation(s)
- Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
- Department of Botany, Surendranath College, 24/2 MG Road, Kolkata, West Bengal 700009 India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Umaimah Nuzhat Iqbal
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| |
Collapse
|
7
|
Hata S, Tsuda R, Kojima S, Tanaka A, Kouchi H. Both incompatible and compatible rhizobia inhabit the intercellular spaces of leguminous root nodules. PLANT SIGNALING & BEHAVIOR 2023; 18:2245995. [PMID: 37573516 PMCID: PMC10424618 DOI: 10.1080/15592324.2023.2245995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
In addition to rhizobia, many types of co-existent bacteria are found in leguminous root nodules, but their habitats are unclear. To investigate this phenomenon, we labeled Bradyrhizobium diazoefficiens USDA122 and Bradyrhizobium sp. SSBR45 with Discosoma sp. red fluorescent protein (DsRed) or enhanced green fluorescent protein (eGFP). USDA122 enhances soybean growth by forming effective root nodules, but SSBR45 does not form any nodules. Using low-magnification laser scanning confocal microscopy, we found that infected cells in the central zone of soybean nodules appeared to be occupied by USDA122. Notably, high-magnification microscopy after co-inoculation of non-fluorescent USDA122 and fluorescence-labeled SSBR45 also revealed that SSBR45 inhabits the intercellular spaces of healthy nodules. More unexpectedly, co-inoculation of eGFP-labeled USDA122 and DsRed-labeled SSBR45 (and vice versa) revealed the presence of USDA122 bacteria in both the symbiosomes of infected cells and in the apoplasts of healthy nodules. We then next inspected nodules formed after a mixed inoculation of differently-labeled USDA122, without SSBR45, and confirmed the inhabitation of the both populations of USDA122 in the intercellular spaces. In contrast, infected cells were occupied by single-labeled USDA122. We also observed Mesorhizobium loti in the intercellular spaces of active wild-type nodules of Lotus japonicus using transmission electron microscopy. Compatible intercellular rhizobia have been described during nodule formation of several legume species and in some mutants, but our evidence suggests that this type of colonization may occur much more commonly in leguminous root nodules.
Collapse
Affiliation(s)
- Shingo Hata
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Risa Tsuda
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Serina Kojima
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroshi Kouchi
- Division of Arts and Sciences, International Christian University, Mitaka, Japan
| |
Collapse
|
8
|
Zhang J, Wang N, Li S, Wang J, Feng Y, Wang E, Li Y, Yang T, Chen W. The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:3421. [PMID: 37836161 PMCID: PMC10575130 DOI: 10.3390/plants12193421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. RESULTS Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. CONCLUSIONS Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Nan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yufeng Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfeng Chen
- College of Biological Sciences, Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Kolandasamy M, Mandal AKA, Balasubramanian MG, Ponnusamy P. Multifaceted plant growth-promoting traits of indigenous rhizospheric microbes against Phomopsis theae, a causal agent of stem canker in tea plants. World J Microbiol Biotechnol 2023; 39:237. [PMID: 37391650 DOI: 10.1007/s11274-023-03688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Phomopsis canker is one of the major devastating stem diseases that occur in tea plants caused by the fungal pathogen Phomopsis theae. Rapid development of this disease leads to a capital loss in the tea industry which demands an ecofriendly disease management strategy to control this aggressive pathogen. A total of 245 isolates were recovered from the tea rhizosphere and screened for in vitro plant growth promoting (PGP) traits and antagonism against P. theae. Among them, twelve isolates exhibited multifarious PGP traits including phytohormones, siderophore, hydrogen cyanide, salicylic acid production, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and antifungal activity. In vitro studies on morphological, biochemical, and phylogenetic analyses classified the selected isolates as Pseudomonas fluorescens (VPF5), Bacillus subtilis (VBS3), Streptomyces griseus (VSG4) and Trichoderma viride (VTV7). Specifically, P. fluorescens VPF5 and B. subtilis VBS3 strains showed the highest level of PGP activities. On the other hand, VBS3 and VTV7 strains showed higher biocontrol efficacy in inhibiting mycelia growth and spore germination of P. theae. A detailed investigation on hydrolytic enzymes produced by antagonistic strains, which degrade the fungus cell wall, revealed that highest amount of chitinase and β-1,3- glucanase in VTV7 and VBS3 strains. Further, the key antifungal secondary metabolites from these biocontrol agents associated with suppression of P. theae were identified using gas chromatography mass spectrometry. The above study clearly recognized the specific traits in the isolated microbes, which make them good candidates as plant growth-promoting rhizobacteria (PGPR) and biocontrol agents to improve plant growth and health. However, greenhouse trials and field application of these beneficial microbes is required to further confirm their efficacy for the management of stem canker in tea cultivation.
Collapse
Affiliation(s)
- Manjukarunambika Kolandasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, 632 014, Tamil Nadu, India.
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, 632 014, Tamil Nadu, India
| | | | - Ponmurugan Ponnusamy
- Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| |
Collapse
|
10
|
Patel JS, Selvaraj V, More P, Bahmani R, Borza T, Prithiviraj B. A Plant Biostimulant from Ascophyllum nodosum Potentiates Plant Growth Promotion and Stress Protection Activity of Pseudomonas protegens CHA0. PLANTS (BASEL, SWITZERLAND) 2023; 12:1208. [PMID: 36986897 PMCID: PMC10053968 DOI: 10.3390/plants12061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Abiotic stresses, including salinity stress, affect numerous crops, causing yield reduction, and, as a result, important economic losses. Extracts from the brown alga Ascophyllum nodosum (ANE), and compounds secreted by the Pseudomonas protegens strain, CHA0, can mitigate these effects by inducing tolerance against salt stress. However, the influence of ANE on P. protegens CHA0 secretion, and the combined effects of these two biostimulants on plant growth, are not known. Fucoidan, alginate, and mannitol are abundant components of brown algae and of ANE. Reported here are the effects of a commercial formulation of ANE, fucoidan, alginate, and mannitol, on pea (Pisum sativum), and on the plant growth-promoting activity of P. protegens CHA0. In most situations, ANE and fucoidan increased indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and hydrogen cyanide (HCN) production by P. protegens CHA0. Colonization of pea roots by P. protegens CHA0 was found to be increased mostly by ANE and fucoidan in normal conditions and under salt stress. Applications of P. protegens CHA0 combined with ANE, or with fucoidan, alginate, and mannitol, generally augmented root and shoot growth in normal and salinity stress conditions. Real-time quantitative PCR analyses of P. protegens revealed that, in many instances, ANE and fucoidan enhanced the expression of several genes involved in chemotaxis (cheW and WspR), pyoverdine production (pvdS), and HCN production (hcnA), but gene expression patterns overlapped only occasionally those of growth-promoting parameters. Overall, the increased colonization and the enhanced activities of P. protegens CHA0 in the presence of ANE and its components mitigated salinity stress in pea. Among treatments, ANE and fucoidan were found responsible for most of the increased activities of P. protegens CHA0 and the improved plant growth.
