1
|
Bae SH, Zoclanclounon YAB, Park GH, Lee JD, Kim TH. Genome-Wide In Silico Analysis of Leucine-Rich Repeat R-Genes in Perilla citriodora: Classification and Expression Insights. Genes (Basel) 2025; 16:200. [PMID: 40004529 PMCID: PMC11855831 DOI: 10.3390/genes16020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Resistance (R) genes are crucial for defending Perilla against pathogens like anthracnose, downy mildew, and phytophthora blight. Nucleotide-binding site leucine-rich repeat (NBS-LRR) genes, the largest R-gene family, play a central role in immunity. This study aimed to identify and characterize NBS-LRR genes in P. citriodora 'Jeju17'. METHODS Previously conducted genome-wide data for 'Jeju17' were analyzed in silico to identify NBS-LRR genes. RESULTS A total of 535 NBS-LRR genes were identified, with clusters on chromosomes 2, 4, and 10. A unique RPW8-type R-gene was located on chromosome 7. CONCLUSIONS This study provides insights into the NBS-LRR gene family in 'Je-ju17', highlighting its role in disease resistance and evolutionary dynamics. By identifying can-didate R-genes, this research supports breeding programs to develop disease-resistant cultivars and improves our understanding of plant immunity.
Collapse
Affiliation(s)
- Seon-Hwa Bae
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Republic of Korea;
| | | | - Gyu-Hwang Park
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si 54874, Republic of Korea;
| | - Jun-Dae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Tae-Ho Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si 54874, Republic of Korea;
| |
Collapse
|
2
|
Kan W, Chen L, Wang B, Liu L, Yin F, Zhong Q, Li J, Zhang D, Xiao S, Zhang Y, Jiang C, Yu T, Wang Y, Cheng Z. Examination of the Expression Profile of Resistance Genes in Yuanjiang Common Wild Rice ( Oryza rufipogon). Genes (Basel) 2024; 15:924. [PMID: 39062703 PMCID: PMC11275508 DOI: 10.3390/genes15070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The rice blight poses a significant threat to the rice industry, and the discovery of disease-resistant genes is a crucial strategy for its control. By exploring the rich genetic resources of Yuanjiang common wild rice (Oryza rufipogon) and analyzing their expression patterns, genetic resources can be provided for molecular rice breeding. The target genes' expression patterns, subcellular localization, and interaction networks were analyzed based on the annotated disease-resistant genes on the 9th and 10th chromosomes in the rice genome database using fluorescent quantitative PCR technology and bioinformatics tools. Thirty-three disease-resistant genes were identified from the database, including 20 on the 9th and 13 on the 10th. These genes were categorized into seven subfamilies of the NLR family, such as CNL and the G subfamily of the ABC family. Four genes were not expressed under the induction of the pathogen Y8, two genes were significantly down-regulated, and the majority were up-regulated. Notably, the expression levels of nine genes belonging to the ABCG, CN, and CNL classes were significantly up-regulated, yet the expression levels varied among roots, stems, and leaves; one was significantly expressed in the roots, one in the stems, and the remaining seven were primarily highly expressed in the leaves. Two interaction network diagrams were predicted based on the seven highly expressed genes in the leaves: complex networks regulated by CNL proteins and specific networks controlled by ABCG proteins. The disease-resistant genes on the 9th chromosome are actively expressed in response to the induction of rice blight, forming a critical gene pool for the resistance of Yuanjiang common wild rice (O. rufipogon) to rice blight. Meanwhile, the disease-resistant genes on the 10th chromosome not only participate in resisting the rice blight pathogen but may also be involved in the defense against other stem diseases.
Collapse
Affiliation(s)
- Wang Kan
- College of Plant Protection, Yunnan Agricultural University, Kunming 650224, China;
| | - Ling Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Bo Wang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Li Liu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Fuyou Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Qiaofang Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Jinlu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Dunyu Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Suqin Xiao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Yun Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Cong Jiang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Tengqiong Yu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Yunyue Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming 650224, China;
| | - Zaiquan Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| |
Collapse
|
3
|
Nishmitha K, Singh R, Dubey SC, Akthar J, Tripathi K, Kamil D. Resistance screening and in silico characterization of cloned novel RGA from multi-race resistant lentil germplasm against Fusarium wilt ( Fusarium oxysporum f. sp. lentis). FRONTIERS IN PLANT SCIENCE 2023; 14:1147220. [PMID: 37152180 PMCID: PMC10160667 DOI: 10.3389/fpls.2023.1147220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023]
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. lentis (Fol) is the most devastating disease of lentil present worldwide. Identification of multi-race fusarium wilt resistance genes and their incorporation into existing cultivars will help to reduce yield losses. In the present study, 100 lentil germplasms belonging to seven lentil species were screened against seven prevalent races of Fol, and accessions IC201561 (Lens culinaris subsp. culinaris), EC714243 (L. c. subsp. odemensis), and EC718238 (L. nigricans) were identified as resistant. The typical R gene codes for the nucleotide-binding site and leucine-rich repeats (NBS-LRR) at the C terminal are linked to either the Toll/interleukin 1-like receptor (TIR) or coiled coil (CC) at the N terminal. In the present study, degenerate primers, designed from the NBS region amplifying the P-loop to the GLPLA motif, isolated forty-five resistance gene analogues (RGAs) from identified resistant accessions. The sequence alignment identified both classes of RGAs, TIR and non-TIR, based on the presence of aspartate (D) and tryptophan (W) at the end of the kinase motif, respectively. The phylogenetic analysis grouped the RGAs into six classes, from LRGA1 to LRGA6, which determined the diversity of the RGAs present in the host. Grouping of the RGAs identified from Lens nigricans, LnRGA 2, 9, 13 with I2 revealed the structural similarity with the fusarium resistance gene. The similarity index ranged from 27.85% to 86.98% among the RGAs and from 26.83% to 49.41% among the known R genes, I2, Gpa2, M, and L6. The active binding sites present along the conserved motifs grouped the RGAs into 13 groups. ADP/ATP, being the potential ligand, determines the ATP binding and ATP hydrolysis activity of the RGAs. The isolated RGAs can be used to develop markers linked to the functional R gene. Furthermore, expression analysis and full-length gene isolation pave the path to identifying the molecular mechanism involved in resistance.
