1
|
Pineda M, Kogut M, Genovese K, Farnell YZ, Zhao D, Wang X, Milby A, Farnell M. Competitive Exclusion of Intra-Genus Salmonella in Neonatal Broilers. Microorganisms 2021; 9:microorganisms9020446. [PMID: 33670039 PMCID: PMC7926974 DOI: 10.3390/microorganisms9020446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Salmonellosis is a zoonotic infection caused by Salmonella enterica serotypes contracted from contaminated products. We hypothesized that competitive exclusion between Salmonella serotypes in neonatal broilers would reduce colonization and affect the host immune response. Day of hatch broilers were randomly allocated to one of six treatment groups: (1) control, which received saline, (2) Salmonella Kentucky (SK) only on day 1 (D1), (3) Salmonella Typhimurium (ST) or Salmonella Enteritidis (SE) only on D1, (4) SK on D1 then ST or SE on day 2 (D2), (5) ST or SE on D1 then SK on D2, and (6) SK and ST or SE concurrently on D1. Salmonella gut colonization and incidence were measured from cecal contents. Livers and spleens were combined and macerated to determine systemic translocation. Relative mRNA levels of interleukin-1β (IL-1β), IL-6, IL-10, IL-18, and gamma interferon (IFN-γ) were measured in cecal tonsils and liver to investigate local and systemic immune responses. When a serotype was administered first, it was able to significantly reduce colonization of the following serotype. Significant changes were found in mRNA expression of cytokines. These results suggest competitive exclusion by Salmonella enterica serotypes affect local and systemic immune responses.
Collapse
Affiliation(s)
- Megan Pineda
- Department of Poultry Science, Texas A&M AgriLife Research, College Station, TX 77843, USA; (M.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.M.)
| | - Michael Kogut
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77843, USA; (M.K.); (K.G.)
| | - Kenneth Genovese
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77843, USA; (M.K.); (K.G.)
| | - Yuhua Z. Farnell
- Department of Poultry Science, Texas A&M AgriLife Research, College Station, TX 77843, USA; (M.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.M.)
| | - Dan Zhao
- Department of Poultry Science, Texas A&M AgriLife Research, College Station, TX 77843, USA; (M.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.M.)
| | - Xi Wang
- Department of Poultry Science, Texas A&M AgriLife Research, College Station, TX 77843, USA; (M.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.M.)
| | - Allison Milby
- Department of Poultry Science, Texas A&M AgriLife Research, College Station, TX 77843, USA; (M.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.M.)
| | - Morgan Farnell
- Department of Poultry Science, Texas A&M AgriLife Research, College Station, TX 77843, USA; (M.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.M.)
- Correspondence:
| |
Collapse
|
2
|
Samy A, El-Enbaawy M, El-Sanousi A, Abd El-Wanes S, Ammar A, Hikono H, Saito T. In-vitro assessment of differential cytokine gene expression in response to infections with Egyptian classic and variant strains of highly pathogenic H5N1 avian influenza virus. Int J Vet Sci Med 2019. [DOI: 10.1016/j.ijvsm.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- A.A. Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, 12618, Egypt
| | - M.I. El-Enbaawy
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - A.A. El-Sanousi
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - S.A. Abd El-Wanes
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, 12618, Egypt
| | - A.M. Ammar
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - H. Hikono
- Influenza and Prion Disease Research Centre, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - T. Saito
- Influenza and Prion Disease Research Centre, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
3
|
Sajewicz-Krukowska J, Olszewska-Tomczyk M, Domańska-Blicharz K. In Ovo Administration of CpG ODN Induces Expression of Immune Response Genes in Neonatal Chicken Spleen. J Vet Res 2017; 61:451-458. [PMID: 29978109 PMCID: PMC5937344 DOI: 10.1515/jvetres-2017-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction Due to their immunostimulatory properties TLR ligands are used prophylactically to protect against a variety of viral and bacterial pathogens in mammals. Knowledge of the molecular and functional aspects of TLRs is essential for a better understanding of the immune system and resistance to diseases in birds. For that reason, this study attempted to determine the impact of TLR21 stimulation by its synthetic ligand (CpG ODN, class B) on the chicken immune system. Material and Methods Sixty embryonated chicken eggs were randomly allocated into three groups (control and two experimental groups). On day 18 of embryonic development, chickens in one experimental group were administered in ovo a low dose of CpG ODN and the birds of the second experimental group were given a high dose of the ligand. Spleens were collected at 1, 2, 5, and 10 days post-hatching (dph) for analysis of IFN-α, IFN-β, IFN-γ, IL-6, and IL-10 expression using qRT-PCR. Results Significant differences were observed in mRNA expression levels of all the measured cytokines associated with the modulation and regulation of the immune response at different time points. Conclusion The obtained data clearly demonstrate that immune response induction takes place after in ovo administration of class B CpG ODN, and that the ligand has the ability to induce cytokine responses in neonatal chicken spleen.