Collapse
|
11
|
Fatima R, Mahmood T, Moosa A, Aslam MN, Shakeel MT, Maqsood A, Shafiq MU, Ahmad T, Moustafa M, Al-Shehri M. Bacillus thuringiensis CHGP12 uses a multifaceted approach for the suppression of Fusarium oxysporum f. sp. ciceris and to enhance the biomass of chickpea plants. PEST MANAGEMENT SCIENCE 2023; 79:336-348. [PMID: 36153706 DOI: 10.1002/ps.7203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bacillus species synthesize antifungal lipopeptides (LPs) making them a sustainable and eco-friendly management option to combat Fusarium wilt of chickpea. RESULTS In this study, 18 endophytic Bacillus strains were assessed for their antifungal activity against Fusarium oxysporum f. sp. ciceris (FOC) associated with Fusarium wilt of chickpea. Among them, 13 strains produced significant inhibition zones in a direct antifungal assay while five strains failed to produce the inhibition of FOC. Bacillus thuringiensis CHGP12 exhibited the highest inhibition 3.45 cm of FOC. The LPs extracted from CHGP12 showed significant inhibition of the pathogen. Liquid chromatography-mass spectrometry (LC-MS) analysis confirmed that CHGP12 possessed the ability to produce fengycin, surfactin, iturin, bacillaene, bacillibactin, plantazolicin, and bacilysin. In an in vitro qualitative assay CHGP12 exhibited the ability to produce lipase, amylase, cellulase, protease, siderophores, and indole 3-acetic acid (IAA). IAA and gibberellic acid (GA) were quantified using ultra-performance liquid chromatography (UPLC) with 370 and 770 ng mL-1 concentrations of IAA and GA respectively. Furthermore, the disease severity showed a 40% decrease over control in CHGP12 treated plants compared to the control in a glasshouse experiment. Moreover, CHGP12 also exhibited a significant increase in total biomass of the plants namely, root and shoot growth parameters, stomatal conductance, and photosynthesis rate. CONCLUSION In conclusion, our findings suggest that B. thuringiensis CHGP12 is a promising strain with high antagonistic and growth-promoting potential against Fusarium wilt of chickpea. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rida Fatima
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tahir Mahmood
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Ambreen Maqsood
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Umar Shafiq
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tanvir Ahmad
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohammad Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Plant Growth-Promoting Attributes of Zinc Solubilizing Dietzia maris Isolated from Polyhouse Rhizospheric Soil of Punjab. Curr Microbiol 2023; 80:48. [DOI: 10.1007/s00284-022-03147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
|
13
|
Sahoo S, Dash S, Rath B, Mondal KC, Mandal A. Commercial Initiation of Feather Hydrolysate as Supreme Fertilizer: A Smart Bio-Cleaning Strategy of Poultry Waste. WASTE AND BIOMASS VALORIZATION 2022; 14:2151-2166. [PMID: 36540722 PMCID: PMC9755779 DOI: 10.1007/s12649-022-01982-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/09/2022] [Indexed: 06/07/2023]
Abstract
Purpose Economic development of India mainly depends on agricultural sectors. The Indian traditional agricultural system is mainly based on chemical fertilizer to get better yield. The main motto of this research work is to change the traditional faith of Indian farmers and rural Indian economy. Methods Bioprocessing of feather prepared from an efficient newly isolated bacterial strain, identified as Bacillus wiedmanni SAB10 is used to produce a nitrogen rich liquid fertilizer. The cell-free hydrolysate was prepared from submerged fermentation of poultry litter (1.25%, w/v) as sole media with supplemented as chicken feather (1%, w/v) in 79.41 h with pH 10.6. Results Fermented hydrolysate contains a significant quantity of total amino acid (503.02 mg/L) with diversity (Cystine, Phenylalanine, Tyrosine, lysine, Valine, Proline and Alanine), total oligopeptides (4.65 mg/ml) and thiol content (58.09 µg/ml) which influence growth and yield (1.02 fold) of moong beans (Vigna radiata) plant in pot trials and as well as successfully scale up in field trials by the farmers. This liquid fertilizer not only makes plant healthy and has drought tolerance (proline content- 0.023 mg/g) capacity but also increases the grain quality by spraying the fertilizer on foliage with a ratio of 2:1 (Water: Feather hydrolysate) for two times (before the 1st flash and 2nd flash of flowering). Conclusion Fermented feather hydrolysate is used full as a foliage fertilizer for the cultivation of moong beans. Some commercial properties and its eco-friendly, cost-effectiveness will make it a smart liquid fertilizer in near future. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12649-022-01982-9.
Collapse
Affiliation(s)
- Sumita Sahoo
- Dept. of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odissa 757 003 India
- Dept. of Microbiology, Asutosh College, Kolkata, West Bengal 700 026 India
| | - Satyabrata Dash
- Dept. of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odissa 757 003 India
| | - Biswajit Rath
- Dept. of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odissa 757 003 India
| | - Keshab C. Mondal
- Dept. of Microbiology, Vidyasagar University, Midnapore, West Bengal 721 102 India
| | - Arpita Mandal
- Dept. of Microbiology, Asutosh College, Kolkata, West Bengal 700 026 India
| |
Collapse
|
14
|
Maslennikova D, Nasyrova K, Chubukova O, Akimova E, Baymiev A, Blagova D, Ibragimov A, Lastochkina O. Effects of Rhizobium leguminosarum Thy2 on the Growth and Tolerance to Cadmium Stress of Wheat Plants. Life (Basel) 2022; 12:1675. [PMID: 36295110 PMCID: PMC9605373 DOI: 10.3390/life12101675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023] Open
Abstract
Cadmium (Cd) stress is an obstacle for crop production, quality crops, and sustainable agriculture. An important role is played by the application of eco-friendly approaches to improve plant growth and stress tolerance. In the current study, a pre-sowing seed treatment with Rhizobium leguminosarum strains, isolated from the leguminous plants Phaseolus vulgaris (strain Pvu5), Vicia sylvatica (strain VSy12), Trifolium hybridium (strain Thy2), and T. pratense (strain TPr4), demonstrated different effects on wheat (Triticum aestivum L.) plant growth under normal conditions. Among all tested strains, Thy2 significantly increased seed germination, seedling length, fresh and dry biomass, and leaf chlorophyll (Chl) content. Further analysis showed that Thy2 was capable of producing indole-3-acetic acid and siderophores and fixing nitrogen. Under Cd stress, Thy2 reduced the negative effect of Cd on wheat growth and photosynthesis and had a protective effect on the antioxidant system. This was expressed in the additional accumulation of glutathione and proline and the activation of glutathione reductase. In addition, Thy2 led to a significant reduction in oxidative stress, which was evidenced by the data on the stabilization of the ascorbate content and the activity of ascorbate peroxidase. In addition, Thy2 markedly reduced Cd-induced membrane lipid peroxidation and electrolyte leakage in the plants. Thus, the findings demonstrated the ability of the R. leguminosarum strain Thy2, isolated from T. hybridium nodules, to exert a growth-promoting and anti-stress effect on wheat plants. These results suggest that the Thy2 strain may enhance wheat plant growth by mitigating Cd stress, particularly through improving photosynthesis and antioxidant capacity and reducing the severity of oxidative damage. This may provide a basic and biological approach to use the Thy2 strain as a promising, eco-friendly candidate to combat Cd stress in wheat production.
Collapse
Affiliation(s)
- Dilara Maslennikova
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Molecular Technologis, Ufa State Petroleum Technical University, 450000 Ufa, Russia
| | - Karina Nasyrova
- Department of Molecular Technologis, Ufa State Petroleum Technical University, 450000 Ufa, Russia
| | - Olga Chubukova
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Molecular Technologis, Ufa State Petroleum Technical University, 450000 Ufa, Russia
| | - Ekaterina Akimova
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Andrey Baymiev
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Darya Blagova
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Almaz Ibragimov
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Oksana Lastochkina
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
15
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
16
|
Sarmiento-López LG, López-Meyer M, Maldonado-Mendoza IE, Quiroz-Figueroa FR, Sepúlveda-Jiménez G, Rodríguez-Monroy M. Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. J Biosci Bioeng 2022; 134:21-28. [PMID: 35461767 DOI: 10.1016/j.jbiosc.2022.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
Bacillus circulans E9 (now known as Niallia circulans) promotes plant growth-producing indole-3-acetic acid (IAA), showing potential for use as a biofertilizer. In this work, the use of a low-cost medium containing industrial substrates, soybean, pea flour, Solulys, Pharmamedia, yeast extract, and sodium chloride (NaCl), was evaluated as a substitute for microbiological Luria Broth (LB) medium for the growth of B. circulans E9 and the production of IAA. In Erlenmeyer flasks with pea fluor medium (PYM), the maximum production of IAA was 7.81 ± 0.16 μg mL-1, while in microbiological LB medium, it was 3.73 ± 0.15 μg mL-1. In addition, an oxygen transfer rate (OTR) of 1.04 kg O2 m-3 d-1 allowed the highest bacterial growth (19.3 ± 2.18 × 1010 CFU mL-1) and IAA production (10.7 μg mL-1). Consequently, the OTR value from the flask experiments was used to define the conditions for the operation of a 1 L stirred tank bioreactor. The growth and IAA production of B. circulans cultured in a bioreactor with PYM medium were higher (8 and 1.6 times, respectively) than those of bacteria cultured in Erlenmeyer flasks. IAA produced in a bioreactor by B. circulans was shown to induce the root system in Arabidopsis thaliana, similar to synthetic IAA. The results of this study demonstrate that PYM medium may be able to be used for the mass production of B. circulans E9 in bioreactors, increasing both bacterial growth and IAA production. This low-cost medium has the potential to be employed to grow other IAA-producing bacterial species.