Collapse
Affiliation(s)
- K. Nishmitha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- *Correspondence: Deeba Kamil, ; Rakesh Singh,
| | - Sunil C. Dubey
- Indian Council of Agricultural Research, New Delhi, India
| | - Jameel Akthar
- Division of Plant Quarantine, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Tripathi
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Deeba Kamil, ; Rakesh Singh,
| |
Collapse
|
4
|
Cantila AY, Thomas WJW, Bayer PE, Edwards D, Batley J. Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:3010. [PMID: 36432742 PMCID: PMC9693284 DOI: 10.3390/plants11223010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study, using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs (RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases (RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of 62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may lay the foundation for rapid identification of functional genes and genomics-assisted breeding to develop improved disease-resistant Brassicaceae crop cultivars.
Collapse
|
5
|
Ercolano MR, D’Esposito D, Andolfo G, Frusciante L. Multilevel evolution shapes the function of NB-LRR encoding genes in plant innate immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1007288. [PMID: 36388554 PMCID: PMC9647133 DOI: 10.3389/fpls.2022.1007288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A sophisticated innate immune system based on diverse pathogen receptor genes (PRGs) evolved in the history of plant life. To reconstruct the direction and magnitude of evolutionary trajectories of a given gene family, it is critical to detect the ancestral signatures. The rearrangement of functional domains made up the diversification found in PRG repertoires. Structural rearrangement of ancient domains mediated the NB-LRR evolutionary path from an initial set of modular proteins. Events such as domain acquisition, sequence modification and temporary or stable associations are prominent among rapidly evolving innate immune receptors. Over time PRGs are continuously shaped by different forces to find their optimal arrangement along the genome. The immune system is controlled by a robust regulatory system that works at different scales. It is important to understand how the PRG interaction network can be adjusted to meet specific needs. The high plasticity of the innate immune system is based on a sophisticated functional architecture and multi-level control. Due to the complexity of interacting with diverse pathogens, multiple defense lines have been organized into interconnected groups. Genomic architecture, gene expression regulation and functional arrangement of PRGs allow the deployment of an appropriate innate immunity response.
Collapse
|
6
|
Barela Hudgell MA, Smith LC. The complex set of internal repeats in SpTransformer protein sequences result in multiple but limited alternative alignments. Front Immunol 2022; 13:1000177. [PMID: 36330505 PMCID: PMC9623053 DOI: 10.3389/fimmu.2022.1000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
The SpTransformer (SpTrf) gene family encodes a set of proteins that function in the sea urchin immune system. The gene sequences have a series of internal repeats in a mosaic pattern that is characteristic of this family. This mosaic pattern necessitates the insertion of large gaps, which has made alignments of the deduced protein sequences computationally difficult such that only manual alignments have been reported previously. Because manual alignments are time consuming for evaluating newly available SpTrf sequences, computational approaches were evaluated for the sequences reported previously. Furthermore, because two different manual alignments of the SpTrf sequences are feasible because of the multiple internal repeats, it is not known whether additional alternative alignments can be identified using different approaches. The bioinformatic program, PRANK, was used because it was designed to align sequences with large gaps and indels. The results from PRANK show that the alignments of the internal repeats are similar to those done manually, suggesting multiple feasible alignments for some regions. GUIDANCE based analysis of the alignments identified regions that were excellent and other regions that failed to align. This suggests that computational approaches have limits for aligning the SpTrf sequences that include multiple repeats and that require inserted gaps. Furthermore, it is unlikely that alternative alignments for the full-length SpTrf sequences will be identified.
Collapse
|
7
|
Barela Hudgell MA, Smith LC. Sequence Diversity, Locus Structure, and Evolutionary History of the SpTransformer Genes in the Sea Urchin Genome. Front Immunol 2021; 12:744783. [PMID: 34867968 PMCID: PMC8634487 DOI: 10.3389/fimmu.2021.744783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The generation of large immune gene families is often driven by evolutionary pressure exerted on host genomes by their pathogens, which has been described as the immunological arms race. The SpTransformer (SpTrf) gene family from the California purple sea urchin, Strongylocentrotus purpuratus, is upregulated upon immune challenge and encodes the SpTrf proteins that interact with pathogens during an immune response. Native SpTrf proteins bind both bacteria and yeast, and augment phagocytosis of a marine Vibrio, while a recombinant SpTrf protein (rSpTrf-E1) binds a subset of pathogens and a range of pathogen associated molecular patterns. In the sequenced sea urchin genome, there are four SpTrf gene clusters for a total of 17 genes. Here, we report an in-depth analysis of these genes to understand the sequence complexities of this family, its genomic structure, and to derive a putative evolutionary history for the formation of the gene clusters. We report a detailed characterization of gene structure including the intron type and UTRs with conserved transcriptional start sites, the start codon and multiple stop codons, and locations of polyadenylation signals. Phylogenetic and percent mismatch analyses of the genes and the intergenic regions allowed us to predict the last common ancestral SpTrf gene and a theoretical evolutionary history of the gene family. The appearance of the gene clusters from the theoretical ancestral gene may have been driven by multiple duplication and deletion events of regions containing SpTrf genes. Duplications and ectopic insertion events, indels, and point mutations in the exons likely resulted in the extant genes and family structure. This theoretical evolutionary history is consistent with the involvement of these genes in the arms race in responses to pathogens and suggests that the diversification of these genes and their encoded proteins have been selected for based on the survival benefits of pathogen binding and host protection.
