1
|
Lohrberg M, Mortensen LS, Thomas C, Fries F, van der Meer F, Götz A, Landt C, Rhee HJ, Rhee J, Gómez-Varela D, Schmidt M, Möbius W, Ruhwedel T, Pardo LA, Remling L, Kramann N, Wrzos C, Bahn E, Stadelmann C, Barrantes-Freer A. Astroglial modulation of synaptic function in the non-demyelinated cerebellar cortex is dependent on MyD88 signaling in a model of toxic demyelination. J Neuroinflammation 2025; 22:47. [PMID: 39988657 PMCID: PMC11849172 DOI: 10.1186/s12974-025-03368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/03/2025] [Indexed: 02/25/2025] Open
Abstract
Progressive neurological decline in multiple sclerosis is associated with axonal loss and synaptic dysfunction in the non-demyelinated normal appearing gray matter (NAGM) and prominently in the cerebellum. In contrast to early disease stages, where synaptic and neuro-axonal pathology correlates with the extent of T cell infiltration, a prominent role of the innate immune system has been proposed for progressive MS. However, the specific contribution of microglia and astrocytes to synaptic cerebellar pathology in the NAGM- independent of an adaptive T cell response - remains largely unexplored. In the present study, we quantified synaptic changes in the cerebellar NAGM distant from demyelinated lesions in a mouse model of toxic demyelination. Proteomic analysis of the cerebellar cortex revealed differential regulation of synaptic and glutamate transport proteins in the absence of evident structural synaptic pathology or local gray matter demyelination. At the functional level, synaptic changes manifested as a reduction in frequency-dependent facilitation at the parallel fiber- Purkinje cell synapse. Further, deficiency of MyD88, an adaptor protein of the innate immune response, associated with a functional recovery in facilitation, reduced changes in the differential expression of synaptic and glutamate transport proteins, and reduced transcription levels of inflammatory cytokines. Nevertheless, the characteristics of demyelinating lesions and their associated cellular response were similar to wild type animals. Our work brings forward an experimental paradigm mimicking the diffuse synaptic pathology independent of demyelination in late stage MS and highlights the complex regulation of synaptic pathology in the cerebellar NAGM. Moreover, our findings suggest a role of astrocytes, in particular Bergmann glia, as key cellular determinants of cerebellar synaptic dysfunction.
Collapse
Affiliation(s)
- Melanie Lohrberg
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Campus Institute Data Science, Göttingen, Germany
| | - Lena Sünke Mortensen
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
- Paul-Flechsig-Institute of Neuropathology, University Medical Center Leipzig, Leipzig, Germany
| | - Carolina Thomas
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Paul-Flechsig-Institute of Neuropathology, University Medical Center Leipzig, Leipzig, Germany
| | - Franziska Fries
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Alexander Götz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Carolin Landt
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Hong Jun Rhee
- Department of Molecular Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - David Gómez-Varela
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Manuela Schmidt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luis A Pardo
- Oncophysiology Group, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Linus Remling
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Kramann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Wrzos
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Erik Bahn
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Alonso Barrantes-Freer
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.