Collapse
Affiliation(s)
- Luis Gerardo Sarmiento-López
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | - Francisco Roberto Quiroz-Figueroa
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | - Gabriela Sepúlveda-Jiménez
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico
| | - Mario Rodríguez-Monroy
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico.
| |
Collapse
|
17
|
Crosbie DB, Mahmoudi M, Radl V, Brachmann A, Schloter M, Kemen E, Marín M. Microbiome profiling reveals that Pseudomonas antagonises parasitic nodule colonisation of cheater rhizobia in Lotus. THE NEW PHYTOLOGIST 2022; 234:242-255. [PMID: 35067935 DOI: 10.1111/nph.17988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Nodule microbiota are dominated by symbiotic nitrogen-fixing rhizobia, however, other non-rhizobial bacteria also colonise this niche. Although many of these bacteria harbour plant-growth-promoting functions, it is not clear whether these less abundant nodule colonisers impact root-nodule symbiosis. We assessed the relationship between the nodule microbiome and nodulation as influenced by the soil microbiome, by using a metabarcoding approach to characterise the communities inside nodules of healthy and starved Lotus species. A machine learning algorithm and network analyses were used to identify nodule bacteria of interest, which were re-inoculated onto plants in controlled conditions to observe their potential functionality. The nodule microbiome of all tested species differed according to inoculum, but only that of Lotus burttii varied with plant health. Amplicon sequence variants representative of Pseudomonas species were the most indicative non-rhizobial signatures inside healthy L. burttii nodules and negatively correlated with Rhizobium sequences. A representative Pseudomonas isolate co-colonised nodules infected with a beneficial Mesorhizobium, but not with an ineffective Rhizobium isolate and another even reduced the number of ineffective nodules induced on Lotus japonicus. Our results show that nodule endophytes influence the overall outcome of the root-nodule symbiosis, albeit in a plant host-specific manner.
Collapse
Affiliation(s)
| | - Maryam Mahmoudi
- Microbial Interactions in Plant Ecosystems, Centre for Plant Molecular Biology, University of Tübingen, Tübingen, 72076, Germany
| | - Viviane Radl
- Comparative Microbiome Analysis, Helmholtz Centre for Environmental Health, Oberschleissheim, 85764, Germany
| | | | - Michael Schloter
- Comparative Microbiome Analysis, Helmholtz Centre for Environmental Health, Oberschleissheim, 85764, Germany
- Chair for Soil Science, Technical University of Munich, Freising, 85354, Germany
| | - Eric Kemen
- Microbial Interactions in Plant Ecosystems, Centre for Plant Molecular Biology, University of Tübingen, Tübingen, 72076, Germany
| | - Macarena Marín
- Genetics, Biocentre, LMU Munich, Martinsried, 82152, Germany
| |
Collapse
|
18
|
Özdoğan DK, Akçelik N, Akçelik M. Genetic Diversity and Characterization of Plant Growth-Promoting Effects of Bacteria Isolated from Rhizospheric Soils. Curr Microbiol 2022; 79:132. [PMID: 35290524 DOI: 10.1007/s00284-022-02827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 11/02/2021] [Indexed: 01/18/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) have the potential to make a significant contribution to the development of sustainable agricultural systems. Generally, PGPRs function in three different ways, summarized as the synthesis of certain compounds for plants, facilitating the uptake of certain nutrients from the soil and protecting plants from diseases. This study aims to isolate plant growth-promoting bacteria from different plant rhizospheres from Ankara province, to reveal their genetic diversity, and to determine their plant growth-promoting properties. The identification of the 69 isolates was made according to the 16S rDNA sequence results and ARDRA analyses were also performed using AluI, HeaIII, and MspI enzymes. Nitrogen fixation, phosphate dissolving, IAA (indole-3-acetic acid) and siderophore production capacities of the 69 bacterial strains including 12 different genera (30 Pseudomonas, 13 Arthrobacter, 7 Bacillus, 4 Phyllobacter, 4 Variovorax, 3 Olivibacter, 3 Enterobacter, 2 Paenarthrobacter, 1 Stenotrophomonas, 1 Flavobacterium, 1 Caulobacter, 1 Paenibacillus) were evaluated in in vitro conditions. Nitrogen fixation capacities of 55 isolates varied between 2.29 and 46.11 µg mL-1 according to micro-kjeldahl method. Among the strains studied, nifH gene was detected only in Paenibacillus polymyxa H8/2 strain. The highest Phosphorus dissolving and IAA production capacity (in tryptophan-added medium) of isolates were 186.52 µg mL-1, and 50.05 μg mL-1 respectively, and 31 of 69 isolates were able to produce siderophore. Regarding antifungal activities, results showed that 31 bacterial isolates had antagonistic activities against at least one of the tested pathogens. Nitrogen fixation and phosphate solubilizing potential of the promising bacterial strains were determined through two-independent pot experiments with wheat and it has been found that they have positive effects on the yield parameters of wheat.
Collapse
Affiliation(s)
- Dilek Kaya Özdoğan
- Soil Fertilizer and Water Resources Center Research Institute, Ankara, Turkey.
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Mustafa Akçelik
- Faculty of Science, Department of Biology, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Hasan N, Khan IU, Farzand A, Heng Z, Moosa A, Saleem M, Canming T. Bacillus altitudinis HNH7 and Bacillus velezensis HNH9 promote plant growth through upregulation of growth-promoting genes in upland cotton. J Appl Microbiol 2022; 132:3812-3824. [PMID: 35244318 DOI: 10.1111/jam.15511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
Abstract
AIMS The potential of endophytic Bacillus strains to improve plant growth and yield was evaluated. METHODS AND RESULTS Endophytic Bacillus altitudinis HNH7 and Bacillus velezensis HNH9 were evaluated for their growth-promoting traits. In an in vitro plate assay, HNH7 and HNH9 exhibited proteolytic, amylolytic, lipolytic, and cellulolytic activity. HNH7 and HNH9 were able to solubilize iron by producing siderophores but were unable to solubilize insoluble phosphate. PCR confirmed the presence of four growth-promoting genes viz. pvd, budA, asbA, and satA in the genome of HNH7, while HNH9 also possessed the same genes except for budA. In a greenhouse experiment, HNH7 and HNH9 promoted the growth of upland cotton plants by upregulating the expression of growth-linked genes, EXP6, ARF1, ARF18, IAA9, CKX6, and GID1b. However, the expression of genes involved in ethylene biosynthesis i.e., ERF and ERF17 was downregulated after treating the plants with HNH7 and HNH9 compared to the control. Furthermore, cotton plants treated with HNH7 and HNH9 exhibited a significantly higher rate of photosynthesis and stomatal conductance. CONCLUSION HNH7 and HNH9 showed a promising potential to promote the growth of cotton plants. SIGNIFICANCE AND IMPACT OF STUDY Research on plant growth-promoting Bacillus strains can lead to the formation of biofertilizers.
Collapse
Affiliation(s)
- Nadeem Hasan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Irfan Ullah Khan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ayaz Farzand
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zhou Heng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Anam Moosa
- Department of Plant Pathology, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Saleem
- College of Electrical and Mechanical Engineering, NUST, Rawalpindi, Islamabad, Pakistan
| | - Tang Canming
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Kumar S, Diksha, Sindhu SS, Kumar R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100094. [PMID: 35024641 PMCID: PMC8724949 DOI: 10.1016/j.crmicr.2021.100094] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Modern intensive agricultural practices face numerous challenges that pose major threats to global food security. In order to address the nutritional requirements of the ever-increasing world population, chemical fertilizers and pesticides are applied on large scale to increase crop production. However, the injudicious use of agrochemicals has resulted in environmental pollution leading to public health hazards. Moreover, agriculture soils are continuously losing their quality and physical properties as well as their chemical (imbalance of nutrients) and biological health. Plant-associated microbes with their plant growth- promoting traits have enormous potential to solve these challenges and play a crucial role in enhancing plant biomass and crop yield. The beneficial mechanisms of plant growth improvement include enhanced nutrient availability, phytohormone modulation, biocontrol of phytopathogens and amelioration of biotic and abiotic stresses. Solid-based or liquid bioinoculant formulation comprises inoculum preparation, addition of cell protectants such as glycerol, lactose, starch, a good carrier material, proper packaging and best delivery methods. Recent developments of formulation include entrapment/microencapsulation, nano-immobilization of microbial bioinoculants and biofilm-based biofertilizers. This review critically examines the current state-of-art on use of microbial strains as biofertilizers and the important roles performed by these beneficial microbes in maintaining soil fertility and enhancing crop productivity.