Collapse
Affiliation(s)
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
8
|
Andolfo G, Sánchez CS, Cañizares J, Pico MB, Ercolano MR. Large-scale gene gains and losses molded the NLR defense arsenal during the Cucurbita evolution. PLANTA 2021; 254:82. [PMID: 34559316 PMCID: PMC8463517 DOI: 10.1007/s00425-021-03717-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/01/2021] [Indexed: 05/04/2023]
Abstract
Genome-wide annotation reveals that the gene birth-death process of the Cucurbita R family is associated with a species-specific diversification of TNL and CNL protein classes. The Cucurbitaceae family includes nearly 1000 plant species known universally as cucurbits. Cucurbita genus includes many economically important worldwide crops vulnerable to more than 200 pathogens. Therefore, the identification of pathogen-recognition genes is of utmost importance for this genus. The major class of plant-resistance (R) genes encodes nucleotide-binding site and leucine-rich repeat (NLR) proteins, and is divided into three sub-classes namely, TIR-NB-LRR (TNL), CC-NB-LRR (CNL) and RPW8-NB-LRR (RNL). Although the characterization of the NLR gene family has been carried out in important Cucurbita species, this information is still linked to the availability of sequenced genomes. In this study, we analyzed 40 de novo transcriptomes and 5 genome assemblies, which were explored to investigate the Cucurbita expressed-NLR (eNLR) and NLR repertoires using an ad hoc gene annotation approach. Over 1850 NLR-encoding genes were identified, finely characterized and compared to 96 well-characterized plant R-genes. The maximum likelihood analyses revealed an unusual diversification of CNL/TNL genes and a strong RNL conservation. Indeed, several gene gain and loss events have shaped the Cucurbita NLR family. Finally, to provide a first validation step Cucurbita, eNLRs were explored by real-time PCR analysis. The NLR repertories of the 12 Cucurbita species presented in this paper will be useful to discover novel R-genes.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- Department of Agricultural Sciences, University of Naples “Federico II”, Portici, NA Italy
| | - Cristina S. Sánchez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Joaquìn Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Maria B. Pico
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Maria R. Ercolano
- Department of Agricultural Sciences, University of Naples “Federico II”, Portici, NA Italy
| |
Collapse
|
9
|
Zhang Y, Edwards D, Batley J. Comparison and evolutionary analysis of Brassica nucleotide binding site leucine rich repeat (NLR) genes and importance for disease resistance breeding. THE PLANT GENOME 2021; 14:e20060. [PMID: 33179454 DOI: 10.1002/tpg2.20060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The Brassica genus contains many agriculturally significant oilseed and vegetable crops, however the crop yield is threatened by a range of fungal and bacterial pathogens. Nucleotide Binding Site Leucine Rich Repeat (NLR) genes play important roles in plant innate immunity. The evolution of NLR genes is influenced by genomic processes and pathogen selection. At the whole genome level, whole genome duplications (WGDs) generate abundant gene copies, most of which are lost during genome fractionation. At sub-genomic levels, some retained copies undergo duplication forming clusters which facilitate rapid evolution through recombination. The number, distribution and genetic variations of the NLR genes vary among Brassica species and within populations suggesting differential selection pressure exerted by pathogen populations throughout the evolutionary history. A study of the evolution of disease resistance genes in agriculturally important plants such as Brassicas helps gain insights into their function and inform the identification of resistance genes for breeding of resistant lines.
Collapse
Affiliation(s)
- Yueqi Zhang
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Santana Silva RJ, Micheli F. RRGPredictor, a set-theory-based tool for predicting pathogen-associated molecular pattern receptors (PRRs) and resistance (R) proteins from plants. Genomics 2020; 112:2666-2676. [DOI: 10.1016/j.ygeno.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/11/2020] [Accepted: 03/01/2020] [Indexed: 12/22/2022]
|
11
|
Reddy KC, Dror T, Underwood RS, Osman GA, Elder CR, Desjardins CA, Cuomo CA, Barkoulas M, Troemel ER. Antagonistic paralogs control a switch between growth and pathogen resistance in C. elegans. PLoS Pathog 2019; 15:e1007528. [PMID: 30640956 PMCID: PMC6347328 DOI: 10.1371/journal.ppat.1007528] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/25/2019] [Accepted: 12/15/2018] [Indexed: 11/30/2022] Open
Abstract
Immune genes are under intense, pathogen-induced pressure, which causes these genes to diversify over evolutionary time and become species-specific. Through a forward genetic screen we recently described a C. elegans-specific gene called pals-22 to be a repressor of "Intracellular Pathogen Response" or IPR genes. Here we describe pals-25, which, like pals-22, is a species-specific gene of unknown biochemical function. We identified pals-25 in a screen for suppression of pals-22 mutant phenotypes and found that mutations in pals-25 suppress all known phenotypes caused by mutations in pals-22. These phenotypes include increased IPR gene expression, thermotolerance, and immunity against natural pathogens, including Nematocida parisii microsporidia and the Orsay virus. Mutations in pals-25 also reverse the reduced lifespan and slowed growth of pals-22 mutants. Transcriptome analysis indicates that pals-22 and pals-25 control expression of genes induced not only by natural pathogens of the intestine, but also by natural pathogens of the epidermis. Indeed, in an independent forward genetic screen we identified pals-22 as a repressor and pals-25 as an activator of epidermal defense gene expression. In summary, the species-specific pals-22 and pals-25 genes act as a switch to regulate a program of gene expression, growth, and defense against diverse natural pathogens in C. elegans.
Collapse
Affiliation(s)
- Kirthi C. Reddy
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA United States of America
| | - Tal Dror
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA United States of America
| | - Ryan S. Underwood
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA United States of America
| | - Guled A. Osman
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Corrina R. Elder
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA United States of America
| | | | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge MA United States of America
| | | | - Emily R. Troemel
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA United States of America
| |
Collapse
|
12
|
Habachi-Houimli Y, Khalfallah Y, Mezghani-Khemakhem M, Makni H, Makni M, Bouktila D. Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley. 3 Biotech 2018; 8:453. [PMID: 30370194 DOI: 10.1007/s13205-018-1478-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/11/2018] [Indexed: 12/29/2022] Open
Abstract
In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance (R) gene family in the barley, Hordeum vulgare L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS-LRR (53.1%), CC-NBS-LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and Brachypodium. 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA-R gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.