Collapse
|
4
|
Initiation and regulation of immune responses to immunization with whole inactivated vaccines prepared from two genetically and antigenically distinct lineages of Egyptian influenza A virus subtype H5N1. Arch Virol 2016; 161:2797-806. [DOI: 10.1007/s00705-016-2989-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
|
5
|
An N, Li HY, Zhang XM. Growth inhibitive effect of betulinic acid combined with tripterine on MSB-1 cells and its mechanism. Poult Sci 2016; 94:2880-6. [PMID: 26467010 DOI: 10.3382/ps/pev267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Marek's disease (MD), a highly infectious lymphoproliferative disease in chickens, is caused by a cell-associated oncogenic herpesvirus, Marek's disease virus (MDV). MSB-1 is a MD-derived lymphoblastoid cell line and can induce tumors when inoculated into susceptible chickens. Betulinic acid, which is present as one of the major effective components in many traditional Chinese medicines, has recently been reported to inhibit growth of cancer cells and employed as a potential anticancer agent. Tripterine, a major active compound extracted from the Chinese herb Tripterygium wilfordii Hook F, has now also shown anti-tumor activities in various cancers. The aim of this study was to investigate the synergistic growth-inhibitive effect of betulinic acid combined with tripterine on MSB-1 cells and its mechanism. Viability of MSB-1 cells was assessed by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT) method. Cell apoptotic analysis was performed by fluorescence detection. NF-κB transcription activity was detected by measuring luciferase activity. Western blotting was used to analyze the expression of p65, IκB and Meq. Our results showed that the proliferation in the combination group was significantly decreased as compared with that of monotherapy using betulinic acid or tripterine, accompanied by an induction of apoptosis, inhibition of NF-κB transcriptional activity and its targeting oncogenic gene Meq. The results suggest that the combination of betulinic acid and tripterine at lower concentration may produce a synergistic inhibitive effect on MSB-1 cells that warrants further investigation for its potential clinical applications.
Collapse
|
6
|
Sharma AS, Gupta HO, Prasad R. PPDB: A Tool for Investigation of Plants Physiology Based on Gene Ontology. Interdiscip Sci 2015; 7:295-308. [DOI: 10.1007/s12539-015-0017-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/10/2014] [Accepted: 02/07/2014] [Indexed: 01/23/2023]
|
7
|
Sharma AS, Gupta HO, Prasad R. PPDB - A tool for investigation of plants physiology based on gene ontology. Interdiscip Sci 2014. [PMID: 25183354 DOI: 10.1007/s12539-013-0065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/10/2014] [Accepted: 02/07/2014] [Indexed: 09/29/2022]
Abstract
Representing the way forward, from functional genomics and its ontology to functional understanding and physiological model, in a computationally tractable fashion is one of the ongoing challenges faced by computational biology. To tackle the standpoint, we herein feature the applications of contemporary database management to the development of PPDB, a searching and browsing tool for the Plants Physiology Database that is based upon the mining of a large amount of gene ontology data currently available. The working principles and search options associated with the PPDB are publicly available and freely accessible on-line ( http://www.iitr.ernet.in/ajayshiv/ ) through a user friendly environment generated by means of Drupal-6.24. By knowing that genes are expressed in temporally and spatially characteristic patterns and that their functionally distinct products often reside in specific cellular compartments and may be part of one or more multi-component complexes, this sort of work is intended to be relevant for investigating the functional relationships of gene products at a system level and, thus, helps us approach to the full physiology.