Collapse
Key Words
- ABA, Abscisic acid
- ACC, 1-aminocyclopropane-1-carboxylic acid
- AM, Arbuscular mycorrhiza
- APX, Ascorbate peroxidase
- BGA, Blue green algae
- BNF, Biological nitrogen fixation
- Beneficial microorganisms
- Biofertilizers
- CAT, Catalase
- Crop production
- DAPG, 2, 4-diacetyl phloroglucinol
- DRB, Deleterious rhizospheric bacteria
- GA, Gibberellic acid
- GPX, Glutathione/thioredoxin peroxidase
- HCN, Hydrogen cyanide
- IAA, Indole acetic acid
- IAR, Intrinsic antibiotic resistance
- ISR, Induced systemic resistance
- KMB, Potassium mobilizing bacteria
- KSMs, Potassium-solubilizing microbes
- MAMPs, Microbes associated molecular patterns
- PAMPs, Pathogen associated molecular patterns
- PCA, Phenazine-1-carboxylic acid
- PGP, Plant growth-promoting
- PGPR, Plant growth-promoting rhizobacteria
- POD, Peroxidase
- PSB, Phosphate-solubilizing bacteria
- Rhizosphere
- SAR, Systemic acquired resistance
- SOB, Sulphur oxidizing bacteria
- Soil fertility
- Sustainable agriculture
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Diksha
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rakesh Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| |
Collapse
|
21
|
Zhang Y, Komorek R, Son J, Riechers S, Zhu Z, Jansson J, Jansson C, Yu XY. Molecular imaging of plant-microbe interactions on the Brachypodium seed surface. Analyst 2021; 146:5855-5865. [PMID: 34378550 DOI: 10.1039/d1an00205h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanisms by which plants associate with PGPR to elicit such beneficial effects need further study. Here, we present time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging of Brachypodium distachyon (Brachypodium) seeds with and without exposure to two model PGPR, i.e., Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.). Delayed image extraction was used to image PGPR-treated seed sections to reveal morphological changes. ToF-SIMS spectral comparison, principal component analysis (PCA), and two-dimensional (2D) imaging show that the selected PGPR have different effects on the host seed surface, resulting in changes in chemical composition and morphology. Metabolite products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and indole-3-acetic acid (IAA), were identified on the PGPR-treated seed surfaces. These compounds have different distributions on the Brachypodium seed surface for the two PGPR, indicating that the different bacteria elicit distinct responses from the host. Our results illustrate that ToF-SIMS is an effective tool to study plant-microbe interactions and to provide insightful information with submicrometer lateral resolution of the chemical distributions associated with morphological features, potentially offering a new way to study the mechanisms underlying beneficial roles of PGPR.
Collapse
Affiliation(s)
- Yuchen Zhang
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Rachel Komorek
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Jiyoung Son
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Shawn Riechers
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Zihua Zhu
- Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Janet Jansson
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Christer Jansson
- Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xiao-Ying Yu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
22
|
Lastochkina O, Aliniaeifard S, Garshina D, Garipova S, Pusenkova L, Allagulova C, Fedorova K, Baymiev A, Koryakov I, Sobhani M. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153462. [PMID: 34225178 DOI: 10.1016/j.jplph.2021.153462] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 05/23/2023]
Abstract
Bacillus subtilis is one of the non-pathogenic beneficial bacteria that promote plant growth and stress tolerance. In the present study, we revealed that seed priming with endophytic B. subtilis (strains 10-4, 26D) improved Phaseolus vulgaris L. (common bean) seed germination and plant growth under both saline and non-saline conditions. 10-4 and 26D decreased oxidative and osmotic damage to the plant cells since bacterial inoculations reduced lipid peroxidation and proline accumulation in plants under salinity. 26D and especially 10-4 preserved different elevated levels of chlorophyll (Chl) a and Chl b in bean leaves under salinity, while carotenoids (Car) increased only by 10-4 and slightly decreased by 26D. Under normal conditions, 10-4 and 26D did not affect Chl a and Car concentrations, while Chl b decreased in the same plants. Under non-saline and especially saline conditions, 10-4 and 26D significantly increased lignin accumulation in plant roots and the highest lignin content along with better growth and oxidative damages reduction was observed after 10-4 inoculation under salinity, indicating a major role of B. subtilis-induced strengthening the root cell walls in the implementation protective effect of studied bacteria on plants. Therefore, B. subtilis 10-4 and 26D exerts protective effects on the growth of common bean plants under salinity by regulating plant defense mechanisms and the major role in tolerance development may contribute through the activation by B. subtilis lignin deposition in roots. The obtained data also indicates a strain-dependent efficiency of endophytic B. subtilis since strains 10-4 and 26D differently improved growth attributes and modulates cellular response reactions of the same common bean plants both under normal and salinity conditions, that generates interest for further investigations in this direction.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia.
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Aburaihan Campus, University of Tehran, PC 3391653775 Pakdasht, Tehran, Iran.
| | - Darya Garshina
- Bashkir Research Institute of Agriculture - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str., 19, 450059, Ufa, Russia.
| | - Svetlana Garipova
- Bashkir Research Institute of Agriculture - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str., 19, 450059, Ufa, Russia; Bashkir State University, Z. Validi Str., 32, 450076, Ufa, Russia.
| | - Liudmila Pusenkova
- Bashkir Research Institute of Agriculture - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str., 19, 450059, Ufa, Russia.
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia.
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia.
| | - Andrey Baymiev
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia; Bashkir State University, Z. Validi Str., 32, 450076, Ufa, Russia.
| | - Igor Koryakov
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia.
| | - Mohammadhadi Sobhani
- Photosynthesis Laboratory, Aburaihan Campus, University of Tehran, PC 3391653775 Pakdasht, Tehran, Iran.
| |
Collapse
|
23
|
Fabia BU, Bingwa J, Park J, Hieu NM, Ahn JH. Utilizing the ABC Transporter for Growth Factor Production by fleQ Deletion Mutant of Pseudomonas fluorescens. Biomedicines 2021; 9:biomedicines9060679. [PMID: 34208522 PMCID: PMC8234862 DOI: 10.3390/biomedicines9060679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas fluorescens, a gram-negative bacterium, has been proven to be a capable protein manufacturing factory (PMF). Utilizing its ATP-binding cassette (ABC) transporter, a type I secretion system, P. fluorescens has successfully produced recombinant proteins. However, besides the target proteins, P. fluorescens also secretes unnecessary background proteins that complicate protein purification and other downstream processes. One of the background proteins produced in large amounts is FliC, a flagellin protein. In this study, the master regulator of flagella gene expression, fleQ, was deleted from P. fluorescens Δtp, a lipase and protease double-deletion mutant, via targeted gene knockout. FleQ directs flagella synthesis, so the new strain, P. fluorescens ΔfleQ, does not produce flagella-related proteins. This not only simplifies purification but also makes P. fluorescens ΔfleQ an eco-friendly expression host because it will not survive outside a controlled environment. Six recombinant growth factors, namely, insulin-like growth factors I and II, beta-nerve growth factor, fibroblast growth factor 1, transforming growth factor beta, and tumor necrosis factor beta, prepared using our supercharging method, were successfully secreted by P. fluorescens ΔfleQ. Our findings demonstrate the potential of P. fluorescens ΔfleQ, combined with our supercharging process, as a PMF.
Collapse
Affiliation(s)
- Benedict-Uy Fabia
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (B.-U.F.); (J.B.); (N.-M.H.)
| | - Joshua Bingwa
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (B.-U.F.); (J.B.); (N.-M.H.)
| | - Jiyeon Park
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Korea;
| | - Nguyen-Mihn Hieu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (B.-U.F.); (J.B.); (N.-M.H.)
| | - Jung-Hoon Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (B.-U.F.); (J.B.); (N.-M.H.)