Collapse
Affiliation(s)
- Yosra Habachi-Houimli
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
| | - Yosra Khalfallah
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
| | - Maha Mezghani-Khemakhem
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
| | - Hanem Makni
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
- 2Université de Tunis, Institut Supérieur de l'Animation pour la Jeunesse et la Culture (ISAJC), Bir El Bey, Tunisia
| | - Mohamed Makni
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
| | - Dhia Bouktila
- 1Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (GIRC, UR11ES10), El Manar, 2092 Tunis, Tunisia
- 3Université de Jendouba, Institut Supérieur de Biotechnologie de Béja (ISBB), 9000 Béja, Tunisia
| |
Collapse
|
13
|
Bailey PC, Schudoma C, Jackson W, Baggs E, Dagdas G, Haerty W, Moscou M, Krasileva KV. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol 2018; 19:23. [PMID: 29458393 PMCID: PMC5819176 DOI: 10.1186/s13059-018-1392-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/16/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The plant immune system is innate and encoded in the germline. Using it efficiently, plants are capable of recognizing a diverse range of rapidly evolving pathogens. A recently described phenomenon shows that plant immune receptors are able to recognize pathogen effectors through the acquisition of exogenous protein domains from other plant genes. RESULTS We show that plant immune receptors with integrated domains are distributed unevenly across their phylogeny in grasses. Using phylogenetic analysis, we uncover a major integration clade, whose members underwent repeated independent integration events producing diverse fusions. This clade is ancestral in grasses with members often found on syntenic chromosomes. Analyses of these fusion events reveals that homologous receptors can be fused to diverse domains. Furthermore, we discover a 43 amino acid long motif associated with this dominant integration clade which is located immediately upstream of the fusion site. Sequence analysis reveals that DNA transposition and/or ectopic recombination are the most likely mechanisms of formation for nucleotide binding leucine rich repeat proteins with integrated domains. CONCLUSIONS The identification of this subclass of plant immune receptors that is naturally adapted to new domain integration will inform biotechnological approaches for generating synthetic receptors with novel pathogen "baits."
Collapse
Affiliation(s)
- Paul C Bailey
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | | | - William Jackson
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Erin Baggs
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Gulay Dagdas
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Matthew Moscou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ksenia V Krasileva
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
14
|
Arya P, Acharya V. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense. Mol Genet Genomics 2017; 293:17-31. [PMID: 28900732 DOI: 10.1007/s00438-017-1368-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/07/2017] [Indexed: 01/18/2023]
Abstract
STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.
Collapse
Affiliation(s)
- Preeti Arya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India.,National Agri-Food Biotechnology Institute, Sector-81 (Knowledge City), SAS Nagar, Punjab, 140306, India
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India.
| |
Collapse
|
15
|
Di Donato A, Andolfo G, Ferrarini A, Delledonne M, Ercolano MR. Investigation of orthologous pathogen recognition gene-rich regions in solanaceous species. Genome 2017; 60:850-859. [PMID: 28742982 DOI: 10.1139/gen-2016-0217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathogen receptor proteins such as receptor-like protein (RLP), receptor-like kinase (RLK), and nucleotide-binding leucine-rich repeat (NLR) play a leading role in plant immunity activation. The genome architecture of such genes has been extensively investigated in several plant species. However, we still know little about their elaborate reorganization that arose during the plant speciation process. Using recently released pepper and eggplant genome sequences, we were able to identify 1097 pathogen recognition genes (PRGs) in the cultivated pepper Zunla-1 and 775 in the eggplant line Nakate-Shinkuro. The retrieved genes were analysed for their tendency to cluster, using different methods to infer the means of grouping. Orthologous relationships among clustering loci were found, and interesting reshuffling within given loci was observed for each analysed species. The information obtained was integrated into a comparative map to highlight the evolutionary dynamics in which the PRG loci were involved. Diversification of 14 selected PRG-rich regions was also explored using a DNA target-enrichment approach. A large number of gene variants were found as well as rearrangements of sequences encoding single protein domain and changes in chromosome gene order among species. Gene duplication and transposition activity have clearly influenced plant genome R-gene architecture and diversification. Our findings contribute to addressing several biological questions concerning the parallel evolution that occurred between genomes of the family Solanaceae. Moreover, the integration of different methods proved a powerful approach to reconstruct the evolutionary history in plant families and to transfer important biology findings among plant genomes.
Collapse
Affiliation(s)
- A Di Donato
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - G Andolfo
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - A Ferrarini
- b Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - M Delledonne
- b Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - M R Ercolano
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| |
Collapse
|
16
|
Oren M, Barela Hudgell MA, D'Allura B, Agronin J, Gross A, Podini D, Smith LC. Short tandem repeats, segmental duplications, gene deletion, and genomic instability in a rapidly diversified immune gene family. BMC Genomics 2016; 17:900. [PMID: 27829352 PMCID: PMC5103432 DOI: 10.1186/s12864-016-3241-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Genomic regions with repetitive sequences are considered unstable and prone to swift DNA diversification processes. A highly diverse immune gene family of the sea urchin (Strongylocentrotus purpuratus), called Sp185/333, is composed of clustered genes with similar sequence as well as several types of repeats ranging in size from short tandem repeats (STRs) to large segmental duplications. This repetitive structure may have been the basis for the incorrect assembly of this gene family in the sea urchin genome sequence. Consequently, we have resolved the structure of the family and profiled the members by sequencing selected BAC clones using Illumina and PacBio approaches. RESULTS BAC insert assemblies identified 15 predicted genes that are organized into three clusters. Two of the gene clusters have almost identical flanking regions, suggesting that they may be non-matching allelic clusters residing at the same genomic locus. GA STRs surround all genes and appear in large stretches at locations of putatively deleted genes. GAT STRs are positioned at the edges of segmental duplications that include a subset of the genes. The unique locations of the STRs suggest their involvement in gene deletions and segmental duplications. Genomic profiling of the Sp185/333 gene diversity in 10 sea urchins shows that no gene repertoires are shared among individuals indicating a very high gene diversification rate for this family. CONCLUSIONS The repetitive genomic structure of the Sp185/333 family that includes STRs in strategic locations may serve as platform for a controlled mechanism which regulates the processes of gene recombination, gene conversion, duplication and deletion. The outcome is genomic instability and allelic mismatches, which may further drive the swift diversification of the Sp185/333 gene family that may improve the immune fitness of the species.
