1
|
Zhang C, Li S, Guo J, Pan T, Zhang Y, Gao Y, Pan J, Liu M, Yang Q, Yu J, Xu J, Li Y, Li X. Multi-dimensional characterization of cellular states reveals clinically relevant immunological subtypes and therapeutic vulnerabilities in ovarian cancer. J Transl Med 2025; 23:519. [PMID: 40340848 PMCID: PMC12063340 DOI: 10.1186/s12967-025-06521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Diverse cell types and cellular states in the tumor microenvironment (TME) are drivers of biological and therapeutic heterogeneity in ovarian cancer (OV). Characterization of the diverse malignant and immunology cellular states that make up the TME and their associations with clinical outcomes are critical for cancer therapy. However, we are still lack of knowledge about the cellular states and their clinical relevance in OV. METHODS We manually collected the comprehensive transcriptomes of OV samples and characterized the cellular states and ecotypes based on a machine-learning framework. The robustness of the cellular states was validated in independent cohorts and single-cell transcriptomes. The functions and regulators of cellular states were investigated. Meanwhile, we thoroughly examined the associations between cellular states and various clinical factors, including clinical prognosis and drug responses. RESULTS We depicted and characterized an immunophenotypic landscape of 3,099 OV samples and 80,044 cells based on a machine learning framework. We identified and validated 32 distinct transcriptionally defined cellular states from 12 cell types and three cellular communities or ecotypes, extending the current immunological subtypes in OV. Functional enrichment and upstream transcriptional regulator analyses revealed cancer hallmark-related pathways and potential immunological biomarkers. We further investigated the spatial patterns of identified cellular states by integrating the spatially resolved transcriptomes. Moreover, prognostic landscape and drug sensitivity analysis exhibited clinically relevant immunological subtypes and therapeutic vulnerabilities. CONCLUSION Our comprehensive analysis of TME helps leveraging various immunological subtypes to highlight new directions and targets for the treatment of cancer.
Collapse
Affiliation(s)
- Can Zhang
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Si Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China
| | - Jiyu Guo
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China
| | - Tao Pan
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Ya Zhang
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Yueying Gao
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China
| | - Jiwei Pan
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Meng Liu
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Qingyi Yang
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China
| | - Jinyang Yu
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China.
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China.
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xia Li
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China.
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
2
|
Wang W, Zhai Y, Yang X, Ye L, Lu G, Shi X, Zhai G. Effective design of therapeutic nanovaccines based on tumor neoantigens. J Control Release 2025; 380:17-35. [PMID: 39892648 DOI: 10.1016/j.jconrel.2025.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Neoantigen vaccines are among the most potent immunotherapies for personalized cancer treatment. Therapeutic vaccines containing tumor-specific neoantigens that elicit specific T cell responses offer the potential for long-term clinical benefits to cancer patients. Unlike immune-checkpoint inhibitors (ICIs), which rely on pre-existing specific T cell responses, personalized neoantigen vaccines not only promote existing specific T cell responses but importantly stimulate the generation of neoantigen-specific T cells, leading to the establishment of a persistent specific memory T cell pool. The review discusses the current state of clinical research on neoantigen nanovaccines, focusing on the application of vectors, adjuvants, and combinational strategies to address a range of challenges and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Weilin Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States of America
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Gao Y, Luo C, Yang H, Xie Q, He H, Li J, Miao J. Enhanced efficacy of dual chimeric antigen receptor-T cells targeting programmed death-ligand 1 and cancer-associated fibroblasts in colorectal cancer in vitro. Cytojournal 2025; 22:29. [PMID: 40260068 PMCID: PMC12010817 DOI: 10.25259/cytojournal_245_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Objective Colorectal cancer (CRC) presents significant treatment challenges, including immune evasion and tumor microenvironment (TME) suppression. Chimeric antigen receptor (CAR) T-cell therapy has shown promise in hematologic malignancies, but its effectiveness against solid tumors is hampered by the detrimental effects of the TME. This article aims to explore the potential of bispecific CAR T cells targeting programmed death-ligand 1 (PD-L1) and cancer-associated fibroblasts (CAFs) in CRC treatment. Material and Methods Dual-targeted CAR-T cells against PD-L1 and CAF were engineered using the GV400 lentiviral vector. Programmed death-1 (PD-1)/nanobody (Nb) and fibroblast activation protein (FAP)/Nb-encoding lentiviral vectors were generated, and CAR T cells were produced through a three-plasmid system in 293T cells. Human peripheral blood mononuclear cells (PBMCs) were separated, transduced with these vectors, and then expanded. Functional characterization of CAR-T cells was performed through enzyme-linked immunosorbent assay (ELISA), Western blot analysis, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, and cell counting kit-8 (CCK-8) assay. Migration and invasion assays were conducted using Transwell chambers to assess the ability of FAP-PD-1/Nb CAR-T cells to migrate toward tumor cells and invade the extracellular matrix. Results We developed dual-targeted CAR-T cells incorporating PD-L1 and CAF Nbs, which continuously secreted PD-1/Nb. Western blot confirmed PD-1/Nb expression in PD-1/Nb and FAP-PD-1/Nb CAR-T cells, with no expression in the untreated (UTD) group (P < 0.01). Flow cytometry showed a significantly higher cluster of differentiation (CD)25 and CD69 expression in FAP-PD-1/Nb CAR-T cells upon stimulation with FAP-positive target cells compared with the other groups (P < 0.01). TUNEL, flow cytometry, and CCK-8 assays revealed that FAP-PD-1/Nb CAR-T cells exhibited superior cytotoxicity and proliferation inhibition against FAP-positive HCT116 cells (P < 0.01). ELISA demonstrated increased interferon-gamma and tumor necrosis factor-alpha levels and reduced interleukin-10 (P < 0.01), suggesting enhanced cytokine modulation and antitumor immunity. Compared with single-target CAR-T cells and UTD, FAP-PD-1/Nb CAR-T cells showed notably enhanced Matrigel penetration and invasion (P < 0.01). Safety tests confirmed minimal cytotoxicity to normal PBMCs, indicating favorable safety. Conclusion This study successfully developed dual-targeted CAR-T cells against PD-L1 and CAF and demonstrated their superior antitumor activity and immunomodulatory effects on CRC treatment. This novel therapeutic strategy was established using CAR T-cell technology for the treatment of CRC.
Collapse
Affiliation(s)
- Yang Gao
- Health Management Center, Zigong Fourth People’s Hospital, Zigong, Sichuan Province, China
| | - CanJing Luo
- Health Management Center, Zigong Fourth People’s Hospital, Zigong, Sichuan Province, China
| | - Hua Yang
- Department of General Surgery, Zigong Fourth People’s Hospital, Zigong, Sichuan Province, China
| | - QiaoJin Xie
- Health Management Center, Zigong Fourth People’s Hospital, Zigong, Sichuan Province, China
| | - HaoJie He
- Health Management Center, Zigong Fourth People’s Hospital, Zigong, Sichuan Province, China
| | - JiaWei Li
- Department of Oncology, Zigong Fourth People’s Hospital, Zigong, Sichuan Province, China
| | - JiDong Miao
- Department of Oncology, Zigong Fourth People’s Hospital, Zigong, Sichuan Province, China
| |
Collapse
|
4
|
Corvigno S, Fernebro J, Karlsson JS, Mezheieusky A, Martín-Bernabé A, De La Fuente LM, Westbom-Fremer S, Carlson JW, Klein C, Kannisto P, Hedenfalk I, Malander S, Östman A, Dahlstrand H. High prevalence of FAP+ cancer-associated fibroblasts predicts poor outcome in patients with high-grade serous ovarian cancer with high CD8 T-cell density. Gynecol Oncol 2025; 193:148-155. [PMID: 39914230 DOI: 10.1016/j.ygyno.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVE Studies have implied that fibroblasts may act as regulators of immune cells in the tumor microenvironment (TME). We investigated the clinical relevance of fibroblast activation protein (FAP) positive stroma in high-grade serous ovarian cancer (HGSC) in relation to CD8+ lymphocyte's infiltration. METHODS In a discovery cohort (N = 113) of HGSC, expression of FAP and CD8 in the TME was analyzed with immunohistochemistry. Results were correlated with overall survival (OS) and progression-free survival (PFS). The findings were validated in an independent cohort of HGSC (N = 121) and in public available datasets. RESULTS High infiltration of CD8+ cells in the TME of HGSC was found to be associated with longer OS, as previously known. Increased expression of FAP was associated with shorter median PFS (11.4 vs. 18.6 months) in tumors with high density of CD8+ cells (HR 4.03, CI 95 % 1.38-11.72, p = 0.01). Similarly, in the validation cohort, high intensity of FAP in cases with high density of CD8+ cells was associated with shorter OS, 31.5 vs 76.9 months (HR 2.83; 95 % CI 1.17-6.86, p = 0.02). The results were consistent in multivariable analyses. The association between high FAP expression and poor outcome in high density CD8 HGSC was also confirmed in publicly available datasets. CONCLUSIONS The TME infiltration of FAP-positive fibroblasts is associated with poor prognosis in HGSC with high CD8+ cells density. Targeting the FAP+ subset of fibroblasts may unlock the local immune-activation in the TME thus enhance the positive prognostic effect of T-cells in ovarian cancer.
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Josefin Fernebro
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Gynecologic Oncology, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Josefin Severin Karlsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| | - Artur Mezheieusky
- IGP, Uppsala University, Sweden; Vall d'Hebron Institute of Oncology, Molecular oncology group, Barcelona, Spain
| | | | - Laura Martin De La Fuente
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Sofia Westbom-Fremer
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Pathology and Laboratory Medicine, University of Southern California, Los Angeles, USA
| | | | - Paivi Kannisto
- Department of Obstetrics and Gynecology, Skåne University Hospital and Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and University Hospital, Lund, Sweden
| | - Susanne Malander
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Gynecologic Oncology, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Fouillet J, Torchio J, Rubira L, Fersing C. Unveiling the Tumor Microenvironment Through Fibroblast Activation Protein Targeting in Diagnostic Nuclear Medicine: A Didactic Review on Biological Rationales and Key Imaging Agents. BIOLOGY 2024; 13:967. [PMID: 39765634 PMCID: PMC11673949 DOI: 10.3390/biology13120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
The tumor microenvironment (TME) is a dynamic and complex medium that plays a central role in cancer progression, metastasis, and treatment resistance. Among the key elements of the TME, cancer-associated fibroblasts (CAFs) are particularly important for their ability to remodel the extracellular matrix, promote angiogenesis, and suppress anti-tumor immune responses. Fibroblast activation protein (FAP), predominantly expressed by CAFs, has emerged as a promising target in both cancer diagnostics and therapeutics. In nuclear medicine, targeting FAP offers new opportunities for non-invasive imaging using radiolabeled fibroblast activation protein inhibitors (FAPIs). These FAP-specific radiotracers have demonstrated excellent tumor detection properties compared to traditional radiopharmaceuticals such as [18F]FDG, especially in cancers with low metabolic activity, like liver and biliary tract tumors. The most recent FAPI derivatives not only enhance the accuracy of positron emission tomography (PET) imaging but also hold potential for theranostic applications by delivering targeted radionuclide therapies. This review examines the biological underpinnings of FAP in the TME, the design of FAPI-based imaging agents, and their evolving role in cancer diagnostics, highlighting the potential of FAP as a target for precision oncology.