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Korea;
- Correspondence: ; Tel.: +82-51-606-2335
| |
Collapse
|
24
|
Yañez-Yazlle MF, Romano-Armada N, Acreche MM, Rajal VB, Irazusta VP. Halotolerant bacteria isolated from extreme environments induce seed germination and growth of chia (Salvia hispanica L.) and quinoa (Chenopodium quinoa Willd.) under saline stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112273. [PMID: 33940441 DOI: 10.1016/j.ecoenv.2021.112273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
The aim of the study was to characterize halotolerant bacteria and to evaluate their plant growth promotion potential on chia and quinoa seedlings under saline stress. Isolated microorganisms were evaluated for nitrogen fixation, phosphate solubilization, and production of siderophores and indole acetic acid. Three strains and two consortia were selected: Halomonas sp. (SFS), Micrococcus luteus (SA211), Bacillus sp. (HX11), C1 (SA211 + SFS), and C2 (SA211 + HX11). In vitro assays using water agar and half-strength Murashige-Skoog plates showed that an increase in salinity led to an increased seedlings mortality and a decrease in germination (lower than 40%), in total length (varying between 16% and 87% decreases), root length (from 60% to 92% lesser length) and dry weight (from 7% to 86% lower weight). Also, the relative growth index (RGI) decreased for both crops in most treatments, except those with HX11 and C2. These treatments had the highest growth parameters and RGI values in presence of high salinity in chia (50 and 100 mmol/L NaCl) and quinoa (200 and 400 mmol/L NaCl). SA211, the highest producer of indole acetic acid, showed a detrimental effect and anomalous phenotype on plants. Our results suggest that Bacillus sp. HX11, with multiple plant growth promotion traits and tolerance to saline stress, has a great potential as a bioinoculant in saline conditions and could be used as a biofertilizer for crop production.
Collapse
Affiliation(s)
- María Florencia Yañez-Yazlle
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Neli Romano-Armada
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina
| | - Martín Moises Acreche
- Estación Experimental (EEA) Salta, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University (NTU), Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina.
| |
Collapse
|
25
|
Michell CT, Nyman T. Microbiomes of willow-galling sawflies: effects of host plant, gall type, and phylogeny on community structure and function. Genome 2021; 64:615-626. [PMID: 33825503 DOI: 10.1139/gen-2020-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
While free-living herbivorous insects are thought to harbor microbial communities composed of transient bacteria derived from their diet, recent studies indicate that insects that induce galls on plants may be involved in more intimate host-microbe relationships. We used 16S rDNA metabarcoding to survey larval microbiomes of 20 nematine sawfly species that induce bud or leaf galls on 13 Salix species. The 391 amplicon sequence variants (ASVs) detected represented 69 bacterial genera in six phyla. Multi-variate statistical analyses showed that the structure of larval microbiomes is influenced by willow host species as well as by gall type. Nevertheless, a "core" microbiome composed of 58 ASVs is shared widely across the focal galler species. Within the core community, the presence of many abundant, related ASVs representing multiple distantly related bacterial taxa is reflected as a statistically significant effect of bacterial phylogeny on galler-microbe associations. Members of the core community have a variety of inferred functions, including degradation of phenolic compounds, nutrient supplementation, and production of plant hormones. Hence, our results support suggestions of intimate and diverse interactions between galling insects and microbes and add to a growing body of evidence that microbes may play a role in the induction of insect galls on plants.
Collapse
Affiliation(s)
- Craig T Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
26
|
Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World J Microbiol Biotechnol 2021; 37:56. [PMID: 33619649 DOI: 10.1007/s11274-021-03018-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2021] [Indexed: 01/10/2023]
Abstract
Methane utilizing bacteria (MUB) are known to inhabit the flooded paddy ecosystem where they play an important role in regulating net methane (CH4) emission. We hypothesize that efficient MUB having plant growth-promoting (PGP) attributes can be used for developing novel bio-inoculant for flooded paddy ecosystem which might not only reduce methane emission but also assist in improving the plant growth parameters. Hence, soil and plant samples were collected from the phyllosphere, rhizosphere, and non-rhizosphere of five rice-growing regions of India at the tillering stage and investigated for efficient methane-oxidizing and PGP bacteria. Based on the monooxygenase activity and percent methane utilization on NMS medium with methane as the sole C source, 123 isolates were identified and grouped phylogenetically into 13 bacteria and 2 yeast genera. Among different regions, a significantly higher number of isolates were obtained from lowland flooded paddy ecosystems of Aduthurai (33.33%) followed by Ernakulum (20.33%) and Brahmaputra valley (19.51%) as compared to upland irrigated regions of Gaya (17.07%) and Varanasi (8.94%). Among sub-samples, a significantly higher number of isolates were found inhabiting the phyllosphere (58.54%) followed by non-rhizosphere (25.20%) and rhizosphere (15.45%). Significantly higher utilization of methane and PGP attributes were observed in 30 isolates belonging to genera Hyphomicrobium, Burkholderia, Methylobacterium, Paenibacillus, Pseudomonas, Rahnella, and Meyerozyma. M. oryzae MNL7 showed significantly better growth with 74.33% of CH4 utilization at the rate of 302.9 ± 5.58 and exhibited half-maximal growth rate, Ks of 1.92 ± 0.092 mg CH4 L-1. Besides the ability to utilize CH4, P. polymyxa MaAL70 possessed PGP attributes such as solubilization of P, K, and Zn, fixation of atmospheric N and production of indole acetic acid (IAA). Both these promising isolates can be explored in the future for developing novel biofertilizers for flooded paddies.
Collapse
|
27
|
Comparative Genomics and In Vitro Plant Growth Promotion and Biocontrol Traits of Lactic Acid Bacteria from the Wheat Rhizosphere. Microorganisms 2020; 9:microorganisms9010078. [PMID: 33396755 PMCID: PMC7823429 DOI: 10.3390/microorganisms9010078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed to isolate lactic acid bacteria (LAB) from wheat rhizosphere, to characterize their in vitro plant growth promoting activities and to differentiate plant-associated LAB from those associated with foods or human disease through comparative genomic analysis. Lactococcus lactis subsp. lactis and Enterococcus faecium were isolated using de Man-Rogosa-Sharpe (MRS) and Glucose Yeast Peptone (GYP) as enrichment culture media. Comparative genomic analyses showed that plant-associated LAB strains were enriched in genes coding for bacteriocin production when compared to strains from other ecosystems. Isolates of L. lactis and E. faecium did not produce physiologically relevant concentrations of the phyto-hormone indolacetic acid. All isolates solubilized high amount of phosphate and 12 of 16 strains solubilized potassium. E. faecium LB5, L. lactis LB6, LB7, and LB9 inhibited the plant pathogenic Fusarium graminearum to the same extent as two strains of Bacillus sp. However, the antifungal activity of the abovementioned LAB strains depended on the medium of cultivation and a low pH while antifungal activity of Bacillus spp. was independent of the growth medium and likely relates to antifungal lipopeptides. This study showed the potential of rhizospheric LAB for future application as biofertilizers in agriculture.
Collapse
|
28
|
Lastochkina O, Garshina D, Ibragimov A. Enhanced Performance of Endophytic Bacillus subtilis in Conjunction with Salicylic Acid Meliorated Simultaneous Drought and Fusarium Root Rot Stresses in Triticum aestivum L. THE 1ST INTERNATIONAL ELECTRONIC CONFERENCE ON PLANT SCIENCE 2020:20. [DOI: 10.3390/iecps2020-08778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Darya Garshina
- Bashkir Research Institute of Agriculture—Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, 450059 Ufa, Russia
| | - Almaz Ibragimov
- Biological Department of the Bashkir State University, 450076 Ufa, Russia
| |
Collapse
|
29
|
Phour M, Sehrawat A, Sindhu SS, Glick BR. Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 2020; 241:126589. [DOI: 10.1016/j.micres.2020.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
|
30
|
Muñoz PA, Arismendi MJ, Cárdenas SF, Cifuentes Bachmann DE, Venegas FA, Sepúlveda-Chavera GF. Diversity of culturable bacteria isolated from ancestral crops of Arica and Parinacota Region, Atacama Desert. Antonie van Leeuwenhoek 2020; 113:2123-2137. [PMID: 33136285 DOI: 10.1007/s10482-020-01482-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022]
Abstract
Arica and Parinacota Region is located at the extreme north of the Atacama Desert, where the high levels of salts and boron, lack of rain, high UV radiation, among other conditions, make this zone an extreme environment. Despite these characteristics, in the transversal valleys, different types of crops are cultivated in this region, which are associated to beneficial microorganisms with specific traits that allow plants surviving and developing under extreme conditions. However, there is incomplete information related to these microorganisms. In this work, bacteria associated with ancestral crops were isolated from oregano, alfalfa, maize, potato, and grapevine samples from Belén, Codpa, Molinos, Poconchile and Socoroma localities, representing the first report of these microorganisms in those sites. Bacteria were identified, being γ-Proteobacteria, the most frequent class (~ 74.4%), with members of Pseudomonas genus the most common isolated genus. All bacteria were functionally characterized for plant growth-promoting activities, including siderophores and auxins production, phosphate solubilization, and nitrogen fixation, revealing an extraordinary potential from these microorganisms for agricultural applications under arid and semiarid conditions.