Collapse
Affiliation(s)
- Matan Oren
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Megan A Barela Hudgell
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Brian D'Allura
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
- Present Address: Pennsylvania College of Optometry, Salus University, Elkins Park, PA, USA
| | - Jacob Agronin
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Alexandra Gross
- The Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daniele Podini
- Department of Forensic Sciences, George Washington University, Washington, DC, USA
| | - L Courtney Smith
- The Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
17
|
Seo E, Kim S, Yeom SI, Choi D. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1205. [PMID: 27559340 PMCID: PMC4978739 DOI: 10.3389/fpls.2016.01205] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/29/2016] [Indexed: 05/18/2023]
Abstract
Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding.
Collapse
Affiliation(s)
- Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Seon-In Yeom
- Department of Horticulture, Institute of Agriculture and Life Science, Gyeongsang National UniversityJinju, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
18
|
Nogué F, Mara K, Collonnier C, Casacuberta JM. Genome engineering and plant breeding: impact on trait discovery and development. PLANT CELL REPORTS 2016; 35:1475-86. [PMID: 27193593 PMCID: PMC4903109 DOI: 10.1007/s00299-016-1993-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/11/2016] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE New tools for the precise modification of crops genes are now available for the engineering of new ideotypes. A future challenge in this emerging field of genome engineering is to develop efficient methods for allele mining. Genome engineering tools are now available in plants, including major crops, to modify in a predictable manner a given gene. These new techniques have a tremendous potential for a spectacular acceleration of the plant breeding process. Here, we discuss how genetic diversity has always been the raw material for breeders and how they have always taken advantage of the best available science to use, and when possible, increase, this genetic diversity. We will present why the advent of these new techniques gives to the breeders extremely powerful tools for crop breeding, but also why this will require the breeders and researchers to characterize the genes underlying this genetic diversity more precisely. Tackling these challenges should permit the engineering of optimized alleles assortments in an unprecedented and controlled way.
Collapse
Affiliation(s)
- Fabien Nogué
- INRA AgroParisTech, IJPB, UMR 1318, INRA Centre de Versailles, Route de Saint Cyr, 78026, Versailles Cedex, France.
| | - Kostlend Mara
- INRA AgroParisTech, IJPB, UMR 1318, INRA Centre de Versailles, Route de Saint Cyr, 78026, Versailles Cedex, France
| | - Cécile Collonnier
- INRA AgroParisTech, IJPB, UMR 1318, INRA Centre de Versailles, Route de Saint Cyr, 78026, Versailles Cedex, France
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
19
|
Ogawa T, Mori A, Igari K, Morita MT, Tasaka M, Uchida N. Efficient In Planta Detection and Dissection of De Novo Mutation Events in the Arabidopsis thaliana Disease Resistance Gene UNI. PLANT & CELL PHYSIOLOGY 2016; 57:1123-1132. [PMID: 27016096 DOI: 10.1093/pcp/pcw060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Plants possess disease resistance (R) proteins encoded by R genes, and each R protein recognizes a specific pathogen factor(s) for immunity. Interestingly, a remarkably high degree of polymorphisms in R genes, which are traces of past mutation events during evolution, suggest the rapid diversification of R genes. However, little is known about molecular aspects that facilitate the rapid change of R genes because of the lack of tools that enable us to monitor de novo R gene mutations efficiently in an experimentally feasible time scale, especially in living plants. Here we introduce a model assay system that enables efficient in planta detection of de novo mutation events in the Arabidopsis thaliana R gene UNI in one generation. The uni-1D mutant harbors a gain-of-function allele of the UNI gene. uni-1D heterozygous individuals originally exhibit dwarfism with abnormally short stems. However, interestingly, morphologically normal stems sometimes emerge spontaneously from the uni-1D plants, and the morphologically reverted tissues carry additional de novo mutations in the UNI gene. Strikingly, under an extreme condition, almost half of the examined population shows the reversion phenomenon. By taking advantage of this phenomenon, we demonstrate that the reversion frequency is remarkably sensitive to a variety of fluctuations in DNA stability, underlying a mutable tendency of the UNI gene. We also reveal that activities of the salicylic acid pathway and DNA damage sensor pathway are involved in the reversion phenomenon. Thus, we provide an experimentally feasible model tool to explore factors and conditions that significantly affect the R gene mutation phenomenon.