Collapse
Affiliation(s)
- Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Jade Torchio
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
6
|
Muilwijk T, Baekelandt L, Akand M, Daelemans S, Marien K, Waumans Y, van Dam PJ, Kockx M, Van den Broeck T, Van Cleynenbreugel B, Van der Aa F, Gevaert T, Joniau S. Fibroblast Activation Protein-α and the Immune Landscape: Unraveling T1 Non-muscle-invasive Bladder Cancer Progression. EUR UROL SUPPL 2024; 66:67-74. [PMID: 39044944 PMCID: PMC11263494 DOI: 10.1016/j.euros.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Background and objective The tumor microenvironment (TME) in non-muscle-invasive bladder cancer (NMIBC) plays an important role in the anticancer response. We aimed to identify the prognostic biomarkers in the TME of patients with NMIBC for progression to ≥T2. Methods From our institutional database, 40 patients with T1 high-risk NMIBC who progressed were pair matched for Club Urologico Español de Tratamiento Oncologico (CUETO) progression variables with 80 patients who never progressed despite longer follow-up. Progression was defined as ≥T2 or extravesical disease. Patients were treated at least with bacillus Calmette-Guérin (BCG) induction (five or more of six doses). Immunohistochemical (IHC) markers for the TME were used on tissue at first T1 diagnosis: CD8-PanCK, GZMB-CD8-FOXP3, CD163, PD-L1 SP142/SP263, fibroblast activation protein-α (FAP), and CK5-GATA3. Full tissue slides were annotated digitally. Relative marker area (IHC-positive area/total area) or density (IHC-positive cells per area; n/mm2) was calculated, differentiating between regions of interest (ROIs; T1, Ta, and carcinoma in situ) and between compartments (stromal, epithelial, and combined). Differences in IHC variables were assessed using the t test, for continuous variables using analysis of variance and comparisons of more than two groups using Tukey's test. Conditional logistic regression for progression at 5-yr follow-up was performed with clusters based on pair matching. Key findings and limitations Only FAP expression (increase per 50%) in T1 (odds ratio [OR]: 1.33; 95% confidence interval [CI]: 1.04-1.70) and all ROIs combined (OR: 1.62; 95% CI: 1.14-2.29) correlated significantly with progression. None of the other clinicopathological/IHC variables correlated with progression. Conclusions and clinical implications FAP is a potential prognostic biomarker for progression in high-risk NMIBC. FAP is a marker for cancer-associated fibroblasts and is linked to immunosuppression and neoangiogenesis, which makes future investigation clinically relevant. Patient summary We found that progression of high-risk non-muscle-invasive bladder cancer to muscle-invasive disease is less in patients with lower fibroblast activation protein-α (FAP) expression, which is a marker for cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Tim Muilwijk
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Loïc Baekelandt
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Murat Akand
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Sofie Daelemans
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
- Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Marien
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Yannick Waumans
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Pieter-Jan van Dam
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Mark Kockx
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | | | | | - Frank Van der Aa
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Thomas Gevaert
- Organ Systems, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
van der Heide CD, Ma H, Hoorens MWH, Campeiro JD, Stuurman DC, de Ridder CMA, Seimbille Y, Dalm SU. In vitro and in vivo analyses of eFAP: a novel FAP-targeting small molecule for radionuclide theranostics and other oncological interventions. EJNMMI Radiopharm Chem 2024; 9:55. [PMID: 39073475 PMCID: PMC11286609 DOI: 10.1186/s41181-024-00283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP), a transmembrane serine protease overexpressed by cancer-associated fibroblasts in the tumor stroma, is an interesting biomarker for targeted radionuclide theranostics. FAP-targeting radiotracers have demonstrated to be superior to [18F]FDG PET/CT in various solid cancers. However, these radiotracers have suboptimal tumor retention for targeted radionuclide therapy (TRT). We aimed to develop a novel FAP-targeting pharmacophore with improved pharmacokinetics by introducing a substitution at the 8-position of (4-quinolinoyl)-glycyl-2-cyanopyrrolidine, which allows for conjugation of a chelator, dye, or other payloads. RESULTS Here we showed the synthesis of DOTA-conjugated eFAP-6 and sulfo-Cyanine5-conjugated eFAP-7. After chemical characterization, the uptake and specificity of both tracers were determined on FAP-expressing cells. In vitro, [111In]In-eFAP-6 demonstrated a superior affinity and a more rapid, although slightly lower, peak uptake than gold standard [111In]In-FAPI-46. Confocal microscopy demonstrated a quick FAP-mediated internalization of eFAP-7. Studies with HT1080-huFAP xenografted mice confirmed a more rapid uptake of [177Lu]Lu-eFAP-6 vs. [177Lu]Lu-FAPI-46. However, tumor retention at 24 h post injection of [177Lu]Lu-eFAP-6 was lower than that of [177Lu]Lu-FAPI-46, hereby currently limiting its use for TRT. CONCLUSION The superior affinity and faster tumor accumulation of eFAP-6 over FAPI-46 makes it a suitable compound for radionuclide imaging. After further optimization, the eFAP series has great potential for various oncological interventions, including fluorescent-guided surgery and effective targeted radionuclide theranostics.
Collapse
Affiliation(s)
- Circe D van der Heide
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Hanyue Ma
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Mark W H Hoorens
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Joana D Campeiro
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Debra C Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Corrina M A de Ridder
- Department of Experimental Urology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - Simone U Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands.
| |
Collapse
|
8
|
Köbel M, Kang EY, Lee S, Terzic T, Karnezis AN, Ghatage P, Woo L, Lee CH, Meagher NS, Ramus SJ, Gorringe KL. Infiltrative pattern of invasion is independently associated with shorter survival and desmoplastic stroma markers FAP and THBS2 in mucinous ovarian carcinoma. Histopathology 2024; 84:1095-1110. [PMID: 38155475 DOI: 10.1111/his.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
AIMS Mucinous ovarian carcinoma (MOC) is a rare ovarian cancer histotype with generally good prognosis when diagnosed at an early stage. However, MOC with the infiltrative pattern of invasion has a worse prognosis, although to date studies have not been large enough to control for covariables. Data on reproducibility of classifying the invasion pattern are limited, as are molecular correlates for infiltrative invasion. We hypothesized that the invasion pattern would be associated with an aberrant tumour microenvironment. METHODS AND RESULTS Four subspecialty pathologists assessed interobserver reproducibility of the pattern of invasion in 134 MOC. Immunohistochemistry on fibroblast activation protein (FAP) and THBS2 was performed on 98 cases. Association with survival was tested using Cox regression. The average interobserver agreement for the infiltrative pattern was moderate (kappa 0.60, agreement 86.3%). After reproducibility review, 24/134 MOC (18%) were determined to have the infiltrative pattern and this was associated with a higher risk of death, independent of FIGO stage, grade, and patient age in a time-dependent manner (hazard ratio [HR] = 10.2, 95% confidence interval [CI] 3.0-34.5). High stromal expression of FAP and THBS2 was more common in infiltrative MOC (FAP: 60%, THBS2: 58%, both P < 0.001) and associated with survival (multivariate HR for FAP: 1.5 [95% CI 1.1-2.1] and THBS2: 1.91 [95% CI 1.1-3.2]). CONCLUSIONS The pattern of invasion should be included in reporting for MOC due to the strong prognostic implications. We highlight the histological features that should be considered to improve reproducibility. FAP and THBS2 are associated with infiltrative invasion in MOC.
Collapse
Affiliation(s)
- Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Sandra Lee
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Tatjana Terzic
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Antony N Karnezis
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lawrence Woo
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheng-Han Lee
- Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, AB, Canada
| | - Nicola S Meagher
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, NSW, Australia
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Susan J Ramus
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, NSW, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia
- Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| |
Collapse
|
9
|
Gaebler D, Hachey SJ, Hughes CCW. Microphysiological systems as models for immunologically 'cold' tumors. Front Cell Dev Biol 2024; 12:1389012. [PMID: 38711620 PMCID: PMC11070549 DOI: 10.3389/fcell.2024.1389012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically 'cold' tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in 'cold' tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various 'cold' tumors. Understanding the intricacies of the TME in 'cold' tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Zhang Z, Tao J, Qiu J, Cao Z, Huang H, Xiao J, Zhang T. From basic research to clinical application: targeting fibroblast activation protein for cancer diagnosis and treatment. Cell Oncol (Dordr) 2024; 47:361-381. [PMID: 37726505 DOI: 10.1007/s13402-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE This study aims to review the multifaceted roles of a membrane protein named Fibroblast Activation Protein (FAP) expressed in tumor tissue, including its molecular functionalities, regulatory mechanisms governing its expression, prognostic significance, and its crucial role in cancer diagnosis and treatment. METHODS Articles that have uncovered the regulatory role of FAP in tumor, as well as its potential utility within clinical realms, spanning diagnosis to therapeutic intervention has been screened for a comprehensive review. RESULTS Our review reveals that FAP plays a pivotal role in solid tumor progression by undertaking a multitude of enzymatic and nonenzymatic roles within the tumor stroma. The exclusive presence of FAP within tumor tissues highlights its potential as a diagnostic marker and therapeutic target. The review also emphasizes the prognostic significance of FAP in predicting tumor progression and patient outcomes. Furthermore, the emerging strategies involving FAPI inhibitor (FAPI) in cancer research and clinical trials for PET/CT diagnosis are discussed. And targeted therapy utilizing FAP including FAPI, chimeric antigen receptor (CAR) T cell therapy, tumor vaccine, antibody-drug conjugates, bispecific T-cell engagers, FAP cleavable prodrugs, and drug delivery system are also introduced. CONCLUSION FAP's intricate interactions with tumor cells and the tumor microenvironment make it a promising target for diagnosis and treatment. Promising strategies such as FAPI offer potential avenues for accurate tumor diagnosis, while multiple therapeutic strategies highlight the prospects of FAP targeting treatments which needs further clinical evaluation.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhe Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hua Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianchun Xiao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
11
|
Bueno-Urquiza LJ, Godínez-Rubí M, Villegas-Pineda JC, Vega-Magaña AN, Jave-Suárez LF, Puebla-Mora AG, Aguirre-Sandoval GE, Martínez-Silva MG, Ramírez-de-Arellano A, Pereira-Suárez AL. Phenotypic Heterogeneity of Cancer Associated Fibroblasts in Cervical Cancer Progression: FAP as a Central Activation Marker. Cells 2024; 13:560. [PMID: 38606999 PMCID: PMC11010959 DOI: 10.3390/cells13070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) is the fourth leading cancer among women and is one of the principal gynecological malignancies. In the tumor microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role during malignant progression, exhibiting a variety of heterogeneous phenotypes. CAFs express phenotypic markers like fibroblast activation protein (FAP), vimentin, S100A4, α-smooth muscle actin (αSMA), and functional markers such as MMP9. This study aimed to evaluate the protein expression of vimentin, S100A4, αSMA, FAP, and MMP9 in mesenchymal stem cells (MSC)-CAF cells, as well as in cervical cancer samples. MSC cells were stimulated with HeLa and SiHa tumor cell supernatants, followed by protein evaluation and cytokine profile to confirm differentiation towards a CAF phenotype. In addition, automated immunohistochemistry (IHQa) was performed to evaluate the expression of these proteins in CC samples at different stages. Our findings revealed a high expression of FAP in stimulated MSC cells, accompanied by the secretion of pro/anti-inflammatory cytokines. In the other hand, CC samples were observed to have high expression of FAP, vimentin, αSMA, and MMP9. Most importantly, there was a high expression of their activation proteins αSMA and FAP during the different stages. In the early stages, a myofibroblast-like phenotype (CAFs αSMA+ FAP+), and in the late stages a protumoral phenotype (CAF αSMA- FAP+). In summary, FAP has a crucial role in the activation of CAFs during cervical cancer progression.