Collapse
Affiliation(s)
- Ajay Shiv Sharma
- Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India,
| | | | | |
Collapse
|
8
|
Haq K, Schat KA, Sharif S. Immunity to Marek's disease: where are we now? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:439-446. [PMID: 23588041 DOI: 10.1016/j.dci.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
Marek's disease (MD) in chickens was first described over a century ago and the causative agent of this disease, Marek's disease virus (MDV), was first identified in the 1960's. There has been extensive and intensive research over the last few decades to elucidate the underlying mechanisms of the interactions between the virus and its host. We have also made considerable progress in terms of developing efficacious vaccines against MD. The advent of the chicken genetic map and genome sequence as well as development of approaches for chicken transcriptome and proteome analyses, have greatly facilitated the process of illuminating underlying genetic mechanisms of resistance and susceptibility to disease. However, there are still major gaps in our understanding of MDV pathogenesis and mechanisms of host immunity to the virus and to the neoplastic events caused by this virus. Importantly, vaccines that can disrupt virus transmission in the field are lacking. The current review explores mechanisms of host immunity against Marek's disease and makes an attempt to identify the areas that are lacking in this field.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | | | | |
Collapse
|
9
|
Kumar S, Kunec D, Buza JJ, Chiang HI, Zhou H, Subramaniam S, Pendarvis K, Cheng HH, Burgess SC. Nuclear Factor kappa B is central to Marek's disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo. BMC SYSTEMS BIOLOGY 2012; 6:123. [PMID: 22979947 PMCID: PMC3472249 DOI: 10.1186/1752-0509-6-123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/04/2012] [Indexed: 12/15/2022]
Abstract
Background Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. Results Our results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. Conclusions In the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor cells and not merely immune bystanders. We also show that NF-κB is a central player in MDV induced neoplastic transformation of CD30-expressing lymphocytes in vivo. Our results provide insights into molecular mechanisms of neoplastic transformation in MD specifically and also herpesvirus induced lymphoma in general.
Collapse
Affiliation(s)
- Shyamesh Kumar
- Department of Pathobiology and Population Medicine, Mississippi State University, MS 39762, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yu Y, Luo J, Mitra A, Chang S, Tian F, Zhang H, Yuan P, Zhou H, Song J. Temporal transcriptome changes induced by MDV in Marek's disease-resistant and -susceptible inbred chickens. BMC Genomics 2011; 12:501. [PMID: 21992110 PMCID: PMC3269463 DOI: 10.1186/1471-2164-12-501] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 10/12/2011] [Indexed: 11/10/2022] Open
Abstract
Background Marek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV) and characterized by T cell lymphoma and infiltration of lymphoid cells into various organs such as liver, spleen, peripheral nerves and muscle. Resistance to MD and disease risk have long been thought to be influenced both by genetic and environmental factors, the combination of which contributes to the observed outcome in an individual. We hypothesize that after MDV infection, genes related to MD-resistance or -susceptibility may exhibit different trends in transcriptional activity in chicken lines having a varying degree of resistance to MD. Results In order to study the mechanisms of resistance and susceptibility to MD, we performed genome-wide temporal expression analysis in spleen tissues from MD-resistant line 63, susceptible line 72 and recombinant congenic strain M (RCS-M) that has a phenotype intermediate between lines 63 and 72 after MDV infection. Three time points of the MDV life cycle in chicken were selected for study: 5 days post infection (dpi), 10dpi and 21dpi, representing the early cytolytic, latent and late cytolytic stages, respectively. We observed similar gene expression profiles at the three time points in line 63 and RCS-M chickens that are both different from line 72. Pathway analysis using Ingenuity Pathway Analysis (IPA) showed that MDV can broadly influence the chickens irrespective of whether they are resistant or susceptible to MD. However, some pathways like cardiac arrhythmia and cardiovascular disease were found to be affected only in line 72; while some networks related to cell-mediated immune response and antigen presentation were enriched only in line 63 and RCS-M. We identified 78 and 30 candidate genes associated with MD resistance, at 10 and 21dpi respectively, by considering genes having the same trend of expression change after MDV infection in lines 63 and RCS-M. On the other hand, by considering genes with the same trend of expression change after MDV infection in lines 72 and RCS-M, we identified 78 and 43 genes at 10 and 21dpi, respectively, which may be associated with MD-susceptibility. Conclusions By testing temporal transcriptome changes using three representative chicken lines with different resistance to MD, we identified 108 candidate genes for MD-resistance and 121 candidate genes for MD-susceptibility over the three time points. Genes included in our resistance or susceptibility genes lists that are also involved in more than 5 biofunctions, such as CD8α, IL8, USP18, and CTLA4, are considered to be important genes involved in MD-resistance or -susceptibility. We were also able to identify several biofunctions related with immune response that we believe play an important role in MD-resistance.