Collapse
Affiliation(s)
- Tomohiko Ogawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Akiko Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Kadunari Igari
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Miyo Terao Morita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
20
|
Zhang HY, Li W, Mao XG, Jing RL. Characterization of genomic sequence of a drought-resistant gene TaSnRK2.7 in wheat species. J Genet 2016; 94:299-304. [PMID: 26174678 DOI: 10.1007/s12041-015-0505-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hong Ying Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science,Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | | | | | | |
Collapse
|
21
|
Sarris PF, Cevik V, Dagdas G, Jones JDG, Krasileva KV. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 2016; 14:8. [PMID: 26891798 PMCID: PMC4759884 DOI: 10.1186/s12915-016-0228-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/11/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Plants deploy immune receptors to detect pathogen-derived molecules and initiate defense responses. Intracellular plant immune receptors called nucleotide-binding leucine-rich repeat (NLR) proteins contain a central nucleotide-binding (NB) domain followed by a series of leucine-rich repeats (LRRs), and are key initiators of plant defense responses. However, recent studies demonstrated that NLRs with non-canonical domain architectures play an important role in plant immunity. These composite immune receptors are thought to arise from fusions between NLRs and additional domains that serve as "baits" for the pathogen-derived effector proteins, thus enabling pathogen recognition. Several names have been proposed to describe these proteins, including "integrated decoys" and "integrated sensors". We adopt and argue for "integrated domains" or NLR-IDs, which describes the product of the fusion without assigning a universal mode of action. RESULTS We have scanned available plant genome sequences for the full spectrum of NLR-IDs to evaluate the diversity of integrations of potential sensor/decoy domains across flowering plants, including 19 crop species. We manually curated wheat and brassicas and experimentally validated a subset of NLR-IDs in wild and cultivated wheat varieties. We have examined NLR fusions that occur in multiple plant families and identified that some domains show re-occurring integration across lineages. Domains fused to NLRs overlap with previously identified pathogen targets confirming that they act as baits for the pathogen. While some of the integrated domains have been previously implicated in disease resistance, others provide new targets for engineering durable resistance to plant pathogens. CONCLUSIONS We have built a robust reproducible pipeline for detecting variable domain architectures in plant immune receptors across species. We hypothesize that NLR-IDs that we revealed provide clues to the host proteins targeted by pathogens, and that this information can be deployed to discover new sources of disease resistance.
Collapse
Affiliation(s)
- Panagiotis F Sarris
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Division of Plant and Microbial Sciences, School of Biosciences, University of Exeter, Exeter, UK
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Gulay Dagdas
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Ksenia V Krasileva
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK. .,The Genome Analysis Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
22
|
Tang J, Lin J, Yang Y, Chen T, Ling X, Zhang B, Chang Y. Ectopic expression of a Ve homolog VvVe gene from Vitis vinifera enhances defense response to Verticillium dahliae infection in tobacco. Gene 2016; 576:492-8. [PMID: 26524501 DOI: 10.1016/j.gene.2015.10.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 11/22/2022]
Abstract
Verticillium wilt is a soil borne disease that can cause devastating losses to the production of many economically important crops. A Ve1 homologous gene responding to Verticillium dahliae infection was identified in Vitis vinifera cv. "HeiFeng" by semi-quantitative reverse transcription polymerase chain reaction and was designated as VvVe. The overexpression of VvVe in transgenic Nicotiana benthamiana plants significantly enhanced the resistance to isolate V991 of V. dahliae when compared with the wild type plants. The expressions of defense-related genes including the salicylic acid regulated gene pathogen-related 1 (PR1) but not PR2, the ethylene- and jasmonic acid-regulated genes ethylene response factor 1 (ERF1) and lipoxygenase (LOX) were significantly increased due to over expression of VvVe. And greater accumulation of active oxygen, callose and phenylalanine-ammonia lyase were observed in the leaves of transgenic VvVe tobacco plants than the wild type when under infection by V. dahliae. Moreover, the hypersensitive response mimicking cell death was exclusively occurred in the transgenic VvVe tobacco plants but not in the wild type. Taken together, the VvVe gene is a Ve1 like gene which involves in the signal cascade of salicylic acid, jasmonate, and ethylene defense pathways and enhances defense response to V. dahliae infection in the transgenic tobacco.
Collapse
Affiliation(s)
- Juan Tang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Lin
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Youhong Chang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
23
|
Meng Y, Huang Y, Wang Q, Wen Q, Jia J, Zhang Q, Huang G, Quan J, Shan W. Phenotypic and genetic characterization of resistance in Arabidopsis thaliana to the oomycete pathogen Phytophthora parasitica. FRONTIERS IN PLANT SCIENCE 2015; 6:378. [PMID: 26074940 PMCID: PMC4445315 DOI: 10.3389/fpls.2015.00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/12/2015] [Indexed: 05/28/2023]
Abstract
The interaction between Arabidopsis thaliana and the oomycete pathogen Phytophthora parasitica emerges as a model for exploring the molecular basis and evolution of recognition and host defense. Phenotypic variation and genetic analysis is essential to dissect the underlying mechanisms in plant-oomycete interaction. In this study, the reaction phenotypes of 28 A. thaliana accessions to P. parasitica strain Pp016 were examined using detached leaf infection assay. The results showed the presence of four distinct groups based on host response and disease development. Of all the accessions examined, Zurich (Zu-1) is highly resistant to P. parasitica. Microscopic characterization showed that rapid and severe hypersensitive response at the primary infection epidermal cells is associated with disease resistance. Furthermore, Zu-1 is resistant to a set of 20 diverse P. parasitica strains, which were collected from different host plants and exhibited differential specificities on a set of tobacco cultivars. However, Zu-1 is susceptible to P. parasitica when the root is inoculated, suggesting differential expression of associated resistance genes in the root and foliar tissues. Genetic analysis by crossing Zu-1 and the susceptible accession Landsberg (Ler) showed that the resistance in Zu-1 to P. parasitica is semi-dominant, as shown by infection assays of F1 progenies, and is likely conferred by a single locus, defined as RPPA1 (Zu-1) (for Resistance to P. parasitica 1), as shown by analysis of F2 segregating populations. By employing specific-locus amplified fragment sequencing (SLAF-seq) strategy to identify molecular markers potentially linked to the locus, the strongest associated region was determined to be located between 7.1 and 11.2 Mb in chromosome IV. The future cloning of RPPA1 (Zu-1) locus will facilitate improved understanding of plant broad-spectrum disease resistance to oomycete pathogens.