- Paul-Flechsig-Institute of Neuropathology, University Medical Center Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Segal Y, Soltys J, Clarkson BDS, Howe CL, Irani SR, Pittock SJ. Toward curing neurological autoimmune disorders: Biomarkers, immunological mechanisms, and therapeutic targets. Neuron 2025; 113:345-379. [PMID: 39809275 DOI: 10.1016/j.neuron.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis. The breakdown of immune tolerance, central to these conditions, is affected by modifiable and non-modifiable risk factors such as genetic predisposition, infections, and malignancy. While significant therapeutic advancements have revolutionized treatment of certain diseases, such as neuromyelitis optica, our understanding of many others, particularly T cell-mediated conditions, remains limited, with fewer treatment options available. Future research should focus on improving effector function modeling and deepening our understanding of the factors influencing immune tolerance, with the goal of providing novel treatment options and improving patient care.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - John Soltys
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin D S Clarkson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Division of Experimental Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sarosh R Irani
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
El Samad A, Jaffal J, Ibrahim DR, Schwarz K, Schmitz F. Decreased Expression of the EAAT5 Glutamate Transporter at Photoreceptor Synapses in Early, Pre-Clinical Experimental Autoimmune Encephalomyelitis, a Mouse Model of Multiple Sclerosis. Biomedicines 2024; 12:2545. [PMID: 39595111 PMCID: PMC11591696 DOI: 10.3390/biomedicines12112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis is a frequent neuroinflammatory and neurodegenerative disease of the central nervous system that includes alterations in the white and gray matter of the brain. The visual system is frequently affected in multiple sclerosis. Glutamate excitotoxicity might play a role in disease pathogenesis. METHODOLOGY In the present study, we analyzed with qualitative and quantitative immunofluorescence microscopy and Western blot analyses whether alterations in the EAAT5 (SLC1A7) glutamate transporter could be involved in the previously observed alterations in structure and function of glutamatergic photoreceptor ribbon synapses in the EAE mouse model of MS. EAAT5 is a presynaptic glutamate transporter located near the presynaptic release sites. RESULTS We found that EAAT5 was strongly reduced at the photoreceptor synapses of EAE retinas in comparison to the photoreceptor synapses of the respective control retinas as early as day 9 post-immunization. The Western blot analyses demonstrated a decreased EAAT5 expression in EAE retinas. CONCLUSIONS Our data illustrate early alterations of the EAAT5 glutamate transporter in the early pre-clinical phase of EAE/MS and suggest an involvement of EAAT5 in the previously observed early synaptic changes at photoreceptor synapses. The precise mechanisms need to be elucidated by future investigations.
Collapse
Affiliation(s)
| | | | | | | | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany; (A.E.S.); (J.J.); (D.R.I.); (K.S.)
| |
Collapse
|
4
|
Benarroch E. What Is the Role of Cytokines in Synaptic Transmission? Neurology 2024; 103:e209928. [PMID: 39303183 DOI: 10.1212/wnl.0000000000209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
|
5
|
Amoriello R, Memo C, Ballerini L, Ballerini C. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 2024; 17:4. [PMID: 38263055 PMCID: PMC10807071 DOI: 10.1186/s13041-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.
Collapse
Affiliation(s)
- Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Christian Memo
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Laura Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Clara Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
6
|
Denaroso GE, Smith Z, Angeliu CG, Cheli VT, Wang C, Paez PM. Deletion of voltage-gated calcium channels in astrocytes decreases neuroinflammation and demyelination in a murine model of multiple sclerosis. J Neuroinflammation 2023; 20:263. [PMID: 37964385 PMCID: PMC10644533 DOI: 10.1186/s12974-023-02948-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023] Open
Abstract
The experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis was used in combination with a Cav1.2 conditional knock-out mouse (Cav1.2KO) to study the role of astrocytic voltage-gated Ca++ channels in autoimmune CNS inflammation and demyelination. Cav1.2 channels were specifically ablated in Glast-1-positive astrocytes by means of the Cre-lox system before EAE induction. After immunization, motor activity was assessed daily, and a clinical score was given based on the severity of EAE symptoms. Cav1.2 deletion in astrocytes significantly reduced the severity of the disease. While no changes were found in the day of onset and peak disease severity, EAE mean clinical score was lower in Cav1.2KO animals during the chronic phase of the disease. This corresponded to better performance on the rotarod and increased motor activity in Cav1.2KO mice. Furthermore, decreased numbers of reactive astrocytes, activated microglia, and infiltrating lymphocytes were found in the lumbar section of the spinal cord of Cav1.2KO mice 40 days after immunization. The degree of myelin protein loss and size of demyelinated lesions were also attenuated in Cav1.2KO spinal cords. Similar results were found in EAE animals treated with nimodipine, a Cav1.2 Ca++ channel inhibitor with high affinity to the CNS. Mice injected with nimodipine during the acute and chronic phases of the disease exhibited lower numbers of reactive astrocytes, activated microglial, and infiltrating immune cells, as well as fewer demyelinated lesions in the spinal cord. These changes were correlated with improved clinical scores and motor performance. In summary, these data suggest that antagonizing Cav1.2 channels in astrocytes during EAE alleviates neuroinflammation and protects the spinal cord from autoimmune demyelination.