Collapse
Affiliation(s)
- Lesly Jazmin Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
| | - Marisol Godínez-Rubí
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Alejandra Natali Vega-Magaña
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| | - Ana Graciela Puebla-Mora
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Gloria Estefanía Aguirre-Sandoval
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - María Guadalupe Martínez-Silva
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| |
Collapse
|
12
|
Lujano Olazaba O, Farrow J, Monkkonen T. Fibroblast heterogeneity and functions: insights from single-cell sequencing in wound healing, breast cancer, ovarian cancer and melanoma. Front Genet 2024; 15:1304853. [PMID: 38525245 PMCID: PMC10957653 DOI: 10.3389/fgene.2024.1304853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Cancer has been described as the wound that does not heal, in large part due to fibroblast involvement. Activation of cancer-associated fibroblasts (CAFs) contributes to critical features of the tumor microenvironment, including upregulation of key marker proteins, recruitment of immune cells, and deposition of extracellular matrix (ECM)-similar to fibroblast activation in injury-induced wound healing. Prior to the widespread availability of single-cell RNA sequencing (scRNA seq), studies of CAFs or fibroblasts in wound healing largely relied on models guided by individual fibroblast markers, or methods with less resolution to unravel the heterogeneous nature of CAFs and wound healing fibroblasts (especially regarding scarring outcome). Here, insights from the enhanced resolution provided by scRNA sequencing of fibroblasts in normal wound healing, breast cancer, ovarian cancer, and melanoma are discussed. These data have revealed differences in expression of established canonical activation marker genes, epigenetic modifications, fibroblast lineages, new gene and proteins of clinical interest for further experimentation, and novel signaling interactions with other cell types that include spatial information.
Collapse
Affiliation(s)
| | | | - Teresa Monkkonen
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
13
|
Glabman RA, Olkowski CP, Minor HA, Bassel LL, Kedei N, Choyke PL, Sato N. Tumor Suppression by Anti-Fibroblast Activation Protein Near-Infrared Photoimmunotherapy Targeting Cancer-Associated Fibroblasts. Cancers (Basel) 2024; 16:449. [PMID: 38275890 PMCID: PMC10813865 DOI: 10.3390/cancers16020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) constitute a prominent cellular component of the tumor stroma, with various pro-tumorigenic roles. Numerous attempts to target fibroblast activation protein (FAP), a highly expressed marker in immunosuppressive CAFs, have failed to demonstrate anti-tumor efficacy in human clinical trials. Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor therapy that utilizes an antibody-photo-absorbing conjugate activated by near-infrared light. In this study, we examined the therapeutic efficacy of CAF depletion by NIR-PIT in two mouse tumor models. Using CAF-rich syngeneic lung and spontaneous mammary tumors, NIR-PIT against FAP or podoplanin was performed. Anti-FAP NIR-PIT effectively depleted FAP+ CAFs, as well as FAP+ myeloid cells, and suppressed tumor growth, whereas anti-podoplanin NIR-PIT was ineffective. Interferon-gamma production by CD8 T and natural killer cells was induced within hours after anti-FAP NIR-PIT. Additionally, lung metastases were reduced in the treated spontaneous mammary cancer model. Depletion of FAP+ stromal as well as FAP+ myeloid cells effectively suppressed tumor growth in bone marrow chimeras, suggesting that the depletion of both cell types in one treatment is an effective therapeutic approach. These findings highlight a promising therapy for selectively eliminating immunosuppressive FAP+ cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Raisa A. Glabman
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Colleen P. Olkowski
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Hannah A. Minor
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Laura L. Bassel
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA;
| | - Noemi Kedei
- Collaborative Protein Technology Resources, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| |
Collapse
|
14
|
Oleynikova NA, Sycheva IN, Mikhailov IA, Zhestkov IA, Varenzov MG, Malkov PG. [Patterns of CAF expression in tumors of the genitourinary system]. Arkh Patol 2024; 86:28-35. [PMID: 39686894 DOI: 10.17116/patol20248606128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Cancer-associated fibroblasts (CAF), as the most important component of the tumor microenvironment, have been the subject of targeted study in recent years. There is increasing evidence of CAF heterogeneity and their different roles in tumor progression. However, there is no single marker identifying CAF, and there is also no understanding of the similarity of CAF markers in various tumors of the genitourinary system. OBJECTIVE To evaluate the response of CAF markers - FAP and PDGFRα+β in bladder cancer and prostate cancer. MATERIAL AND METHODS An immunohistochemical study with antibodies to FAP and PDGFRα+β was conducted on material from 34 patients with prostate cancer and 44 patients with bladder cancer in order to identify statistical relationships with stage, morphological characteristics and survival, as well as to understand the applicability of the same markers for cancer of different localizations. RESULTS An increased FAP reaction was shown in prostate cancer with metastases (p=0.0239), a significantly higher number of recurrences in the group with a high PDGFRa+β (3+) reaction (p=0.0018); the presence of FAP reaction only in invasive bladder cancers (p=0.0094) and bladder cancers with high grade dysplasia (p=0.0000234), the absence of a relationship between the level of PDGFRa+β and clinical and morphological characteristics in bladder cancer. CONCLUSION Our results confirm the heterogeneity of CAF in both bladder and prostate tumors and indicate that FAP is one of CAF subpopulation marker. Considering that FAP is expressed in a population of CAFs that lead to resistance to treatment with immune checkpoint inhibitors in melanoma, the FAP marker may also be diagnostically significant for tumors of the genitourinary system, especially given the fact that bladder tumors are treated with the BCG vaccine.
Collapse
Affiliation(s)
| | - I N Sycheva
- Lomonosov Moscow State University, Moscow, Russia
| | - I A Mikhailov
- Lomonosov Moscow State University, Moscow, Russia
- Center of Expertise and Quality Control of Healthcare, Moscow, Russia
| | - I A Zhestkov
- Lomonosov Moscow State University, Moscow, Russia
| | - M G Varenzov
- Lomonosov Moscow State University, Moscow, Russia
| | - P G Malkov
- Lomonosov Moscow State University, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
15
|
Liu H, Zhou L, Cheng H, Wang S, Luan W, Cai E, Ye X, Zhu H, Cui H, Li Y, Chang X. Characterization of candidate factors associated with the metastasis and progression of high-grade serous ovarian cancer. Chin Med J (Engl) 2023; 136:2974-2982. [PMID: 37284741 PMCID: PMC10752471 DOI: 10.1097/cm9.0000000000002328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is the biggest cause of gynecological cancer-related mortality because of its extremely metastatic nature. This study aimed to explore and evaluate the characteristics of candidate factors associated with the metastasis and progression of HGSOC. METHODS Transcriptomic data of HGSOC patients' samples collected from primary tumors and matched omental metastatic tumors were obtained from three independent studies in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were selected to evaluate the effects on the prognosis and progression of ovarian cancer using data from The Cancer Genome Atlas (TCGA) database. Hub genes' immune landscapes were estimated by the Tumor Immune Estimation Resource (TIMER) database. Finally, using 25 HGSOC patients' cancer tissues and 10 normal fallopian tube tissues, immunohistochemistry (IHC) was performed to quantify the expression levels of hub genes associated with International Federation of Gynecology and Obstetrics (FIGO) stages. RESULTS Fourteen DEGs, ADIPOQ , ALPK2 , BARX1 , CD37 , CNR2 , COL5A3 , FABP4 , FAP , GPR68 , ITGBL1 , MOXD1 , PODNL1 , SFRP2 , and TRAF3IP3 , were upregulated in metastatic tumors in every database while CADPS , GATA4 , STAR , and TSPAN8 were downregulated. ALPK2 , FAP , SFRP2 , GATA4 , STAR , and TSPAN8 were selected as hub genes significantly associated with survival and recurrence. All hub genes were correlated with tumor microenvironment infiltration, especially cancer-associated fibroblasts and natural killer (NK) cells. Furthermore, the expression of FAP and SFRP2 was positively correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, and their increased protein expression levels in metastatic samples compared with primary tumor samples and normal tissues were confirmed by IHC ( P = 0.0002 and P = 0.0001, respectively). CONCLUSIONS This study describes screening for DEGs in HGSOC primary tumors and matched metastasis tumors using integrated bioinformatics analyses. We identified six hub genes that were correlated with the progression of HGSOC, particularly FAP and SFRP2 , which might provide effective targets to predict prognosis and provide novel insights into individual therapeutic strategies for HGSOC.
Collapse
Affiliation(s)
- Huiping Liu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Shang Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Wenqing Luan
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - E Cai
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Xue Ye
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Honglan Zhu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Heng Cui
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Yi Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Xiaohong Chang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
- Center of Gynecologic Oncology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
16
|
Dendl K, Koerber SA, Watabe T, Haberkorn U, Giesel FL. Current Status of Fibroblast Activation Protein Imaging in Gynecologic Malignancy and Breast Cancer. PET Clin 2023; 18:345-351. [PMID: 37257985 DOI: 10.1016/j.cpet.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
68Ga-FAPI-PET/computed tomography (CT) is a novel PET/CT radiotracer particularly developed for oncologic imaging. Gynecologic malignancies comprise a broad spectrum of entities and, along with breast cancer, constitute cancers occurring exclusively or primarily, respectively, in women. Thus, a tracer designed not only for one but multiple malignancies has theoretic attractions. Even in comparison with 18F-FDG, the current standard oncologic tracer of nuclear medicine, 68Ga-FAPI, has demonstrated advantages in several tumors. As breast cancer, ovarian cancer, and cervical cancer are among the most common tumor types in women and are often accompanied by high morbidity as well as mortality rates, a reliable staging tool is paramount for optimal therapeutic management.