Collapse
Affiliation(s)
- Yuling Meng
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Yihua Huang
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Qujiang Wen
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Jinbu Jia
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Qiang Zhang
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Junli Quan
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Weixing Shan
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
24
|
Lozano R, Hamblin MT, Prochnik S, Jannink JL. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics 2015; 16:360. [PMID: 25948536 PMCID: PMC4422547 DOI: 10.1186/s12864-015-1554-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analysing the genomic organization of resistance genes in this crop. RESULTS With searches for Pfam domains and manual curation of the cassava gene annotations, we identified 228 NBS-LRR type genes and 99 partial NBS genes. These represent almost 1% of the total predicted genes and show high sequence similarity to proteins from other plant species. Furthermore, 34 contained an N-terminal toll/interleukin (TIR)-like domain, and 128 contained an N-terminal coiled-coil (CC) domain. 63% of the 327 R genes occurred in 39 clusters on the chromosomes. These clusters are mostly homogeneous, containing NBS-LRRs derived from a recent common ancestor. CONCLUSIONS This study provides insight into the evolution of NBS-LRR genes in the cassava genome; the phylogenetic and mapping information may aid efforts to further characterize the function of these predicted R genes.
Collapse
Affiliation(s)
- Roberto Lozano
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Martha T Hamblin
- Institute for Genomic Diversity, Biotechnology Building, Cornell University, Ithaca, NY, 14853, USA.
| | - Simon Prochnik
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.
| | - Jean-Luc Jannink
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA.
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| |
Collapse
|
25
|
Chavan S, Gray J, Smith SM. Diversity and evolution of Rp1 rust resistance genes in four maize lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:985-98. [PMID: 25805314 DOI: 10.1007/s00122-015-2484-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/13/2015] [Indexed: 05/24/2023]
Abstract
This manuscript provides genome-level analysis of disease resistance genes in four maize lines, including studies of haplotype and resistance gene number as well as selection and recombination. The Rp1 locus of maize is a complex resistance gene (R-gene) cluster that confers race-specific resistance to Puccinia sorghi, the causal agent of common leaf rust. Rp1 NB-LRR disease resistance genes were isolated from two Rp1 haplotypes (HRp1-B and HRp1-M) and two maize inbred lines (B73 and H95). Sixty-one Rp1 genes were isolated from Rp1-B, Rp1-M, B73 and H95 with a PCR-based approach. The four maize lines carried from 12 to 19 Rp1 genes. From 4 to 9 of the identified Rp1 genes were transcribed in the four maize lines. The Rp1 gene nucleotide diversity was higher in HRp1-B and HRp1-M than in B73 and H95. Phylogenic analysis of 69 Rp1 genes revealed that the Rp1 genes maintained in HRp1-B, HRp1-M and H95 are evolving independently of each other, while Rp1 genes in B73 and HRp1-D appear more like each other than they do genes in the other lines. The results also revealed that the analysed Rp1 R-genes were under positive selection in HRp1-M and B73. Intragenic recombination was detected in Rp1 genes maintained in the four maize lines. This demonstrates that a genetic process that has the potential to generate new resistance genes with new specificities is active at the Rp1 locus in the four analysed maize lines and that the new resistance genes may act against newly arising pathogen races that become prevalent in the pathogen population.
Collapse
Affiliation(s)
- Suchitra Chavan
- Department of Plant Pathology, The University of Georgia, 120 Carlton St., Miller Plant Science, Room 4309, 30602, Athens, Georgia
| | | | | |
Collapse
|
26
|
Abdollahi Mandoulakani B, Yaniv E, Kalendar R, Raats D, Bariana HS, Bihamta MR, Schulman AH. Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:211-9. [PMID: 25388968 DOI: 10.1007/s00122-014-2422-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/27/2014] [Indexed: 05/08/2023]
Abstract
Yr15 provides broad resistance to stripe rust, an important wheat disease. REMAP- and IRAP-derived co-dominant SCAR markers were developed and localize Yr15 to a 1.2 cM interval. They are reliable across many cultivars. Stripe rust [Pucinia striiformis f.sp. tritici (Pst)] is one of the most important fungal diseases of wheat, found on all continents and in over 60 countries. Wild emmer wheat (Triticum dicoccoides), which is the tetraploid progenitor of durum wheat, is a valuable source of novel stripe rust resistance genes for wheat breeding. T. dicoccoides accession G25 carries Yr15 on chromosome 1BS. Yr15 confers resistance to virtually all tested Pst isolates; it is effective in durum and bread wheat introgressions and their derivatives. Retrotransposons generate polymorphic insertions, which can be scored as Mendelian markers using techniques such as REMAP and IRAP. Six REMAP- and IRAP-derived SCAR markers were mapped using 1,256 F2 plants derived from crosses of the susceptible T. durum accession D447 (DW1) with its resistant BC3F9 and BC3F10 (B9 and B10) near isogenic lines, which carried Yr15 introgressed from G25. The nearest markers segregated 0.1 cM proximally and 1.1 cM distally to Yr15. These markers were also mapped and validated at the same position in another 500 independent F2 plants derived from crosses of B9 and B10 with the susceptible cultivar Langdon (LDN). SC2700 and SC790, defining Yr15 on an interval of 1.2 cM, were found to be reliable and robust co-dominant markers in a wide range of wheat lines and cultivars with and without Yr15. These markers are useful tags in marker-assisted wheat breeding programs that aim to incorporate Yr15 into elite wheat lines and cultivars for durable and broad-spectrum resistance to stripe rust.