Collapse
Affiliation(s)
- G E Denaroso
- Institute for Myelin and Glia Exploration, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA
| | - Z Smith
- Institute for Myelin and Glia Exploration, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA
| | - C G Angeliu
- Institute for Myelin and Glia Exploration, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA
| | - V T Cheli
- Institute for Myelin and Glia Exploration, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA
| | - C Wang
- Institute for Myelin and Glia Exploration, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA
| | - P M Paez
- Institute for Myelin and Glia Exploration, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA.
| |
Collapse
|
7
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
8
|
Silva JP, Carvalho F. El uso terapéutico del cannabis y los cannabinoides. REVISTA ESPAÑOLA DE DROGODEPENDENCIAS 2022; 47:103-122. [DOI: 10.54108/10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Los cannabinoides se dirigen principalmente al sistema endocannabinoide (ECS), que surge
como un objetivo terapéutico potencialmente interesante debido a su importante papel en la
modulación de procesos biológicos clave en todo el organismo. Como tal, los cannabinoides
ya se han propuesto como, por ejemplo, antieméticos, agentes antiespásticos, estimulantes del
apetito, antiepilépticos, analgésicos, depresores de la presión intraocular o como agentes para
controlar los trastornos del movimiento en el síndrome de Tourette.
Aquí revisamos las pruebas de investigación disponibles sobre el uso del cannabis y los cannabinoides
para un conjunto de aplicaciones terapéuticas sugeridas, y abordamos algunos de los
riesgos a corto y largo plazo que se han correlacionado con el uso de estas sustancias.
Encontramos escasas pruebas científicas que apoyen el uso de productos basados en el cannabis
para la mayoría de las aplicaciones sugeridas, así como ninguna necesidad médica no satisfecha
que no esté ya abordada por los medicamentos existentes (algunos basados en cannabinoides)
en el mercado. En este escenario, los riesgos potenciales asociados al uso crónico de estas sustancias
pueden disuadir su uso médico.
Collapse
|
9
|
Clarkson BDS, Grund E, David K, Johnson RK, Howe CL. ISGylation is induced in neurons by demyelination driving ISG15-dependent microglial activation. J Neuroinflammation 2022; 19:258. [PMID: 36261842 PMCID: PMC9583544 DOI: 10.1186/s12974-022-02618-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Benjamin D. S. Clarkson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN 55905 USA
| | - Ethan Grund
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and Mayo Clinic Medical Scientist Training Program, MN 55905 Rochester, USA
| | - Kenneth David
- grid.418935.20000 0004 0436 053XConcordia College, Moorhead, MN USA
| | - Renee K. Johnson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles L. Howe
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDivision of Experimental Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
10
|
Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells 2021; 10:cells10030686. [PMID: 33804596 PMCID: PMC8003660 DOI: 10.3390/cells10030686] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia, besides being able to react rapidly to a wide range of environmental changes, are also involved in shaping neuronal wiring. Indeed, they actively participate in the modulation of neuronal function by regulating the elimination (or “pruning”) of weaker synapses in both physiologic and pathologic processes. Mounting evidence supports their crucial role in early synaptic loss, which is emerging as a hallmark of several neurodegenerative diseases, including multiple sclerosis (MS) and its preclinical models. MS is an inflammatory, immune-mediated pathology of the white matter in which demyelinating lesions may cause secondary neuronal death. Nevertheless, primitive grey matter (GM) damage is emerging as an important contributor to patients’ long-term disability, since it has been associated with early and progressive cognitive decline (CD), which seriously worsens the quality of life of MS patients. Widespread synapse loss even in the absence of demyelination, axon degeneration and neuronal death has been demonstrated in different GM structures, thus raising the possibility that synaptic dysfunction could be an early and possibly independent event in the neurodegenerative process associated with MS. This review provides an overview of microglial-dependent synapse elimination in the neuroinflammatory process that underlies MS and its experimental models.