Collapse
Affiliation(s)
- Katharina Dendl
- Department of Nuclear Medicine, INF 400, University Hospital Heidelberg, Heidelberg, Germany; Deaprtment of Nuclear medicine, Geb. 13.55, Moorenstraße 5, 40225 Düsseldorf.
| | - Stefan A Koerber
- Department of Radiooncology and Radiation Therapy, Krankenhaus Barmherzige Brüder, Prüfeninger Str. 86 93049 Regensburg, Germany; Department of Radiooncology and Radiation Therapy, University Hospital Heidelberg
| | - Tadashi Watabe
- Department of Nuclear Medicine, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Uwe Haberkorn
- Department of Nuclear Medicine, INF 400, University Hospital Heidelberg, Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, INF 400, University Hospital Heidelberg, Heidelberg, Germany; Deaprtment of Nuclear medicine, Geb. 13.55, Moorenstraße 5, 40225 Düsseldorf
| |
Collapse
|
17
|
Ji D, Jia J, Cui X, Li Z, Wu A. FAP promotes metastasis and chemoresistance via regulating YAP1 and macrophages in mucinous colorectal adenocarcinoma. iScience 2023; 26:106600. [PMID: 37213233 PMCID: PMC10196996 DOI: 10.1016/j.isci.2023.106600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023] Open
Abstract
Mucinous colorectal adenocarcinoma (MC) is less likely to respond to chemotherapy and is associated with poorer prognosis compared with non-MC (NMC). Fibroblast activation protein (FAP) was found and validated to be upregulated in MC patients and was negatively correlated with prognosis and therapeutic outcomes in colorectal cancer (CRC) patients who were treated with adjuvant chemotherapy. Overexpression of FAP promoted CRC cell growth, invasion and metastasis, and enhanced chemoresistance. Myosin phosphatase Rho-interacting protein (MPRIP) was identified as a direct interacting protein of FAP. FAP may influence the efficiency of chemotherapy and prognosis by promoting the crucial functions of CRC and inducing tumor-associated macrophages (TAMs) recruitment and M2 polarization through regulating theRas Homolog Family Member/Hippo/Yes-associated protein (Rho/Hippo/YAP) signaling pathway. Knockdown of FAP could reverse tumorigenicity and chemoresistance in CRC cells. Thus, FAP may serve as a marker for prognosis and therapeutic outcome, as well as a potential therapeutic target to overcome chemoresistance in MC patients.
Collapse
Affiliation(s)
- Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Jinying Jia
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Xinxin Cui
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Zhaowei Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China
- Corresponding author
| |
Collapse
|
18
|
Chandekar KR, Prashanth A, Vinjamuri S, Kumar R. FAPI PET/CT Imaging-An Updated Review. Diagnostics (Basel) 2023; 13:2018. [PMID: 37370912 PMCID: PMC10297281 DOI: 10.3390/diagnostics13122018] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Despite revolutionizing the field of oncological imaging, Positron Emission Tomography (PET) with [18F]Fluorodeoxyglucose (FDG) as its workhorse is limited by a lack of specificity and low sensitivity in certain tumor subtypes. Fibroblast activation protein (FAP), a type II transmembrane glycoprotein, is expressed by cancer-associated fibroblasts (CAFs) that form a major component of the tumor stroma. FAP holds the promise to be a pan-cancer target, owing to its selective over-expression in a vast majority of neoplasms, particularly epithelial cancers. Several radiolabeled FAP inhibitors (FAPI) have been developed for molecular imaging and potential theranostic applications. Preliminary data on FAPI PET/CT remains encouraging, with extensive multi-disciplinary clinical research currently underway. This review summarizes the existing literature on FAPI PET/CT imaging with an emphasis on diagnostic applications, comparison with FDG, pitfalls, and future directions.
Collapse
Affiliation(s)
- Kunal Ramesh Chandekar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Arun Prashanth
- Department of Nuclear Medicine, MIOT International Hospital, Chennai 600089, India;
| | - Sobhan Vinjamuri
- Department of Nuclear Medicine, Royal Liverpool and Broadgreen University Hospital, Liverpool L7-8YE, UK;
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India;
| |
Collapse
|
19
|
Li B, Ding Z, Calbay O, Li Y, Li T, Jin L, Huang S. FAP is critical for ovarian cancer cell survival by sustaining NF-κB activation through recruitment of PRKDC in lipid rafts. Cancer Gene Ther 2023; 30:608-621. [PMID: 36494579 PMCID: PMC10498436 DOI: 10.1038/s41417-022-00575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fibroblast activation protein (FAP) is tumor-specific and plays an important role in tumorigenecity. However, agents against its enzymatic activity or extracellular presence were unsuccessful in the clinic for undefined reasons. Here we show that FAP expression is higher in advanced ovarian cancer and is only detected in invasive ovarian cancer cells. Silencing FAP induces apoptosis and FAP's enzymatic activity is dispensable for cell survival. To elucidate the cause of apoptosis, we find that NF-κB activity is diminished when FAP is depleted and BIRC5 (survivin) acts downstream of FAP-NF-κB axis to promote cell survival. To uncover the link between FAP and NF-κB activation, we reveal that PRKDC (DNA-PK, DNA-dependent protein kinase) forms complex with FAP and is required for NF-κB activation and cell survival. Remarkably, FAP-PRKDC interaction occurs only in lipid rafts, and depleting FAP prevents lipid raft localization of PRKDC. Given the known ability of PRKDC to direct NF-κB activation, these results suggest that FAP recruits PRKDC in lipid rafts for NF-κB activation. FAP's non-enzymatic role and functioning from lipid rafts for cell survival also offer an explanation on the failure of past FAP-targeted therapies. Finally, we demonstrate that EpCAM aptamer-delivered FAP siRNA impeded intraperitoneal xenograft development of ovary tumors.
Collapse
Affiliation(s)
- Bin Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Zuo Ding
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Ozlem Calbay
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Yue Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Tao Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Lingtao Jin
- Deparment of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA.
| |
Collapse
|
20
|
Zheng W, Liu L, Feng Y, Wang L, Chen Y. Comparison of 68 Ga-FAPI-04 and fluorine-18-fluorodeoxyglucose PET/computed tomography in the detection of ovarian malignancies. Nucl Med Commun 2023; 44:194-203. [PMID: 36472415 PMCID: PMC9907692 DOI: 10.1097/mnm.0000000000001653] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Currently, fluorine-18-fluorodeoxyglucose ( 18 F-FDG) is the most frequently used diagnostical radiotracer for PET/computed tomography (PET/CT) in ovarian malignancies. However, 18 F-FDG has some limitations. The fibroblast activation protein inhibitor (FAPI) previously demonstrated highly promising results in studies on various tumor entities and 68 Ga-labeled FAPI presents a promising alternative to 18 F-FDG. This study aimed to compare the performance of 68 Ga-FAPI and 18 F-FDG PET/CT for imaging of ovarian malignancies. METHODS A total of 27 patients were included in this retrospective study conducted at the Affiliated Hospital of Southwest Medical University between June 2020 and February 2022. The 18 F-FDG and 68 Ga-FAPI uptakes of tumors, lymph nodes, and distant metastases were quantified using the maximum standardized uptake values, and the tumor-to-background ratios were also evaluated and calculated by using the Wilcoxon signed-rank test. RESULTS Twenty-one patients with suspected ( n = 11) and previously treated ovarian malignancies ( n = 10) were in statistical analysis finally. For detecting tumors, 68 Ga-FAPI PET/CT was more sensitive than 18 F-FDG PET/CT [14 of 14 (100%) vs. 11 of 14 (78%)], lymph node metastases [75 of 75 (100%) vs. 60 of 75 (80%)] and superior to 18 F-FDG PET/CT in terms of the peritoneal and pleural metastases [9 of 9 (100%) vs. 5 of 9 (56%)]. For four of the newly diagnosed patients ( n = 11), 68 Ga-FAPI PET/CT upstaged the clinical stage compared to 18 F-FDG PET/CT. CONCLUSION 68 Ga-FAPI PET/CT has superior potential in the detection of ovarian cancers, especially in peritoneal carcinomatosis. 68 Ga-FAPI PET/CT may be a promising supplement for staging and follow-up of ovarian malignancies.
Collapse
Affiliation(s)
- Wenlu Zheng
- Faculty of Chinese Medicine, Macau University of Science and Technology
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Macau
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Lin Liu
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
21
|
Predicting Microenvironment in CXCR4- and FAP-Positive Solid Tumors-A Pan-Cancer Machine Learning Workflow for Theranostic Target Structures. Cancers (Basel) 2023; 15:cancers15020392. [PMID: 36672341 PMCID: PMC9856808 DOI: 10.3390/cancers15020392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
(1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database-representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets.
Collapse
|
22
|
Borgonje PE, Andrews LM, Herder GJM, de Klerk JMH. Performance and Prospects of [ 68Ga]Ga-FAPI PET/CT Scans in Lung Cancer. Cancers (Basel) 2022; 14:cancers14225566. [PMID: 36428657 PMCID: PMC9688494 DOI: 10.3390/cancers14225566] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Fibroblast activation protein (FAP) could be a promising target for tumor imaging and therapy, as it is expressed in >90% of epithelial cancers. A high level of FAP-expression might be associated with worse prognosis in several cancer types, including lung cancer. FAPI binds this protein and allows for labelling to Gallium-68, as well as several therapeutic radiopharmaceuticals. As FAP is only expressed at insignificant levels in adult normal tissue, FAPI provides a highly specific tumor-marker for many epithelial cancers. In this review, current information on the use of [68Ga]Ga-FAPI PET/CT in lung cancer is presented. [68Ga]Ga-FAPI shows a high uptake (standardized uptake value = SUVmax) and tumor-to-background ratio (TBR) in primary lung cancer lesions, as well as in metastatic lesions of other tumor types located in the lung and in lung cancer metastases located throughout the body. Where a comparison was made to [18F]FDG PET/CT, [68Ga]Ga-FAPI showed a similar or higher SUVmax and TBR. In brain and bone metastases, [68Ga]Ga-FAPI PET/CT outperformed [18F]FDG PET/CT. In addition to this strong diagnostic performance, a possible prognostic value of [68Ga]Ga-FAPI PET/CT in lung cancer is proposed.
Collapse
Affiliation(s)
- Paula E. Borgonje
- Department of Clinical Pharmacy, Meander Medical Center, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
| | - Louise M. Andrews
- Department of Clinical Pharmacy, Meander Medical Center, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
| | - Gerarda J. M. Herder
- Department of Pulmonology, Meander Medical Center, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
| | - John M. H. de Klerk
- Department of Nuclear Medicine, Meander Medical Center, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
- Correspondence: ; Tel.: +31-33-850-5050
| |
Collapse
|
23
|
Sun L, Schroeder MC, Hagemann IS, Pfeifer JD, Schwarz JK, Grigsby PW, Markovina S, Lin AJ. Expression of Potential Biomarker Targets by Immunohistochemistry in Cervical Carcinomas. Int J Gynecol Pathol 2022; 41:628-635. [PMID: 35067601 DOI: 10.1097/pgp.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There have been few clinically useful targetable biomarkers in uterine cervical carcinomas. Estrogen receptor (ER), HER2, and fibroblast activation protein (FAP) are potential therapeutic or theranostic targets in other gynecologic and genitourinary carcinoma types. We determined the immunohistochemical expression patterns of these markers in treatment-naive cervical carcinoma, and whether expression correlated with clinical outcomes after definitive chemoradiation therapy. Tissue microarrays were created from 71 patient samples taken before therapy (57 squamous cell carcinomas and 14 nonsquamous cell carcinomas) and stained for ER, HER2, and FAP. ER was positive in 25/70 cases (36%). Of 66 tumors with evaluable HER2 staining, only 1 had positive (3+) staining (3%, positive for HER2 amplification by fluorescence in situ hybridization), and 1 had equivocal (2+) staining (negative for amplification by fluorescence in situ hybridization). The remainder were negative for HER2 overexpression. FAP expression was widely variably in the tumor stroma. ER positivity and FAP expression did not correlate with cervical recurrence, pelvic recurrence, distant recurrence, or cancer death. In conclusion, HER2 amplification is very rare in nonmetastatic treatment-naive cervical carcinomas, but if present, could represent a target for antibody therapy. ER and FAP were expressed in a subset of tumors, but expression did not correlate with clinical outcomes. These immunohistochemical markers do not demonstrate prognostic significance in treatment-naive cervical cancer, but they may have utility in targeted therapy or imaging.