Collapse
Affiliation(s)
- Ying Yu
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
It is more than a century since Marek's disease (MD) was first reported in chickens and since then there have been concerted efforts to better understand this disease, its causative agent and various approaches for control of this disease. Recently, there have been several outbreaks of the disease in various regions, due to the evolving nature of MD virus (MDV), which necessitates the implementation of improved prophylactic approaches. It is therefore essential to better understand the interactions between chickens and the virus. The chicken immune system is directly involved in controlling the entry and the spread of the virus. It employs two distinct but interrelated mechanisms to tackle viral invasion. Innate defense mechanisms comprise secretion of soluble factors as well as cells such as macrophages and natural killer cells as the first line of defense. These innate responses provide the adaptive arm of the immune system including antibody- and cell-mediated immune responses to be tailored more specifically against MDV. In addition to the immune system, genetic and epigenetic mechanisms contribute to the outcome of MDV infection in chickens. This review discusses our current understanding of immune responses elicited against MDV and genetic factors that contribute to the nature of the response.
Collapse
|
12
|
Parvizi P, Andrzejewski K, Read LR, Behboudi S, Sharif S. Expression profiling of genes associated with regulatory functions of T-cell subsets in Marek's disease virus-infected chickens. Avian Pathol 2010; 39:367-73. [DOI: 10.1080/03079457.2010.508776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Manda P, Freeman MG, Bridges SM, Jankun-Kelly TJ, Nanduri B, McCarthy FM, Burgess SC. GOModeler--a tool for hypothesis-testing of functional genomics datasets. BMC Bioinformatics 2010; 11 Suppl 6:S29. [PMID: 20946613 PMCID: PMC3026376 DOI: 10.1186/1471-2105-11-s6-s29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Functional genomics technologies that measure genome expression at a global scale are accelerating biological knowledge discovery. Generating these high throughput datasets is relatively easy compared to the downstream functional modelling necessary for elucidating the molecular mechanisms that govern the biology under investigation. A number of publicly available ‘discovery-based’ computational tools use the computationally amenable Gene Ontology (GO) for hypothesis generation. However, there are few tools that support hypothesis-based testing using the GO and none that support testing with user defined hypothesis terms. Here, we present GOModeler, a tool that enables researchers to conduct hypothesis-based testing of high throughput datasets using the GO. GOModeler summarizes the overall effect of a user defined gene/protein differential expression dataset on specific GO hypothesis terms selected by the user to describe a biological experiment. The design of the tool allows the user to complement the functional information in the GO with his/her domain specific expertise for comprehensive hypothesis testing. Results GOModeler tests the relevance of the hypothesis terms chosen by the user for the input gene dataset by providing the individual effects of the genes on the hypothesis terms and the overall effect of the entire dataset on each of the hypothesis terms. It matches the GO identifiers (ids) of the genes with the GO ids of the hypothesis terms and parses the names of those ids that match to assign effects. We demonstrate the capabilities of GOModeler with a dataset of nine differentially expressed cytokine genes and compare the results to those obtained through manual analysis of the dataset by an immunologist. The direction of overall effects on all hypothesis terms except one was consistent with the results obtained by manual analysis. The tool’s editing capability enables the user to augment the information extracted. GOModeler is available as a part of the AgBase tool suite (http://www.agbase.msstate.edu). Conclusions GOModeler allows hypothesis driven analysis of high throughput datasets using the GO. Using this tool, researchers can quickly evaluate the overall effect of quantitative expression changes of gene set on specific biological processes of interest. The results are provided in both tabular and graphical formats.