Collapse
|
11
|
Droby A, Fleysher L, Petracca M, Podranski K, Xu J, Fabian M, Marjańska M, Inglese M. Lower cortical gamma-aminobutyric acid level contributes to increased connectivity in sensory-motor regions in progressive MS. Mult Scler Relat Disord 2020; 43:102183. [DOI: 10.1016/j.msard.2020.102183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
12
|
Glial Factors Regulating White Matter Development and Pathologies of the Cerebellum. Neurochem Res 2020; 45:643-655. [PMID: 31974933 PMCID: PMC7058568 DOI: 10.1007/s11064-020-02961-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
The cerebellum is a brain region that undergoes extremely dynamic growth during perinatal and postnatal development which is regulated by the proper interaction between glial cells and neurons with a complex concert of growth factors, chemokines, cytokines, neurotransmitters and transcriptions factors. The relevance of cerebellar functions for not only motor performance but also for cognition, emotion, memory and attention is increasingly being recognized and acknowledged. Since perturbed circuitry of cerebro-cerebellar trajectories can play a role in many central nervous system pathologies and thereby contribute to neurological symptoms in distinct neurodevelopmental and neurodegenerative diseases, is it the aim with this mini-review to highlight the pathways of glia–glia interplay being involved. The designs of future treatment strategies may hence be targeted to molecular pathways also playing a role in development and disease of the cerebellum.
Collapse
|
13
|
Chen J, Huang P, He Y, Shen J, Du J, Cui S, Chen S, Ma J. IL1B polymorphism is associated with essential tremor in Chinese population. BMC Neurol 2019; 19:99. [PMID: 31092216 PMCID: PMC6518722 DOI: 10.1186/s12883-019-1331-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/08/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The aim of the study was to investigate the genetic risk factors of essential tremor (ET) in Chinese Population. METHODS A total of 225 ET patients (25 ET patients also had restless legs syndrome (RLS) and were excluded from final analysis) and 229 controls were recruited. The diagnosis of ET was based on the Consensus Statement of the Movement Disorders Society on tremor. Polymerase chain reaction (PCR) and sequencing were used to detect 12 single nucleotide polymorphisms (SNPs) in seven candidate genes for RLS (HMOX1, HMOX2, VDR, IL17A, IL1B, NOS1 and ADH1B). RESULTS We found that one SNP was associated with the risk of ET in Chinese population after adjusting for age and gender: rs1143633 of IL1B (odds ratio [OR] =2.57, p = 0.003, recessive model), and the statistical result remained significant after Bonferroni correction. Then, we performed a query in Genotype-tissue Expression (GTEx), Brain eQTL Almanac (Braineac) databases and Blood expression quantitative trait loci (eQTL) browser. The significant association was only found between genotype at rs1143633 and IL1B expression level of putamen and white matter in Braineac database, which was more prominent with homozygous (GG) carriers. CONCLUSIONS Our study firstly reported the association of IL1B polymorphism with the risk of ET in Chinese population. However, the association might only suggest a marker of IL1B SNP associated with ET instead of the casual variant. Further studies are needed to confirm our finding.