Collapse
|
24
|
Dendl K, Koerber SA, Tamburini K, Mori Y, Cardinale J, Haberkorn U, Giesel FL. Advancement and Future Perspective of FAPI PET/CT In Gynecological Malignancies. Semin Nucl Med 2022; 52:628-634. [PMID: 35842334 DOI: 10.1053/j.semnuclmed.2022.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023]
Abstract
Fibroblast activation protein (FAP) is ubiquitously present in healthy tissue, and additionally upregulated by cancer associated fibroblasts (CAFs) leading to high levels of FAP. Thus, neoplastic tissue, which is containing CAFs, characterized by a high presence of FAP. Moreover, in more than 90% of all epithelial tumors this phenomenon seems to occur, including many gynecological tumors, providing the foundation for a successful application of FAP-ligands. However, FAP upregulation, can also be initiated by benign conditions such as inflammation, hormonal-influence, and wound healing. Gynecological cancers seem to represent a field of interest for the utilization of FAPI-PET/CT to potentially improve staging, restaging and therapeutic management. First highly promising investigations demand further research in order to validate these preliminary findings.
Collapse
Affiliation(s)
- Katharina Dendl
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany; Department of Nuclear Medicine, Heinrich-Heine-University, Medical Faculty and University Hospital Duesseldorf, Duesseldorf Germany.
| | - Stefan A Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Department of Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Germany
| | | | - Yuriko Mori
- Department of Nuclear Medicine, Heinrich-Heine-University, Medical Faculty and University Hospital Duesseldorf, Duesseldorf Germany
| | - Jens Cardinale
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany; Department of Nuclear Medicine, Heinrich-Heine-University, Medical Faculty and University Hospital Duesseldorf, Duesseldorf Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Germany; Translational Lung Research Center Heidelberg, German Center for Lung Research DZL, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany; Department of Nuclear Medicine, Heinrich-Heine-University, Medical Faculty and University Hospital Duesseldorf, Duesseldorf Germany
| |
Collapse
|
25
|
Ding H, Zhang J, Zhang F, Xu Y, Yu Y, Liang W, Li Q. Role of Cancer-Associated fibroblast in the pathogenesis of ovarian Cancer: Focus on the latest therapeutic approaches. Int Immunopharmacol 2022; 110:109052. [DOI: 10.1016/j.intimp.2022.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
|
26
|
Synergistic effects of radiotherapy and targeted immunotherapy in improving tumor treatment efficacy: a review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2255-2271. [PMID: 35913663 DOI: 10.1007/s12094-022-02888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
Abstract
Radiotherapy (RT), unlike chemotherapy, is one of the most routinely used and effective genotoxic and immune response inducing cancer therapies with an advantage of reduced side effects. However, cancer can relapse after RT owing to multiple factors, including acquired tumor resistance, immune suppressive microenvironment buildup, increased DNA repair, thus favoring tumor metastasis. Efforts to mitigate these undesirable effects have drawn interest in combining RT with immunotherapy, particularly the use of immune checkpoint inhibitors, to tilt the pre-existing tumor stromal microenvironment into long-lasting therapy-induced antitumor immunity at multiple metastatic sites (abscopal effects). This multimodal therapeutic strategy can alleviate the increased T cell priming and decrease tumor growth and metastasis, thus emerging as a significant approach to sustain as long-term antitumor immunity. To understand more about this synergism, a detailed cellular mechanism underlying the dynamic interaction between tumor and immune cells within the irradiated tumor microenvironment needs to be explored. Hence, in the present review, we have attempted to evaluate various RT-inducible immune factors, which can be targeted by immunotherapy and provide detailed explanation to optimally maximize their synergy with immunotherapy for long-lasting antitumor immunity. Moreover, we have critically assessed various combinatorial approaches along with their challenges and described strategies to modify them in addition to providing approaches for optimal synergistic effects of the combination.
Collapse
|
27
|
Wu Z, Hua Y, Shen Q, Yu C. Research progress on the role of fibroblast activation protein in diagnosis and treatment of cancer. Nucl Med Commun 2022; 43:746-755. [PMID: 35506275 DOI: 10.1097/mnm.0000000000001565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibroblast activation protein (FAP) is a type II transmembrane protein, which is over-expressed in cancer-associated fibroblasts (CAFs). CAFs are tumor stromal cells that constitute a major component of cancer volume and are reportedly related to tumorigenesis, angiogenesis, metastasis, promotion of drug resistance and induction of tumor immunity. FAP is widely acknowledged as the signature protein of CAFs. At present, FAP inhibitors (FAPI) have achieved ideal results in tumor PET/computed tomography (CT) imaging. Theoretically, FAP-targeted drugs can inhibit tumor progression. Nonetheless, no satisfactory therapeutic effect has been observed so far, which has impeded their implementation in clinical practice. In this review, we describe the characteristics of FAP and its role in the occurrence and development of cancer. We also highlight the potential value of targeting FAP to improve current diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Zhaoye Wu
- Wuxi School of Medicine, Jiangnan University
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuqi Hua
- Wuxi School of Medicine, Jiangnan University
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qiaoling Shen
- Wuxi School of Medicine, Jiangnan University
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Wuxi School of Medicine, Jiangnan University
| |
Collapse
|
28
|
A Platform of Patient-Derived Microtumors Identifies Individual Treatment Responses and Therapeutic Vulnerabilities in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14122895. [PMID: 35740561 PMCID: PMC9220902 DOI: 10.3390/cancers14122895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
In light of the frequent development of therapeutic resistance in cancer treatment, there is a strong need for personalized model systems representing patient tumor heterogeneity, while enabling parallel drug testing and identification of appropriate treatment responses in individual patients. Using ovarian cancer as a prime example of a heterogeneous tumor disease, we developed a 3D preclinical tumor model comprised of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) to identify individual treatment vulnerabilities and validate chemo-, immuno- and targeted therapy efficacies. Enzymatic digestion of primary ovarian cancer tissue and cultivation in defined serum-free media allowed rapid and efficient recovery of PDM, while preserving histopathological features of corresponding patient tumor tissue. Reverse-phase protein array (RPPA)-analyses of >110 total and phospho-proteins enabled the identification of patient-specific sensitivities to standard, platinum-based therapy and thereby the prediction of potential treatment-responders. Co-cultures of PDM and autologous TILs for individual efficacy testing of immune checkpoint inhibitor treatment demonstrated patient-specific enhancement of cytotoxic TIL activity by this therapeutic approach. Combining protein pathway analysis and drug efficacy testing of PDM enables drug mode-of-action analyses and therapeutic sensitivity prediction within a clinically relevant time frame after surgery. Follow-up studies in larger cohorts are currently under way to further evaluate the applicability of this platform to support clinical decision making.
Collapse
|
29
|
Mathieson L, O’Connor RA, Stewart H, Shaw P, Dhaliwal K, Williams GOS, Megia-Fernandez A, Akram AR. Fibroblast Activation Protein Specific Optical Imaging in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:834350. [PMID: 35359378 PMCID: PMC8961646 DOI: 10.3389/fonc.2022.834350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Fibroblast activation protein (FAP) is a cell surface propyl-specific serine protease involved in the regulation of extracellular matrix. Whilst expressed at low levels in healthy tissue, upregulation of FAP on fibroblasts can be found in several solid organ malignancies, including non-small cell lung cancer, and chronic inflammatory conditions such as pulmonary fibrosis and rheumatoid arthritis. Their full role remains unclear, but FAP expressing cancer associated fibroblasts (CAFs) have been found to relate to a poor prognosis with worse survival rates in breast, colorectal, pancreatic, and non-small cell lung cancer (NSCLC). Optical imaging using a FAP specific chemical probe, when combined with clinically compatible imaging systems, can provide a readout of FAP activity which could allow disease monitoring, prognostication and potentially stratify therapy. However, to derive a specific signal for FAP any sequence must retain specificity over closely related endopeptidases, such as prolyl endopeptidase (PREP), and be resistant to degradation in areas of active inflammation. We describe the iterative development of a FAP optical reporter sequence which retains FAP specificity, confers resistance to degradation in the presence of activated neutrophil proteases and demonstrates clinical tractability ex vivo in NSCLC samples with an imaging platform.
Collapse
Affiliation(s)
- Layla Mathieson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Hazel Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Paige Shaw
- EaStCHEM, The University of Edinburgh School of Chemistry, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Gareth O. S. Williams
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Song P, Pan Q, Sun Z, Zou L, Yang L. Fibroblast activation protein alpha: Comprehensive detection methods for drug target and tumor marker. Chem Biol Interact 2022; 354:109830. [PMID: 35104486 DOI: 10.1016/j.cbi.2022.109830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Fibroblast activation protein alpha (FAP-α, EC3.4.2. B28), a type II transmembrane proteolytic enzyme for the serine protease peptidase family. It is underexpressed in normal tissues but increased significantly in disease states, especially in neoplasm, which is a potential biomarker to turmor diagnosis. The inhibition of FAP-α activity will retard tumor formation, which is expected to be a promising tumor therapeutic target. At present, although the FAP-α expression detection methods has diversification, a superlative detection means is necessary for the clinical diagnosis. This review covers the discovery and the latest advances in FAP-α, as well as the future research prospects. The tissue distribution, structural characteristics, small-molecule ligands and structure-activity relationship of major inhibitors of FAP-α were summarized in this review. Furthermore, a variety of detection methods including traditional detection methods and emerging probes detection were classified and compared, and the design strategy and kinetic parameters of these FAP-α probe substrates were summarized. In addition, these comprehensive information provides a series of practical and reliable assays for the optimal design principles of FAP-α probes, promoting the application of FAP-α as a disease marker in diagnosis, and a drug target in drug design.