Collapse
Affiliation(s)
- Patricio A Muñoz
- Laboratorio de Patología Vegetal Y Bioproductos, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica, Chile. .,UC Davis Chile Life Sciences Innovation Center, Santiago, Chile.
| | - Mabel J Arismendi
- Laboratorio de Patología Vegetal Y Bioproductos, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica, Chile.,UC Davis Chile Life Sciences Innovation Center, Santiago, Chile
| | - Steffany F Cárdenas
- Laboratorio de Patología Vegetal Y Bioproductos, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica, Chile
| | | | | | - Germán F Sepúlveda-Chavera
- Laboratorio de Patología Vegetal Y Bioproductos, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica, Chile.
| |
Collapse
|
31
|
Panichikkal J, Prathap G, Nair RA, Krishnankutty RE. Evaluation of plant probiotic performance of Pseudomonas sp. encapsulated in alginate supplemented with salicylic acid and zinc oxide nanoparticles. Int J Biol Macromol 2020; 166:138-143. [PMID: 33096173 DOI: 10.1016/j.ijbiomac.2020.10.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022]
Abstract
Plant growth promoting rhizobacteria (PGPR) are efficient candidates for the application in agricultural field to enhance the crop yield and to suppress the plant diseases. As the changes in agro-climatic conditions negatively affect the soil fertility and functioning of soil microbial community, there are significant demand for the innovative delivery methods for the PGPR to ensure its optimal performance. In the present study, Pseudomonas sp. DN18 has been entrapped in the alginate beads along with the supplemented salicylic acid (SA) and zinc oxide nanoparticles (ZnONPs). This modified formulation was further demonstrated for the IAA production and also antifungal activity against the Sclerotium rolfsii. In addition, superior plant growth promoting and biocontrol properties of the encapsulated Pseudomonas sp. DN18 supplemented with SA and ZnONPs have also been demonstrated on Oryza sativa seedlings by comparing with the free living Pseudomonas sp. DN18. This revealed the agricultural promises of Pseudomonas sp. DN18 encapsulated in a modified delivery system due to its functional superiority and stability over the free living bacteria based formulation.
Collapse
Affiliation(s)
- Jishma Panichikkal
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala 686 560, India
| | - Gopika Prathap
- Department of Biotechnology and Applied Microbiology, St. Thomas College, Palai, Kottayam, Kerala 686574, India
| | | | | |
Collapse
|
32
|
Lastochkina O, Garshina D, Allagulova C, Fedorova K, Koryakov I, Vladimirova A. Application of Endophytic Bacillus subtilis and Salicylic Acid to Improve Wheat Growth and Tolerance under Combined Drought and Fusarium Root Rot Stresses. AGRONOMY 2020; 10:1343. [DOI: 10.3390/agronomy10091343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
In nature, plants are constantly exposed to a varied abiotic and biotic stresses or their combinations, limiting the productivity of major crops, including wheat. Combinations of drought and soil-borne Fusarium-instigated diseases are the most common combinations of stresses, significantly reducing wheat yield around the world. Here, were analyzed the potential of application of endophytic bacteria Bacillus subtilis (strain 10–4) together with the natural signal molecule salicylic acid (SA) to improve growth and tolerance of Triticum aestivum L. (wheat) plants under combined drought and Fusarium culmorum-instigated root rot (FRR) stresses. It was revealed that pre-sowing treatment with B. subtilis 10–4, SA, and B. subtilis 10–4 + SA, both under normal and combined drought conditions, notably reduced (by 50–80% or more) the incidence of FRR development in wheat plants, with the most notable effect for B. subtilis 10–4 + SA (wherein disease symptoms were almost absent). Moreover, B. subtilis 10–4, SA, and especially B. subtilis 10–4 + SA increased plant growth (root and shoot length, fresh and dry biomass) under normal (up to 20–50%), drought (up to 15–40%), FRR (up to 15–30%), and combined drought + FRR stresses (up to 20%), with the maximum effect for B. subtilis 10–4 + SA. Additionally, B. subtilis 10–4, SA, and B. subtilis 10–4 + SA decreased stress (drought, FRR, and combined drought + FRR)-instigated lipid peroxidation and osmotic damages of plant cells. The findings indicate that endophytic bacteria B. subtilis 10–4 alone and in a mixture with SA may be used as an effective eco-friendly agent to improve wheat growth and tolerance under the influence of drought, FRR, and combinations of these stresses.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Darya Garshina
- Bashkir Research Institute of Agriculture—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; 450059 Ufa, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Igor Koryakov
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Anastasiya Vladimirova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
33
|
Rushabh S, Kajal C, Prittesh P, Amaresan N, Krishnamurthy R. Isolation, characterization, and optimization of indole acetic acid–producing Providencia species (7MM11) and their effect on tomato (Lycopersicon esculentum) seedlings. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol 2020; 129:1133-1156. [PMID: 32592603 DOI: 10.1111/jam.14754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume-rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume-rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume-rhizobia symbiosis. The means by which these processes enhance the legume-rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume-rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
35
|
Giri R, Sharma RK. Fungal pretreatment of lignocellulosic biomass for the production of plant hormone by Pichia fermentans under submerged conditions. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00319-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractThe study was designed to evaluate the production of auxin by eukaryotic unicellular organism Pichia fermentans. Different media formulations were used for the production of indole-3-acetic acid (IAA) under broth and submerged conditions. Wheat straw-based production medium was formulated and optimized using statistical approach. The IAA production was significantly enhanced by nine folds, when the wheat straw was pretreated with Phanerochaete chrysosporium (150 µg/ml) as compared to untreated wheat straw (16.44 µg/ml). Partial purification of IAA was carried out by silica gel column chromatography and further confirmed by high-performance liquid chromatography. Exogenous application of crude and partially purified IAA positively influenced the Vigna radiata seedling growth. The number of lateral roots in the growing seedlings was significantly higher as compared to the control seeds. Thus, the present findings point towards an efficient production of plant hormone by yeast and white rot fungus using abundantly available wheat straw, which may lead to the development of cost-effective production of such metabolites and their further use in agricultural field to reduce the negative impact of chemical fertilizers.
Collapse
|
36
|
Soares R, Trejo J, Lorite MJ, Figueira E, Sanjuán J, Videira e Castro I. Diversity, Phylogeny and Plant Growth Promotion Traits of Nodule Associated Bacteria Isolated from Lotus parviflorus. Microorganisms 2020; 8:microorganisms8040499. [PMID: 32244524 PMCID: PMC7232477 DOI: 10.3390/microorganisms8040499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Lotus spp. are widely used as a forage to improve pastures, and inoculation with elite rhizobial strains is a common practice in many countries. However, only a few Lotus species have been studied in the context of plant-rhizobia interactions. In this study, forty highly diverse bacterial strains were isolated from root nodules of wild Lotus parviflorus plants growing in two field locations in Portugal. However, only 10% of these isolates could nodulate one or more legume hosts tested, whereas 90% were thought to be opportunistic nodule associated bacteria. Phylogenetic studies place the nodulating isolates within the Bradyrhizobium genus, which is closely related to B. canariense and other Bradyrhizobium sp. strains isolated from genistoid legumes and Ornithopus spp. Symbiotic nodC and nifH gene phylogenies were fully consistent with the taxonomic assignment and host range. The non-nodulating bacteria isolated were alpha- (Rhizobium/Agrobacterium), beta- (Massilia) and gamma-proteobacteria (Pseudomonas, Lysobacter, Luteibacter, Stenotrophomonas and Rahnella), as well as some bacteroidetes from genera Sphingobacterium and Mucilaginibacter. Some of these nodule-associated bacteria expressed plant growth promotion (PGP) traits, such as production of lytic enzymes, antagonistic activity against phytopathogens, phosphate solubilization, or siderophore production. This argues for a potential beneficial role of these L. parviflorus nodule-associated bacteria.