Collapse
Affiliation(s)
- Jie Chen
- Department of Neurology & Co-innovation Center of Neuroregeneration, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Pei Huang
- Department of Neurology & Co-innovation Center of Neuroregeneration, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yachao He
- Department of Neurology & Co-innovation Center of Neuroregeneration, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Junyi Shen
- Department of Neurology & Co-innovation Center of Neuroregeneration, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Juanjuan Du
- Department of Neurology & Co-innovation Center of Neuroregeneration, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Shishuang Cui
- Department of Neurology & Co-innovation Center of Neuroregeneration, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Shengdi Chen
- Department of Neurology & Co-innovation Center of Neuroregeneration, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Jianfang Ma
- Department of Neurology & Co-innovation Center of Neuroregeneration, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
14
|
LoPresti P. Silent Free Fall at Disease Onset: A Perspective on Therapeutics for Progressive Multiple Sclerosis. Front Neurol 2018; 9:973. [PMID: 30542317 PMCID: PMC6277889 DOI: 10.3389/fneur.2018.00973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Central nervous system (CNS) degeneration occurs during multiple sclerosis (MS) following several years of reversible autoimmune demyelination. Progressive CNS degeneration appears later during the course of relapsing-remitting MS (RRMS), although it starts insidiously at disease onset. We propose that there is an early subclinical phase also for primary-progressive (PP) MS. Consensus exists that many different cell types are involved during disease onset. Furthermore, the response to the initial damage, which is specific for each individual, would result in distinct pathological pathways that add complexity to the disease and the mechanisms underlying progressive CNS degeneration. Progressive MS is classified as either active or not active, as well as with or without progression. Different forms of progressive MS might reflect distinct or overlapping pathogenetic pathways. Disease mechanisms should be determined for each patient at diagnosis and the time of treatment. Until individualized and time-sensitive treatments that specifically target the molecular mechanisms of the progressive aspect of the disease are identified, combined therapies directed at anti-inflammation, regeneration, and neuroprotection are the most effective for preventing MS progression. This review presents selected therapeutics in support of the overall idea of a multidimensional therapy applied early in the disease. This approach could limit damage and increase CNS repair. By targeting several cellular populations (i.e., microglia, astrocytes, neurons, oligodendrocytes, and lymphocytes) and multiple pathological processes (e.g., inflammation, demyelination, synaptopathy, and excitatory/inhibitory imbalance) progressive MS could be attenuated. Early timing for such multidimensional therapy is proposed as the prerequisite for effectively halting progressive MS.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Gao F, Yin X, Edden RA, Evans AC, Xu J, Cao G, Li H, Li M, Zhao B, Wang J, Wang G. Altered hippocampal GABA and glutamate levels and uncoupling from functional connectivity in multiple sclerosis. Hippocampus 2018; 28:813-823. [PMID: 30069963 PMCID: PMC6251738 DOI: 10.1002/hipo.23001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/01/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
Abstract
There is growing evidence for dysfunctional glutamatergic excitation and/or gamma-aminobutyric acid (GABA)ergic inhibition in patients with multiple sclerosis (MS). Cognitive impairment may occur during the early stages of MS and hippocampal abnormalities have been suggested as biomarkers. However, researchers have not clearly determined whether changes in hippocampal GABA and glutamate (Glu) levels are associated with cognitive impairment and aberrant neural activity in patients with MS. We used magnetic resonance spectroscopy to measure GABA+ and Glu levels in the left hippocampal region of 29 patients with relapsing-remitting MS and 29 healthy controls (HCs). Resting-state functional connectivity (FC) with the hippocampus was also examined. Compared to HCs, patients exhibited significantly lower GABA+ and Glu levels, which were associated with verbal and visuospatial memory deficits, respectively. Patients also showed decreased FC strengths between the hippocampus and several cortical regions, which are located within the default mode network. Moreover, hippocampal GABA+ levels and Glu/GABA+ ratios correlated with the FC strengths in HCs but not in patients with MS. This study describes a novel method for investigating the complex relationships among excitatory/inhibitory neurotransmitters, brain connectivity and cognition in health and disease. Strategies that modulate Glu and GABA neurotransmission may represent new therapeutic treatments for patients with MS.