Collapse
Affiliation(s)
- Peifang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Quisha Pan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Liwei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Dendl K, Koerber SA, Finck R, Mokoala KMG, Staudinger F, Schillings L, Heger U, Röhrich M, Kratochwil C, Sathekge M, Jäger D, Debus J, Haberkorn U, Giesel FL. 68Ga-FAPI-PET/CT in patients with various gynecological malignancies. Eur J Nucl Med Mol Imaging 2021; 48:4089-4100. [PMID: 34050777 PMCID: PMC8484099 DOI: 10.1007/s00259-021-05378-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE 68Ga-FAPI (fibroblast activation protein inhibitor) is a novel and highly promising radiotracer for PET/CT imaging. The aim of this retrospective analysis is to explore the potential of FAPI-PET/CT in gynecological malignancies. We assessed biodistribution, tumor uptake, and the influence of pre- or postmenopausal status on tracer accumulation in hormone-sensitive organs. Furthermore, a comparison with the current standard oncological tracer 18F-FDG was performed in selected cases. PATIENTS AND METHODS A total of 31 patients (median age 59.5) from two centers with several gynecological tumors (breast cancer; ovarian cancer; cervical cancer; endometrial cancer; leiomyosarcoma of the uterus; tubal cancer) underwent 68Ga-FAPI-PET/CT. Out of 31 patients, 10 received an additional 18F-FDG scan within a median time interval of 12.5 days (range 1-76). Tracer uptake was quantified by standardized uptake values (SUV)max and (SUV)mean, and tumor-to-background ratio (TBR) was calculated (SUVmax tumor/ SUVmean organ). Moreover, a second cohort of 167 female patients with different malignancies was analyzed regarding their FAPI uptake in normal hormone-responsive organs: endometrium (n = 128), ovary (n = 64), and breast (n = 147). These patients were categorized by age as premenopausal (<35 years; n = 12), postmenopausal (>65 years; n = 68), and unknown menstrual status (35-65 years; n = 87), followed by an analysis of FAPI uptake of the pre- and postmenopausal group. RESULTS In 8 out of 31 patients, the primary tumor was present, and all 31 patients showed lesions suspicious for metastasis (n = 81) demonstrating a high mean SUVmax in both the primary (SUVmax 11.6) and metastatic lesions (SUVmax 9.7). TBR was significantly higher in 68Ga-FAPI compared to 18F-FDG for distant metastases (13.0 vs. 5.7; p = 0.047) and by trend for regional lymph node metastases (31.9 vs 27.3; p = 0.6). Biodistribution of 68Ga-FAPI-PET/CT presented significantly lower uptake or no significant differences in 15 out of 16 organs, compared to 18F-FDG-PET/CT. The highest uptake of all primary lesions was obtained in endometrial carcinomas (mean SUVmax 18.4), followed by cervical carcinomas (mean SUVmax 15.22). In the second cohort, uptake in premenopausal patients differed significantly from postmenopausal patients in endometrium (11.7 vs 3.9; p < 0.0001) and breast (1.8 vs 1.0; p = 0.004), whereas no significant difference concerning ovaries (2.8 vs 1.6; p = 0.141) was observed. CONCLUSION Due to high tracer uptake resulting in sharp contrasts in primary and metastatic lesions and higher TBRs than 18F-FDG-PET/CT, 68Ga-FAPI-PET/CT presents a promising imaging method for staging and follow-up of gynecological tumors. The presence or absence of the menstrual cycle seems to correlate with FAPI accumulation in the normal endometrium and breast. This first investigation of FAP ligands in gynecological tumor entities supports clinical application and further research in this field.
Collapse
Affiliation(s)
- Katharina Dendl
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan A Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Rebecca Finck
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Fabian Staudinger
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Lisa Schillings
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ulrike Heger
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Manuel Röhrich
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Dirk Jäger
- Department of Medical Oncology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site, Heidelberg, Germany.
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Nuclear Medicine, University Hospital Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
32
|
Dendl K, Koerber SA, Kratochwil C, Cardinale J, Finck R, Dabir M, Novruzov E, Watabe T, Kramer V, Choyke PL, Haberkorn U, Giesel FL. FAP and FAPI-PET/CT in Malignant and Non-Malignant Diseases: A Perfect Symbiosis? Cancers (Basel) 2021; 13:4946. [PMID: 34638433 PMCID: PMC8508433 DOI: 10.3390/cancers13194946] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
A fibroblast activation protein (FAP) is an atypical type II transmembrane serine protease with both endopeptidase and post-proline dipeptidyl peptidase activity. FAP is overexpressed in cancer-associated fibroblasts (CAFs), which are found in most epithelial tumors. CAFs have been implicated in promoting tumor cell invasion, angiogenesis and growth and their presence correlates with a poor prognosis. However, FAP can generally be found during the remodeling of the extracellular matrix and therefore can be detected in wound healing and benign diseases. For instance, chronic inflammation, arthritis, fibrosis and ischemic heart tissue after a myocardial infarction are FAP-positive diseases. Therefore, quinoline-based FAP inhibitors (FAPIs) bind with a high affinity not only to tumors but also to a variety of benign pathologic processes. When these inhibitors are radiolabeled with positron emitting radioisotopes, they provide new diagnostic and prognostic tools as well as insights into the role of the microenvironment in a disease. In this respect, they deliver additional information beyond what is afforded by conventional FDG PET scans that typically report on glucose uptake. Thus, FAP ligands are considered to be highly promising novel tracers that offer a new diagnostic and theranostic potential in a variety of diseases.
Collapse
Affiliation(s)
- Katharina Dendl
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| | - Stefan A. Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
| | - Jens Cardinale
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| | - Rebecca Finck
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
| | - Mardjan Dabir
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| | - Emil Novruzov
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan;
| | - Vasko Kramer
- Positronpharma SA, Santiago 7500921, Chile;
- Center of Nuclear Medicine, PositronMed, Santiago 7501068, Chile
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1088, USA;
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research DZL, 69120 Heidelberg, Germany
| | - Frederik L. Giesel
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| |
Collapse
|
33
|
Muilwijk T, Akand M, Daelemans S, Marien K, Waumans Y, Kockx M, Baekelandt L, Van den Broeck T, Van der Aa F, Gevaert T, Joniau S. Stromal marker fibroblast activation protein drives outcome in T1 non-muscle invasive bladder cancer. PLoS One 2021; 16:e0257195. [PMID: 34525114 PMCID: PMC8443055 DOI: 10.1371/journal.pone.0257195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast activation protein-α (FAP) is a transmembrane peptidase and a surrogate marker for cancer-associated fibroblasts (CAFs). FAP has been linked to worse prognosis and therapy resistance in several cancers. We hypothesised that FAP might have a prognostic 3biomarker potential to stratify patients with high-grade (HG) T1 non-muscle-invasive bladder cancer (NMIBC). We selected 30 patients with HG T1 NMIBC that progressed to ≥T2 disease which were pair-matched based on CUETO progression score variables with 90 patients that did not progress. After revision a final cohort of 86 patients was retained. Slides were stained for FAP, the luminal marker GATA3 and the basal marker CK5. All HG T1 tumour regions of interest (ROIs) within each patient were annotated, analysed and scored using image analysis software. FAP expression in HG T1 ROIs was significantly higher in progressors vs. non-progressors and was prognostic for recurrence-free survival, progression-free survival, cancer-specific survival, and overall survival. FAP expression in HG T1 ROIs remained strongly prognostic for these outcomes in a bivariable model corrected for adequate BCG per FDA definition. Expression of GATA3 and CK5 did not differ between progressors vs. non-progressors, and were not prognostic for these outcomes. FAP might serve as an easily applicable prognostic biomarker to risk-stratify patients with HG T1 NMIBC if these results are prospectively validated in a larger series.
Collapse
Affiliation(s)
- Tim Muilwijk
- Department of Urology, University Hospitals Leuven, Leuven, Belgium.,Organ Systems, KU Leuven, Leuven, Belgium
| | - Murat Akand
- Department of Urology, University Hospitals Leuven, Leuven, Belgium.,Organ Systems, KU Leuven, Leuven, Belgium
| | - Sofie Daelemans
- Pathology - Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium.,Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Marien
- Pathology - Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Yannick Waumans
- Pathology - Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Mark Kockx
- Pathology - Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Loïc Baekelandt
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | | | - Frank Van der Aa
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Gevaert
- Department of Urology, University Hospitals Leuven, Leuven, Belgium.,Organ Systems, KU Leuven, Leuven, Belgium.,Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Colorectal cancer cell intrinsic fibroblast activation protein alpha binds to Enolase1 and activates NF-κB pathway to promote metastasis. Cell Death Dis 2021; 12:543. [PMID: 34035230 PMCID: PMC8149633 DOI: 10.1038/s41419-021-03823-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Fibroblast activation protein alpha (FAP) is a marker of cancer-associated fibroblast, which is also expressed in cancer epithelial cells. However, the role of FAP in colorectal cancer (CRC) cells remains to be elucidated. Here we investigate the expression pattern of FAP in CRC tissues and cells to prove that FAP is upregulated in CRC cells. Loss- of and gain-of-function assays identified FAP promotes migration and invasion instead of an effect on cell proliferation. Microarray assays are adopted to identify the different expressed genes after FAP knockdown and gene set enrichment analysis (GSEA) is used to exploit the involved signaling pathway. Our works reveal FAP exerts a function dependent on NF-κB signaling pathway and FAP expression is associated with NF-κB signaling pathway in clinical samples. Our work shows FAP is secreted by CRC cells and soluble FAP could promote metastasis. To investigate the mechanism of FAP influencing the NF-κB signaling pathway, LC/MS is performed to identify the proteins interacting with FAP. We find that FAP binds to ENO1 and activates NF-κB signaling pathway dependent on ENO1. Blocking ENO1 could partially reverse the pro-metastatic effect mediated by FAP. We also provide evidences that both FAP and ENO1 are associated with CRC stages, and high levels of FAP and ENO1 predict a poor survival in CRC patients. In summary, our work could provide a novel mechanism of FAP in CRC cells and a potential strategy for treatment of metastatic CRC.
Collapse
|
35
|
Baker AT, Abuwarwar MH, Poly L, Wilkins S, Fletcher AL. Cancer-Associated Fibroblasts and T Cells: From Mechanisms to Outcomes. THE JOURNAL OF IMMUNOLOGY 2021; 206:310-320. [PMID: 33397745 DOI: 10.4049/jimmunol.2001203] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022]
Abstract
Over the past decade, T cell immunotherapy has changed the face of cancer treatment, providing robust treatment options for several previously intractable cancers. Unfortunately, many epithelial tumors with high mortality rates respond poorly to immunotherapy, and an understanding of the key impediments is urgently required. Cancer-associated fibroblasts (CAFs) comprise the most frequent nonneoplastic cellular component in most solid tumors. Far from an inert scaffold, CAFs significantly influence tumor neogenesis, persistence, and metastasis and are emerging as a key player in immunotherapy resistance. In this review, we discuss the physical and chemical barriers that CAFs place between effector T cells and their tumor cell targets, and the therapies poised to target them.