Collapse
Affiliation(s)
- Ricardo Soares
- Laboratório de Microbiologia do Solo, UEISSAFSV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (R.S.); (J.T.)
- Laboratório de Bioquímica Inorgânica e RMN, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Jesús Trejo
- Laboratório de Microbiologia do Solo, UEISSAFSV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (R.S.); (J.T.)
| | - Maria J. Lorite
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, E-18160 Granada, Spain; (M.L.); (J.S.)
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Juan Sanjuán
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, E-18160 Granada, Spain; (M.L.); (J.S.)
| | - Isabel Videira e Castro
- Laboratório de Microbiologia do Solo, UEISSAFSV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (R.S.); (J.T.)
- Correspondence:
| |
Collapse
|
37
|
Zhang XX, Whalley PA, Ashton RW, Evans J, Hawkesford MJ, Griffiths S, Huang ZD, Zhou H, Mooney SJ, Whalley WR. A comparison between water uptake and root length density in winter wheat: effects of root density and rhizosphere properties. PLANT AND SOIL 2020. [PMID: 32848280 DOI: 10.1007/s11104-020-04582-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS We aim to quantify the variation in root distribution in a set of 35 experimental wheat lines. We also compared the effect of variation in hydraulic properties of the rhizosphere on water uptake by roots. METHODS We measured the root length density and soil drying in 35 wheat lines in a field experiment. A 3D numerical model was used to predict soil drying profiles with the different root length distributions and compared with measured soil drying. The model was used to test different scenarios of the hydraulic properties of the rhizosphere. RESULTS We showed that wheat lines with no detectable differences in root length density can induce soil drying profiles with statistically significant differences. Our data confirmed that a root length density of at least 1 cm/cm3 is needed to drain all the available water in soil. In surface layers where the root length density was far greater than 1 cm/cm3 water uptake was independent of rooting density due to competition for water. However, in deeper layers where root length density was less than 1 cm/cm3, water uptake by roots was proportional to root density. CONCLUSION In a set of wheat lines with no detectable differences in the root length density we found significant differences in water uptake. This may be because small differences in root density at depth can result in larger differences in water uptake or that the hydraulic properties of the rhizosphere can greatly affect water uptake.
Collapse
Affiliation(s)
- X X Zhang
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - P A Whalley
- University of Oxford, Radcliffe Observatory, Andrew Wiles Building, Woodstock Rd, Oxford, OX2 6GG UK
| | - R W Ashton
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - J Evans
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - M J Hawkesford
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - S Griffiths
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Z D Huang
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002 Henan China
| | - H Zhou
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008 People's Republic of China
| | - S J Mooney
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - W R Whalley
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| |
Collapse
|
38
|
Dahiya A, Sharma R, Sindhu S, Sindhu SS. Resource partitioning in the rhizosphere by inoculated Bacillus spp. towards growth stimulation of wheat and suppression of wild oat ( Avena fatua L.) weed. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1483-1495. [PMID: 31736550 PMCID: PMC6825098 DOI: 10.1007/s12298-019-00710-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 05/28/2023]
Abstract
Common wheat (Triticum aestivum L.) is one of the most important agricultural crop, which provides direct source of food for humans. Besides abiotic stresses, weeds pose a significant challenge to successful crop production. Avena fatua (wild oat) is one of the most common damaging grass weed, which causes 17-62% losses in yield of winter wheat. Excessive use of herbicides to control wild oat has resulted in serious environmental and human health hazards. Therefore, biological control of weeds is required to cope up with the increasing food demand and to attain self-sustainability. In this study, eighty eight rhizobacterial isolates were isolated from rhizosphere soil samples collected from Rewari and Hisar districts. After screening of the isolates, only thirty isolates showed in vitro antagonistic and herbicidal activities. The selected antagonistic isolates were further tested for production of IAA and ALA, and utilization of ACC. Bacterial isolates BWA18 and RWA52 produced 53.80 and 19.18 ug ml-1 IAA, respectively and high ALA production was shown by isolates HCA3 and RCA3. Five isolates i.e., BWA20, BWA23, BWA29, BWA38 and RCA3 showed significant ACC utilization. Inoculation of selected bacterial isolates BWA18, RWA69 and SYB101 showed significant increase in root dry weight (RDW) and shoot dry weight (SDW) of wheat plants under pot house conditions, and decreased RDW and SDW of A. fatua weed as compared to RDF-amended uninoculated soil at 25 DAS (days after sowing). Bacterial isolates RWA69 and SYB101 caused significant increase in RDW and SDW of wheat growth at 50 DAS, whereas their inoculation decreased RDW and SDW of A. fatua. Thus, seed bacterization with bacterial isolates RWA52, RWA69 and SYB101 caused significant increase in RDW and SDW of wheat, whereas their inoculation caused significant decrease in RDW and SDW of A. fatua. The best performing bacterial isolates RWA52 and RWA69 were identified as Bacillus siamensis and Bacillus endophyticus using 16S rRNA analysis. The promising rhizobacterial isolates could further be tested for the bioherbicidal activity and plant growth promotion effects under field conditions before their use as bioherbicides.
Collapse
Affiliation(s)
- Anupma Dahiya
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Ruchi Sharma
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Swati Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| |
Collapse
|
39
|
Díaz Rodríguez AM, Parra Cota FI, Santoyo G, de Los Santos Villalobos S. Chlorothalonil tolerance of indole producing bacteria associated to wheat (Triticum turgidum L.) rhizosphere in the Yaqui Valley, Mexico. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:569-577. [PMID: 31129746 DOI: 10.1007/s10646-019-02053-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 05/27/2023]
Abstract
Chlorothalonil is a commonly used fungicide to control the karnal bunt caused by Tilletia indica Mitra in wheat production from the Yaqui Valley, Mexico. Here, the effect of Chlorothalonil on the growth of 132 bacterial strains associated with wheat rhizosphere from the Yaqui Valley was evaluated, as well as their ability to produce indoles. Thirty-three percent of the evaluated strains were inhibited by Chlorothalonil, being Bacillus and Paenibacillus the most inhibited genera, observing an inhibition >50% of their strains. In addition, 49% of the inhibited strains showed the ability to produce indoles (>5 μg/mL), where the genus Bacillus was the most abundant (80%). The remaining strains (67%) were tolerant to the evaluated fungicide, but only 37% of those showed the ability to produce indoles, which could be considered as Plant Growth Promoting Rhizobacteria (PGPR). These results showed that Chlorothalonil is not only an antifungal compound but also inhibits the growth of bacterial strains with the ability to produce indoles. Thus, the intensive application of fungicides to agro-systems needs more validation in order to develop sustainable agricultural practices for food production.
Collapse
Affiliation(s)
- Alondra M Díaz Rodríguez
- Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Fannie I Parra Cota
- Campo Experimental Norman E. Borlaug-INIFAP, 85000 Norman E. Borlaug Km. 12, Ciudad Obregón, Sonora, Mexico
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | | |
Collapse
|
40
|
Manzoor M, Abid R, Rathinasabapathi B, De Oliveira LM, da Silva E, Deng F, Rensing C, Arshad M, Gul I, Xiang P, Ma LQ. Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:18-24. [PMID: 30639714 DOI: 10.1016/j.scitotenv.2019.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Soils contaminated with Pb and As are difficult to remediate. In this study, the utility of coupling As-hyperaccumulator Pteris vittata with metal-resistant rhizobacteria was explored. Siderophore-producing and P-solubilizing As-resistant bacteria from the P. vittata rhizosphere were screened for resistance to multiple metals. Results indicated Pseudomonas spp. strain PG-12 was most efficient in resisting multiple metals, i.e., up to 0.6 mM Cd and 10 mM Pb. Amplification of gene fragments encoding various metal efflux transporters (PbrA and CadA2) from genomic DNA of PG-12 suggested that metal efflux might play a role in its metal resistance and detoxification. In addition, PG-12 produced significant levels of plant growth hormones including 17.4 μg mL-1 indole acetic acid and 3.54 μg mL-1 gibberellin. P. vittata sporophytes inoculated with PG-12 were grown in Pb-contaminated medium and exhibited improved growth, increased P uptake, and reduced Pb uptake into plant tissue compared to the control. Results demonstrated that viable PG-12 cells were responsible for Pb immobilization and plant growth enhancement in P. vittata. The ability of PG-12 cells to solubilize P and display resistance to multiple metals combined with the production of plant hormones indole acetic acid and gibberellin make PG-12 a suitable candidate for plant growth promotion in metal-contaminated soil.