Collapse
|
27
|
Dyrka W, Lamacchia M, Durrens P, Kobe B, Daskalov A, Paoletti M, Sherman DJ, Saupe SJ. Diversity and variability of NOD-like receptors in fungi. Genome Biol Evol 2014; 6:3137-58. [PMID: 25398782 PMCID: PMC4986451 DOI: 10.1093/gbe/evu251] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular receptors that control innate immunity and other biotic interactions in animals and plants. NLRs have been characterized in plant and animal lineages, but in fungi, this gene family has not been systematically described. There is however previous indications of the involvement of NLR-like genes in nonself recognition and programmed cell death in fungi. We have analyzed 198 fungal genomes for the presence of NLRs and have annotated a total of 5,616 NLR candidates. We describe their phylogenetic distribution, domain organization, and evolution. Fungal NLRs are characterized by a great diversity of domain organizations, suggesting frequently occurring combinatorial assortments of different effector, NOD and repeat domains. The repeat domains are of the WD, ANK, and TPR type; no LRR motifs were found. As previously documented for WD-repeat domains of fungal NLRs, TPR, and ANK repeats evolve under positive selection and show highly conserved repeats and repeat length polymorphism, suggesting the possibility of concerted evolution of these repeats. We identify novel effector domains not previously found associated with NLRs, whereas others are related to effector domains of plant or animals NLRs. In particular, we show that the HET domain found in fungal NLRs may be related to Toll/interleukin-1 receptor domains found in animal and plant immune receptors. This description of fungal NLR repertoires reveals both similarities and differences with plant and animals NLR collections, highlights the importance of domain reassortment and repeat evolution and provides a novel entry point to explore the evolution of NLRs in eukaryotes.
Collapse
Affiliation(s)
- Witold Dyrka
- INRIA-Université Bordeaux-CNRS, MAGNOME, Talence, France
| | - Marina Lamacchia
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| | - Pascal Durrens
- INRIA-Université Bordeaux-CNRS, MAGNOME, Talence, France
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Centre for Infectious Disease Research, University of Queensland, Brisbane, Queensland, Australia
| | - Asen Daskalov
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| | - Matthieu Paoletti
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| | | | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| |
Collapse
|
28
|
Peele HM, Guan N, Fogelqvist J, Dixelius C. Loss and retention of resistance genes in five species of the Brassicaceae family. BMC PLANT BIOLOGY 2014; 14:298. [PMID: 25365911 PMCID: PMC4232680 DOI: 10.1186/s12870-014-0298-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/20/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plants have evolved disease resistance (R) genes encoding for nucleotide-binding site (NB) and leucine-rich repeat (LRR) proteins with N-terminals represented by either Toll/Interleukin-1 receptor (TIR) or coiled-coil (CC) domains. Here, a genome-wide study of presence and diversification of CC-NB-LRR and TIR-NB-LRR encoding genes, and shorter domain combinations in 19 Arabidopsis thaliana accessions and Arabidopsis lyrata, Capsella rubella, Brassica rapa and Eutrema salsugineum are presented. RESULTS Out of 528 R genes analyzed, 12 CC-NB-LRR and 17 TIR-NB-LRR genes were conserved among the 19 A. thaliana genotypes, while only two CC-NB-LRRs, including ZAR1, and three TIR-NB-LRRs were conserved when comparing the five species. The RESISTANCE TO LEPTOSPHAERIA MACULANS 1 (RLM1) locus confers resistance to the Brassica pathogen L. maculans the causal agent of blackleg disease and has undergone conservation and diversification events particularly in B. rapa. On the contrary, the RLM3 locus important in the immune response towards Botrytis cinerea and Alternaria spp. has recently evolved in the Arabidopsis genus. CONCLUSION Our genome-wide analysis of the R gene repertoire revealed a large sequence variation in the 23 cruciferous genomes. The data provides further insights into evolutionary processes impacting this important gene family.
Collapse
Affiliation(s)
- Hanneke M Peele
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Na Guan
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Johan Fogelqvist
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| |
Collapse
|
29
|
Majeske AJ, Oren M, Sacchi S, Smith LC. Single sea urchin phagocytes express messages of a single sequence from the diverse Sp185/333 gene family in response to bacterial challenge. THE JOURNAL OF IMMUNOLOGY 2014; 193:5678-88. [PMID: 25355922 DOI: 10.4049/jimmunol.1401681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune systems in animals rely on fast and efficient responses to a wide variety of pathogens. The Sp185/333 gene family in the purple sea urchin, Strongylocentrotus purpuratus, consists of an estimated 50 (±10) members per genome that share a basic gene structure but show high sequence diversity, primarily due to the mosaic appearance of short blocks of sequence called elements. The genes show significantly elevated expression in three subpopulations of phagocytes responding to marine bacteria. The encoded Sp185/333 proteins are highly diverse and have central effector functions in the immune system. In this study we report the Sp185/333 gene expression in single sea urchin phagocytes. Sea urchins challenged with heat-killed marine bacteria resulted in a typical increase in coelomocyte concentration within 24 h, which included an increased proportion of phagocytes expressing Sp185/333 proteins. Phagocyte fractions enriched from coelomocytes were used in limiting dilutions to obtain samples of single cells that were evaluated for Sp185/333 gene expression by nested RT-PCR. Amplicon sequences showed identical or nearly identical Sp185/333 amplicon sequences in single phagocytes with matches to six known Sp185/333 element patterns, including both common and rare element patterns. This suggested that single phagocytes show restricted expression from the Sp185/333 gene family and infers a diverse, flexible, and efficient response to pathogens. This type of expression pattern from a family of immune response genes in single cells has not been identified previously in other invertebrates.
Collapse
Affiliation(s)
- Audrey J Majeske
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| | - Matan Oren
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| | - Sandro Sacchi
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| |
Collapse
|
30
|
Michelmore RW, Christopoulou M, Caldwell KS. Impacts of resistance gene genetics, function, and evolution on a durable future. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:291-319. [PMID: 23682913 DOI: 10.1146/annurev-phyto-082712-102334] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Studies on resistance gene function and evolution lie at the confluence of structural and molecular biology, genetics, and plant breeding. However, knowledge from these disparate fields has yet to be extensively integrated. This review draws on ideas and information from these different fields to elucidate the influences driving the evolution of different types of resistance genes in plants and the concurrent evolution of virulence in pathogens. It provides an overview of the factors shaping the evolution of recognition, signaling, and response genes in the context of emerging functional information along with a consideration of the new opportunities for durable resistance enabled by high-throughput DNA sequencing technologies.
Collapse
|