Collapse
Affiliation(s)
- Alfie T Baker
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Mohammed H Abuwarwar
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Lylarath Poly
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Simon Wilkins
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern 3144, Victoria, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Victoria, Australia; and
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; .,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| |
Collapse
|
36
|
Hussain A, Voisin V, Poon S, Karamboulas C, Bui NHB, Meens J, Dmytryshyn J, Ho VW, Tang KH, Paterson J, Clarke BA, Bernardini MQ, Bader GD, Neel BG, Ailles LE. Distinct fibroblast functional states drive clinical outcomes in ovarian cancer and are regulated by TCF21. J Exp Med 2021; 217:151793. [PMID: 32434219 PMCID: PMC7398174 DOI: 10.1084/jem.20191094] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/06/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies indicate that cancer-associated fibroblasts (CAFs) are phenotypically and functionally heterogeneous. However, little is known about CAF subtypes, the roles they play in cancer progression, and molecular mediators of the CAF “state.” Here, we identify a novel cell surface pan-CAF marker, CD49e, and demonstrate that two distinct CAF states, distinguished by expression of fibroblast activation protein (FAP), coexist within the CD49e+ CAF compartment in high-grade serous ovarian cancers. We show for the first time that CAF state influences patient outcomes and that this is mediated by the ability of FAP-high, but not FAP-low, CAFs to aggressively promote proliferation, invasion and therapy resistance of cancer cells. Overexpression of the FAP-low–specific transcription factor TCF21 in FAP-high CAFs decreases their ability to promote invasion, chemoresistance, and in vivo tumor growth, indicating that it acts as a master regulator of the CAF state. Understanding CAF states in more detail could lead to better patient stratification and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ali Hussain
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Poon
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ngoc Hoang Bao Bui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julia Dmytryshyn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Victor W Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kwan Ho Tang
- Laura and Isaac Perlmutter Cancer Center, New York Langone Health, New York, NY
| | - Joshua Paterson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Marcus Q Bernardini
- Division of Gynaecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin G Neel
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Laura and Isaac Perlmutter Cancer Center, New York Langone Health, New York, NY
| | - Laurie E Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Mikulová MB, Mikuš P. Advances in Development of Radiometal Labeled Amino Acid-Based Compounds for Cancer Imaging and Diagnostics. Pharmaceuticals (Basel) 2021; 14:167. [PMID: 33669938 PMCID: PMC7924883 DOI: 10.3390/ph14020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Radiolabeled biomolecules targeted at tumor-specific enzymes, receptors, and transporters in cancer cells represent an intensively investigated and promising class of molecular tools for the cancer diagnosis and therapy. High specificity of such biomolecules is a prerequisite for the treatment with a lower burden to normal cells and for the effective and targeted imaging and diagnosis. Undoubtedly, early detection is a key factor in efficient dealing with many severe tumor types. This review provides an overview and critical evaluation of novel approaches in the designing of target-specific probes labeled with metal radionuclides for the diagnosis of most common death-causing cancers, published mainly within the last three years. Advances are discussed such traditional peptide radiolabeling approaches, and click and nanoparticle chemistry. The progress of radiolabeled peptide based ligands as potential radiopharmaceuticals is illustrated via novel structure and application studies, showing how the molecular modifications reflect their binding selectivity to significant onco-receptors, toxicity, and, by that, practical utilization. The most impressive outputs in categories of newly developed structures, as well as imaging and diagnosis approaches, and the most intensively studied oncological diseases in this context, are emphasized in order to show future perspectives of radiometal labeled amino acid-based compounds in nuclear medicine.
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
- Toxicological and Antidoping Center (TAC), Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
38
|
Cummings M, Freer C, Orsi NM. Targeting the tumour microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:3-28. [PMID: 33607246 DOI: 10.1016/j.semcancer.2021.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer typically presents at an advanced stage, and although the majority of cases initially respond well to platinum-based therapies, chemoresistance almost always occurs leading to a poor long-term prognosis. While various cellular autonomous mechanisms contribute to intrinsic or acquired platinum resistance, the tumour microenvironment (TME) plays a central role in resistance to therapy and disease progression by providing cancer stem cell niches, promoting tumour cell metabolic reprogramming, reducing chemotherapy drug perfusion and promoting an immunosuppressive environment. As such, the TME is an attractive therapeutic target which has been the focus of intense research in recent years. This review provides an overview of the unique ovarian cancer TME and its role in disease progression and therapy resistance, highlighting some of the latest preclinical and clinical data on TME-targeted therapies. In particular, it focuses on strategies targeting cancer-associated fibroblasts, tumour-associated macrophages, cancer stem cells and cancer cell metabolic vulnerabilities.
Collapse
Affiliation(s)
- M Cummings
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - C Freer
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - N M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom; St James's Institute of Oncology, Bexley Wing, Beckett Street, Leeds, LS9 7TF, United Kingdom.
| |
Collapse
|
39
|
Phenotypic Characterization by Mass Cytometry of the Microenvironment in Ovarian Cancer and Impact of Tumor Dissociation Methods. Cancers (Basel) 2021; 13:cancers13040755. [PMID: 33670410 PMCID: PMC7918057 DOI: 10.3390/cancers13040755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) is the deadliest gynecological malignancy. Despite increasing research on HGSOC, biomarkers for individualized selection of therapy are scarce. In this study, we develop a multiparametric mass cytometry antibody panel to identify differences in the cellular composition of the microenvironment of tumor tissues dissociated to single-cell suspensions. We also investigate how dissociation methods impact results. Application of our antibody panel to HGSOC tissues showed its ability to identify established main cell subsets and subpopulations of these cells. Comparisons between dissociation methods revealed differences in cell fractions for one immune, two stromal, and three tumor cell subpopulations, while functional marker expression was not affected by the dissociation method. The interpatient disparities identified in the tumor microenvironment were more significant than those identified between differently dissociated tissues from one patient, indicating that the panel facilitates the mapping of individual tumor microenvironments in HGSOC patients. Abstract Improved molecular dissection of the tumor microenvironment (TME) holds promise for treating high-grade serous ovarian cancer (HGSOC), a gynecological malignancy with high mortality. Reliable disease-related biomarkers are scarce, but single-cell mapping of the TME could identify patient-specific prognostic differences. To avoid technical variation effects, however, tissue dissociation effects on single cells must be considered. We present a novel Cytometry by Time-of-Flight antibody panel for single-cell suspensions to identify individual TME profiles of HGSOC patients and evaluate the effects of dissociation methods on results. The panel was developed utilizing cell lines, healthy donor blood, and stem cells and was applied to HGSOC tissues dissociated by six methods. Data were analyzed using Cytobank and X-shift and illustrated by t-distributed stochastic neighbor embedding plots, heatmaps, and stacked bar and error plots. The panel distinguishes the main cellular subsets and subpopulations, enabling characterization of individual TME profiles. The dissociation method affected some immune (n = 1), stromal (n = 2), and tumor (n = 3) subsets, while functional marker expressions remained comparable. In conclusion, the panel can identify subsets of the HGSOC TME and can be used for in-depth profiling. This panel represents a promising profiling tool for HGSOC when tissue handling is considered.
Collapse
|
40
|
Hicks RJ, Roselt PJ, Kallur KG, Tothill RW, Mileshkin L. FAPI PET/CT: Will It End the Hegemony of 18F-FDG in Oncology? J Nucl Med 2020; 62:296-302. [PMID: 33277397 DOI: 10.2967/jnumed.120.256271] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
For over 40 years, 18F-FDG has been the dominant PET tracer in neurology, cardiology, inflammatory diseases, and, most particularly, oncology. Combined with the ability to perform whole-body scanning, 18F-FDG has revolutionized the evaluation of cancer and has stifled the adoption of other tracers, except in situations where low avidity or high background activity limits diagnostic performance. The strength of 18F-FDG has generally been its ability to detect disease in the absence of structural abnormality, thereby enhancing diagnostic sensitivity, but its simultaneous weakness has been a lack of specificity due to diverse pathologies with enhanced glycolysis. Radiotracers that leverage other hallmarks of cancer or specific cell-surface targets are gradually finding a niche in the diagnostic armamentarium. However, none have had sufficient sensitivity to realistically compete with 18F-FDG for evaluation of the broad spectrum of malignancies. Perhaps, this situation is about to change with development of a class of tracers targeting fibroblast activation protein that have low uptake in almost all normal tissues but high uptake in most cancer types. In this review, the development and exciting preliminary clinical data relating to various fibroblast activation protein-specific small-molecule inhibitor tracers in oncology will be discussed along with potential nononcologic applications.
Collapse
Affiliation(s)
- Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Roselt
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Richard W Tothill
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Linda Mileshkin
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Li M, Cheng X, Rong R, Gao Y, Tang X, Chen Y. High expression of fibroblast activation protein (FAP) predicts poor outcome in high-grade serous ovarian cancer. BMC Cancer 2020; 20:1032. [PMID: 33109151 PMCID: PMC7590670 DOI: 10.1186/s12885-020-07541-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a fatal form of ovarian cancer. Previous studies indicated some potential biomarkers for clinical evaluation of HGSOC prognosis. However, there is a lack of systematic analysis of different expression genes (DEGs) to screen and detect significant biomarkers of HGSOC. METHODS TCGA database was conducted to analyze relevant genes expression in HGSOC. Outcomes of candidate genes expression, including overall survival (OS) and progression-free survival (PFS), were calculated by Cox regression analysis for hazard rates (HR). Histopathological investigation of the identified genes was carried out in 151 Chinese HGSOC patients to validate gene expression in different stages of HGSOC. RESULTS Of all 57,331 genes that were analyzed, FAP was identified as the only novel gene that significantly contributed to both OS and PFS of HGSOC. In addition, FAP had a consistent expression profile between carcinoma-paracarcinoma and early-advanced stages of HGSOC. Immunological tests in paraffin section also confirmed that up-regulation of FAP was present in advanced stage HGSOC patients. Prediction of FAP network association suggested that FN1 could be a potential downstream gene which further influenced HGSOC survival. CONCLUSIONS High-level expression of FAP was associated with poor prognosis of HGSOC via FN1 pathway.
Collapse
Affiliation(s)
- Min Li
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xue Cheng
- Department of Pathology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Rong Rong
- Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Yan Gao
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou, 215004, China.,School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Xiuwu Tang
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Youguo Chen
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
42
|
Li K, Liu CJ, Zhang XZ. Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev 2020; 160:36-51. [PMID: 33080257 DOI: 10.1016/j.addr.2020.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Controlled nano-systems for drug delivery are designed to deliver therapeutical drugs to desirable sites on demand. Due to the diverse physiological functions of peptides, it is reasonable to introduce peptides into anti-tumor nano-system. The integration of peptides into nanomaterials has complementary advantages, which not only avoids the rapid degradation of peptides in vivo, but also improves the intelligence and functionality of the nano-system. We summarized the functional peptides with targeting and stimulus-responsive properties, and the present review outlined the most relevant and recent developed peptide-based multifunctional nanomaterials for tumor therapy.