Collapse
Affiliation(s)
- Maria Manzoor
- Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA; Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Rafia Abid
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA; Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Letuzia M De Oliveira
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Evandro da Silva
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Fenglin Deng
- Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming 650224, China
| | - Christopher Rensing
- Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming 650224, China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Iram Gul
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Ping Xiang
- Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming 650224, China.
| | - Lena Q Ma
- Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 2019; 221:36-49. [DOI: 10.1016/j.micres.2019.02.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
|
42
|
Bashandy SR, Abd‐Alla MH, Bagy MMK. Biological Nitrogen Fixation and Biofertilizers as Ideal Potential Solutions for Sustainable Agriculture. INTEGRATING GREEN CHEMISTRY AND SUSTAINABLE ENGINEERING 2019:343-396. [DOI: 10.1002/9781119509868.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
43
|
Metabolic Diversity of Rhizospheric Pseudomonas species of Bt Cotton Plant. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Pandey RP, Srivastava AK, Gupta VK, O’Donovan A, Ramteke PW. Enhanced yield of diverse varieties of chickpea (Cicer arietinum L.) by different isolates of Mesorhizobium ciceri. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-00039-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Zhang W, Sun K, Shi RH, Yuan J, Wang XJ, Dai CC. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N 2 -fixation. PLANT, CELL & ENVIRONMENT 2018; 41:2093-2108. [PMID: 29469227 DOI: 10.1111/pce.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Beneficial fungal and rhizobial symbioses share commonalities in phytohormones responses, especially in auxin signalling. Mutualistic fungus Phomopsis liquidambari effectively increases symbiotic efficiency of legume peanut (Arachis hypogaea L.) with another microsymbiont, bradyrhizobium, but the underlying mechanisms are not well understood. We quantified and manipulated the IAA accumulation in ternary P. liquidambari-peanut-bradyrhizobial interactions to uncover its role between distinct symbioses. We found that auxin signalling is both locally and systemically induced by the colonization of P. liquidambari with peanut and further confirmed by Arabidopsis harbouring auxin-responsive reporter, DR5:GUS, and that auxin action, including auxin transport, is required to maintain fungal symbiotic behaviours and beneficial traits of plant during the symbiosis. Complementation and action inhibition experiments reveal that auxin signalling is involved in P. liquidambari-mediated nodule development and N2 -fixation enhancement and symbiotic gene activation. Further analyses showed that blocking of auxin action compromised the P. liquidambari-induced nodule phenotype and physiology changes, including vascular bundle development, symbiosome and bacteroids density, and malate concentrations, while induced the accumulation of starch granules in P. liquidambari-inoculated nodules. Collectively, our study demonstrated that auxin signalling activated by P. liquidambari symbiosis is recruited by peanut for bradyrhizobial symbiosis via symbiotic signalling pathway activation and nodule carbon metabolism enhancement.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Run-Han Shi
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
46
|
Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova D, Khairullin R, Aliniaeifard S. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:80-88. [PMID: 29096176 DOI: 10.1016/j.plaphy.2017.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 05/17/2023]
Abstract
Endophytic strain Bacillus subtilis (B. subtilis) 10-4, producing indole-3-acetic acid (IAA) and siderofores but not active in phosphate solubilization, exerted a protective effect on Triticum aestivum L. (wheat) plant grown under salinity (2% NaCl) stress. Exposure to salt stress resulted in an essential increase of proline (Pro) and malondialdehyde (MDA) level in the seedlings. At the same time the seedlings inoculated with B. subtilis 10-4 were characterized by decreased level of stress-induced Pro and MDA accumulation. It was revealed that both B. subtilis 10-4 and salinity caused increase in the content of endogenous salicylic acid (SA) in wheat seedlings as compared to SA content in the control, while B. subtilis 10-4 suppressed stress-induced SA accumulation. Water storage capacity (WSC) in leaf tissues was increased and stress-induced hydrolysis of statolite starch in root cap cells of the germinal roots was reduced by B. subtilis 10-4. The obtained data indicated that the activation of the defense reactions induced by B. subtilis 10-4 induced defense reactions may be connected with their ability to decrease the level of stress-induced oxidative and osmotic stress in seedlings and with the increase of endogenous SA level that can make a significant contribution to the implementation of the protective effect of B. subtilis 10-4 and is manifested in the improvement of plant growth, WSC of leaves and slowing down of the process of statolite starch hydrolysis under salinity.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Bashkir Scientific Research Institute of Agriculture, Russian Academy of Sciences, R. Zorge St.19, 450059 Ufa, Russia.
| | - Ludmila Pusenkova
- Bashkir Scientific Research Institute of Agriculture, Russian Academy of Sciences, R. Zorge St.19, 450059 Ufa, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054 Ufa, Russia
| | - Marat Babaev
- Bashinkom Scientific & Innovation Enterprise, Ltd, K. Marx St.37, 450015 Ufa, Russia
| | - Svetlana Garipova
- Bashkir Scientific Research Institute of Agriculture, Russian Academy of Sciences, R. Zorge St.19, 450059 Ufa, Russia; Bashkir State University, Z. Validi St., 32, 450076 Ufa, Russia
| | - Dar'ya Blagova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054 Ufa, Russia
| | - Ramil Khairullin
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054 Ufa, Russia
| | - Sasan Aliniaeifard
- Aburaihan Campus, University of Tehran, PC 3391653775 Pakdasht, Tehran, Iran
| |
Collapse
|
47
|
Deepika C, Satyavir SS. Inducing salinity tolerance in chickpea (Cicer arietinum L.) by inoculation of 1-aminocyclopropane-1-carboxylic acid deaminase-containing Mesorhizobium strains. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2014.7087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Gómez-Sagasti MT, Marino D. PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation? FRONTIERS IN PLANT SCIENCE 2015; 6:81. [PMID: 25763004 PMCID: PMC4340175 DOI: 10.3389/fpls.2015.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/30/2015] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is a toxic, biologically non-essential and highly mobile metal that has become an increasingly important environmental hazard to both wildlife and humans. In contrast to conventional remediation technologies, phytoremediation based on legume-rhizobia symbiosis has emerged as an inexpensive decontamination alternative which also revitalize contaminated soils due to the role of legumes in nitrogen cycling. In recent years, there is a growing interest in understanding symbiotic legume-rhizobia relationship and its interactions with Cd. The aim of the present review is to provide a comprehensive picture of the main effects of Cd in N2-fixing leguminous plants and the benefits of exploiting this symbiosis together with plant growth promoting rhizobacteria to boost an efficient reclamation of Cd-contaminated soils.
Collapse
Affiliation(s)
- María T. Gómez-Sagasti
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology, University of the Basque CountryBilbao, Spain
- *Correspondence: María T. Gómez-Sagasti, Laboratory of Plant Physiology, Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao, Spain e-mail:
| | - Daniel Marino
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology, University of the Basque CountryBilbao, Spain
- Ikerbasque, Basque Foundation for ScienceBilbao, Spain
| |
Collapse
|
49
|
Kia SH, Schulz M, Ayah E, Schouten A, Müllenborn C, Paetz C, Schneider B, Hofmann D, Disko U, Tabaglio V, Marocco A. Abutilon theophrasti’s Defense Against the Allelochemical Benzoxazolin-2(3H)-One: Support by Actinomucor elegans. J Chem Ecol 2014; 40:1286-98. [DOI: 10.1007/s10886-014-0529-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 01/06/2023]
|
50
|
Sindhu SS, Phour M, Choudhary SR, Chaudhary D. Phosphorus Cycling: Prospects of Using Rhizosphere Microorganisms for Improving Phosphorus Nutrition of Plants. GEOMICROBIOLOGY AND BIOGEOCHEMISTRY 2014. [DOI: 10.1007/978-3-642-41837-2_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|