Collapse
Affiliation(s)
- Prashanti Manda
- Department of Computer Science and Engineering, Mississippi State University, MS, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Thanthrige-Don N, Parvizi P, Sarson AJ, Shack LA, Burgess SC, Sharif S. Proteomic analysis of host responses to Marek's disease virus infection in spleens of genetically resistant and susceptible chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:699-704. [PMID: 20138080 DOI: 10.1016/j.dci.2010.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 01/26/2010] [Indexed: 05/28/2023]
Abstract
Resistance to Marek's disease (MD) in chickens is genetically regulated and there are lines of chickens with differential susceptibility or resistance to this disease. The present study was designed to study comparative changes in the spleen proteomes of MD-susceptible B19 and MD-resistant B21 chickens in response to MDV infection. Spleen proteomes were examined at 4, 7, 14 and 21 days post-infection (d.p.i.) using two-dimensional gel electrophoresis and subsequently the protein spots were identified by one-dimensional liquid chromatography electrospray ionization tandem mass spectrometry (1D LC ESI MS/MS). On average, there were 520+/-27 distinct protein spots on each gel and 1.6+/-0.7% of the spots differed quantitatively in their expression (p< or =0.05 and fold change > or =2) between infected B19 and B21 chickens. There was one spot at 4d.p.i. and three spots each at the rest of the time points, which had a qualitative difference in expression. Most of the differentially expressed proteins at 4 and 7d.p.i. displayed increased expression in B21 chickens; conversely the differentially expressed proteins at 14 and 21d.p.i. showed an increase in expression in B19 chickens. The differentially expressed proteins identified in the present study included antioxidants, molecular chaperones, proteins involved in the formation of cytoskeleton, protein degradation and antigen presentation, signal transduction, protein translation and elongation, RNA processing and cell proliferation. These findings shed light on some of the underlying processes of genetic resistance or susceptibility to MD.
Collapse
|
15
|
Yao Q, Fischer KP, Motyka B, Ferland S, Li L, Tyrrell DL, Gutfreund KS. Identification of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) isoforms in the Pekin duck. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:749-758. [PMID: 20156479 DOI: 10.1016/j.dci.2010.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 02/05/2010] [Accepted: 02/06/2010] [Indexed: 05/28/2023]
Abstract
Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4, CD152) is an inhibitory T cell receptor predominately expressed on activated T cells. The duck CTLA-4 (DuCTLA-4) cDNA and a transcript lacking the predicted transmembrane encoding region (DuCTLA-4DeltaTM) were isolated from splenocytes using RT-PCR. The predicted DuCTLA-4 protein showed an identity of 92%, 49% and 47% with chicken, human and mouse homologues, respectively. Sequence comparison revealed conservation of residues implicated in the B7 ligand binding, disulfide linkages, glycosylation and intracellular signaling. DuCTLA-4 mRNA was predominately expressed in primary and secondary immune organs. DuCTLA-4 and DuCTLA-4DeltaTM transcripts were differentially regulated in PBMCs. Flow cytometric analysis showed constitutive expression of DuCTLA-4 protein on freshly isolated PBMCs and a modest increase upon mitogen stimulation. Our observations suggest that DuCTLA-4 and its isoform DuCTLA-4DeltaTM evolved before the divergence of birds and mammals. Both DuCTLA-4 isoforms have significant structural homology to mammalian CTLA-4 proteins but their individual roles in the regulation of duck immune responses remains to be elucidated.
Collapse
Affiliation(s)
- Qingxia Yao
- Division of Gastroenterology, Department of Medicine, University of Alberta, 130 University Campus, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|