Collapse
|
43
|
Yang Y, Yang Y, Yang J, Zhao X, Wei X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front Cell Dev Biol 2020; 8:758. [PMID: 32850861 PMCID: PMC7431690 DOI: 10.3389/fcell.2020.00758] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in patients with gynecological malignancy. Despite optimal cytoreductive surgery and platinum-based chemotherapy, ovarian cancer disseminates and relapses frequently, with poor prognosis. Hence, it is urgent to find new targeted therapies for ovarian cancer. Recently, the tumor microenvironment has been reported to play a vital role in the tumorigenesis of ovarian cancer, especially with discoveries from genome-, transcriptome- and proteome-wide studies; thus tumor microenvironment may present potential therapeutic target for ovarian cancer. Here, we review the interactions between the tumor microenvironment and ovarian cancer and various therapies targeting the tumor environment.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Fibroblasts in urothelial bladder cancer define stroma phenotypes that are associated with clinical outcome. Sci Rep 2020; 10:281. [PMID: 31937798 PMCID: PMC6959241 DOI: 10.1038/s41598-019-55013-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Little attention was given to the interaction between tumor and stromal cells in urothelial bladder carcinoma (UBC). While recent studies point towards the existence of different fibroblast subsets, no comprehensive analyses linking different fibroblast markers to UBC patient survival have been performed so far. Through immunohistochemical analysis of five selected fibroblast markers, namely alpha smooth muscle actin (ASMA), CD90/Thy-1, fibroblast activation protein (FAP), platelet derived growth factor receptor-alpha and -beta (PDGFRa,-b), this study investigates their association with survival and histopathological characteristics in a cohort of 344 UBC patients, involving both, muscle-invasive and non-muscle-invasive cases. The data indicates that combinations of stromal markers are more suited to identify prognostic patient subgroups than single marker analysis. Refined stroma-marker-based patient stratification was achieved through cluster analysis and identified a FAP-dominant patient cluster as independent marker for shorter 5-year-survival (HR(95% CI)2.25(1.08–4.67), p = 0.030). Analyses of interactions between fibroblast and CD8a-status identified a potential minority of cases with CD90-defined stroma and high CD8a infiltration showing a good prognosis of more than 80% 5-year-survival. Presented analyses point towards the existence of different stroma-cell subgroups with distinct tumor-modulatory properties and motivate further studies aiming to better understand the molecular tumor–stroma crosstalk in UBC.
Collapse
|
45
|
Byrling J, Sasor A, Nilsson J, Said Hilmersson K, Andersson R, Andersson B. Expression of fibroblast activation protein and the clinicopathological relevance in distal cholangiocarcinoma. Scand J Gastroenterol 2020; 55:82-89. [PMID: 31917931 DOI: 10.1080/00365521.2019.1708449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/04/2023]
Abstract
Objectives: The current survival of patients with distal cholangiocarcinoma (dCCA) is poor. There is a need to develop new prognostic and predictive biomarkers to improve the survival of patients. Fibroblast activation protein (FAP) expression has been associated with survival in several solid malignancies. The goal of this study was to evaluate the expression pattern and prognostic significance of FAP in dCCA.Materials and methods: FAP expression was examined in 57 resected dCCA specimens and 28 paired lymph node metastasis specimens, as well as 10 benign bile ducts using immunohistochemistry. FAP expression was scored in the epithelial and stromal component of the dCCA specimens. The association between FAP expression and prognosis was evaluated using univariable and multivariable statistical modeling.Results: FAP expression was absent in the benign controls. FAP expression was evident in the epithelial 43 (75%) and stromal compartment 34 (60%) of dCCA. There was no association between epithelial or stromal FAP expression and clinicopathological factors. Epithelial FAP expression (HR 0.4 95% CI 0.20-0.78; p=.007) but not stromal FAP expression was significantly associated with better survival in univariable and multivariable analysis.Conclusions: FAP overexpression is evident in dCCA. There was a positive association between epithelial FAP expression and better survival which merits further evaluation.
Collapse
Affiliation(s)
- Johannes Byrling
- Department of Surgery, Lund University and Skane University Hospital, Lund, Sweden
| | - Agata Sasor
- Department of Pathology, Lund University and Skane University Hospital, Lund, Sweden
| | - Johan Nilsson
- Department of Cardiothoracic Surgery, Lund University and Skane University Hospital, Lund, Sweden
| | | | - Roland Andersson
- Department of Surgery, Lund University and Skane University Hospital, Lund, Sweden
| | - Bodil Andersson
- Department of Surgery, Lund University and Skane University Hospital, Lund, Sweden
| |
Collapse
|
46
|
Single Cell Mass Cytometry Revealed the Immunomodulatory Effect of Cisplatin Via Downregulation of Splenic CD44+, IL-17A+ MDSCs and Promotion of Circulating IFN-γ+ Myeloid Cells in the 4T1 Metastatic Breast Cancer Model. Int J Mol Sci 2019; 21:ijms21010170. [PMID: 31881770 PMCID: PMC6982301 DOI: 10.3390/ijms21010170] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
The treatment of metastatic breast cancer remained a challenge despite the recent breakthrough in the immunotherapy regimens. Here, we addressed the multidimensional immunophenotyping of 4T1 metastatic breast cancer by the state-of-the-art single cell mass cytometry (CyTOF). We determined the dose and time dependent cytotoxicity of cisplatin on 4T1 cells by the xCelligence real-time electronic sensing assay. Cisplatin treatment reduced tumor growth, number of lung metastasis, and the splenomegaly of 4T1 tumor bearing mice. We showed that cisplatin inhibited the tumor stroma formation, the polarization of carcinoma-associated fibroblasts by the diminished proteolytic activity of fibroblast activating protein. The CyTOF analysis revealed the emergence of CD11b+/Gr-1+/CD44+ or CD11b+/Gr-1+/IL-17A+ myeloid-derived suppressor cells (MDSCs) and the absence of B220+ or CD62L+ B-cells, the CD62L+/CD4+ and CD62L+/CD8+ T-cells in the spleen of advanced cancer. We could show the immunomodulatory effect of cisplatin via the suppression of splenic MDSCs and via the promotion of peripheral IFN-γ+ myeloid cells. Our data could support the use of low dose chemotherapy with cisplatin as an immunomodulatory agent for metastatic triple negative breast cancer.
Collapse
|
47
|
Levy A, Leynes C, Baig M, Chew SA. The Application of Biomaterials in the Treatment of Platinum‐Resistant Ovarian Cancer. ChemMedChem 2019; 14:1810-1827. [DOI: 10.1002/cmdc.201900450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Arkene Levy
- Department of Pharmacology, College of Medical Sciences Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Carolina Leynes
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| | - Mirza Baig
- Dr. Kiran C. Patel College of Osteopathic Medicine Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Sue Anne Chew
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| |
Collapse
|
48
|
Da Silva AC, Jammal MP, Crispim PCA, Murta EFC, Nomelini RS. The Role of Stroma in Ovarian Cancer. Immunol Invest 2019; 49:406-424. [PMID: 32264761 DOI: 10.1080/08820139.2019.1658770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Ovarian cancer is one of the gynecological malignancies responsible for thousands of deaths in women worldwide. Malignant solid tumors are formed by malignant cells and stroma that influence each other, where different types of cells in the stromal environment can be recruited by malignant cells to promote tumor growth and facilitate metastasis. The chronic inflammatory response is increasingly accepted in its relation to the pathophysiology of the onset and development of tumors, sustained cell proliferation in an environment rich in inflammatory cells, growth factors, activated stroma and DNA damage agents may increase the risk to develop a neoplasm.Methods: A search for the following keywords was performed in the PubMed database; "Ovarian cancer", "stroma", "tumor-associated macrophages", "cancer-associated fibroblasts", "cytokines", "angiogenesis", "epithelial-mesenchymal transition", and "extracellular matrix".Results: The articles identified were published in English between 1971 and 2018. A total of 154 articles were selected for further analysis. Conclusion: We consider ovarian cancer as a heterogeneous disease, not only in the sense that different histological or molecular subtypes may be behind the same clinical result, but also that multiple cell types besides cancer cells, like other non-cellular components, need to be mobilized and coordinated to support tumor survival, growth, invasion and progression.
Collapse
Affiliation(s)
- Ana Carolinne Da Silva
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Millena Prata Jammal
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Paula Carolina Arvelos Crispim
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Eddie Fernando Candido Murta
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rosekeila Simões Nomelini
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
49
|
Lou E, Vogel RI, Hoostal S, Klein M, Linden MA, Teoh D, Geller MA. Tumor-Stroma Proportion as a Predictive Biomarker of Resistance to Platinum-Based Chemotherapy in Patients With Ovarian Cancer. JAMA Oncol 2019; 5:1222-1224. [PMID: 31152668 DOI: 10.1001/jamaoncol.2019.1943] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Emil Lou
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis
| | - Rachel I Vogel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis
| | - Spencer Hoostal
- Medical Student, University of Minnesota Medical School, Minneapolis
| | - Molly Klein
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Deanna Teoh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis
| | - Melissa A Geller
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis
| |
Collapse
|
50
|
Mariani A, Wang C, Oberg AL, Riska SM, Torres M, Kumka J, Multinu F, Sagar G, Roy D, Jung DB, Zhang Q, Grassi T, Visscher DW, Patel VP, Jin L, Staub JK, Cliby WA, Weroha SJ, Kalli KR, Hartmann LC, Kaufmann SH, Goode EL, Shridhar V. Genes associated with bowel metastases in ovarian cancer. Gynecol Oncol 2019; 154:495-504. [PMID: 31204077 DOI: 10.1016/j.ygyno.2019.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study is designed to identify genes and pathways that could promote metastasis to the bowel in high-grade serous ovarian cancer (OC) and evaluate their associations with clinical outcomes. METHODS We performed RNA sequencing of OC primary tumors (PTs) and their corresponding bowel metastases (n = 21 discovery set; n = 18 replication set). Differentially expressed genes (DEGs) were those expressed at least 2-fold higher in bowel metastases (BMets) than PTs in at least 30% of patients (P < .05) with no increased expression in paired benign bowel tissue and were validated with quantitative reverse transcription PCR. Using an independent OC cohort (n = 333), associations between DEGs in PTs and surgical and clinical outcomes were performed. Immunohistochemistry and mouse xenograft studies were performed to confirm the role of LRRC15 in promoting metastasis. RESULTS Among 27 DEGs in the discovery set, 21 were confirmed in the replication set: SFRP2, Col11A1, LRRC15, ADAM12, ADAMTS12, MFAP5, LUM, PLPP4, FAP, POSTN, GRP, MMP11, MMP13, C1QTNF3, EPYC, DIO2, KCNA1, NETO1, NTM, MYH13, and PVALB. Higher expression of more than half of the genes in the PT was associated with an increased requirement for bowel resection at primary surgery and an inability to achieve complete cytoreduction. Increased expression of LRRC15 in BMets was confirmed by immunohistochemistry and knockdown of LRRC15 significantly inhibited tumor progression in mice. CONCLUSIONS We identified 21 genes that are overexpressed in bowel metastases among patients with OC. Our findings will help select potential molecular targets for the prevention and treatment of malignant bowel obstruction in OC.
Collapse
Affiliation(s)
- Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Chen Wang
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Shaun M Riska
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Michelle Torres
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Joseph Kumka
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Francesco Multinu
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gunisha Sagar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Debarshi Roy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Deok-Beom Jung
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Tommaso Grassi
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Vatsal P Patel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ling Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Julie K Staub
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - William A Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kimberly R Kalli
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lynn C Hartmann
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Viji Shridhar
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|