Collapse
Affiliation(s)
- Fei Gao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Xuntao Yin
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Junhai Xu
- Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, China
| | - Guanmei Cao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Honghao Li
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Bin Zhao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| |
Collapse
|
16
|
Tumor Necrosis Factor and Interleukin-1 β Modulate Synaptic Plasticity during Neuroinflammation. Neural Plast 2018; 2018:8430123. [PMID: 29861718 PMCID: PMC5976900 DOI: 10.1155/2018/8430123] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Cytokines are constitutively released in the healthy brain by resident myeloid cells to keep proper synaptic plasticity, either in the form of Hebbian synaptic plasticity or of homeostatic plasticity. However, when cytokines dramatically increase, establishing a status of neuroinflammation, the synaptic action of such molecules remarkably interferes with brain circuits of learning and cognition and contributes to excitotoxicity and neurodegeneration. Among others, interleukin-1β (IL-1β) and tumor necrosis factor (TNF) are the best studied proinflammatory cytokines in both physiological and pathological conditions and have been invariably associated with long-term potentiation (LTP) (Hebbian synaptic plasticity) and synaptic scaling (homeostatic plasticity), respectively. Multiple sclerosis (MS) is the prototypical neuroinflammatory disease, in which inflammation triggers excitotoxic mechanisms contributing to neurodegeneration. IL-β and TNF are increased in the brain of MS patients and contribute to induce the changes in synaptic plasticity occurring in MS patients and its animal model, the experimental autoimmune encephalomyelitis (EAE). This review will introduce and discuss current evidence of the role of IL-1β and TNF in the regulation of synaptic strength at both physiological and pathological levels, in particular speculating on their involvement in the synaptic plasticity changes observed in the EAE brain.
Collapse
|
17
|
Guarnieri FC, Bellani S, Yekhlef L, Bergamaschi A, Finardi A, Fesce R, Pozzi D, Monzani E, Fornasiero EF, Matteoli M, Martino G, Furlan R, Taverna S, Muzio L, Valtorta F. Synapsin I deletion reduces neuronal damage and ameliorates clinical progression of experimental autoimmune encephalomyelitis. Brain Behav Immun 2018; 68:197-210. [PMID: 29066310 DOI: 10.1016/j.bbi.2017.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022] Open
Abstract
The classical view of multiple sclerosis (MS) pathogenesis states that inflammation-mediated demyelination is responsible for neuronal damage and loss. However, recent findings show that impairment of neuronal functions and demyelination can be independent events, suggesting the coexistence of other pathogenic mechanisms. Due to the inflammatory milieu, subtle alterations in synaptic function occur, which are probably at the basis of the early cognitive decline that often precedes the neurodegenerative phases in MS patients. In particular, it has been reported that inflammation enhances excitatory synaptic transmission while it decreases GABAergic transmission in vitro and ex vivo. This evidence points to the idea that an excitation/inhibition imbalance occurs in the inflamed MS brain, even though the exact molecular mechanisms leading to this synaptic dysfunction are as yet not completely clear. Along this line, we observed that acute treatment of primary hippocampal neurons in culture with pro-inflammatory cytokines leads to an increased phosphorylation of synapsin I (SynI) by ERK1/2 kinase and to an increase in the frequency of spontaneous synaptic vesicle release events, which is prevented by SynI deletion. In vivo, the ablation of SynI expression is protective in terms of disease progression and neuronal damage in the experimental autoimmune encephalomyelitis mouse model of MS. Our results point to a possible key role in MS pathogenesis of the neuronal protein SynI, a regulator of excitation/inhibition balance in neuronal networks.
Collapse
Affiliation(s)
- Fabrizia C Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Serena Bellani
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Latefa Yekhlef
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Andrea Bergamaschi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Annamaria Finardi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Riccardo Fesce
- Centre of Neuroscience and DISTA, University of Insubria, Via Ravasi 2, 21100 Varese, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Eugenio F Fornasiero
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Milan, Italy; CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Furlan
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Luca Muzio
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
18
|
Shrestha B, Jiang X, Ge S, Paul D, Chianchiano P, Pachter JS. Spatiotemporal resolution of spinal meningeal and parenchymal inflammation during experimental autoimmune encephalomyelitis. Neurobiol Dis 2017; 108:159-172. [PMID: 28844788 DOI: 10.1016/j.nbd.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 01/14/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by active immunization of C57BL/6 mice with peptide from myelin oligodendrocyte protein (MOG35-55), is a neuroinflammatory, demyelinating disease widely recognized as an animal model of multiple sclerosis (MS). Typically, EAE presents with an ascending course of paralysis, and inflammation that is predominantly localized to the spinal cord. Recent studies have further indicated that inflammation - in both MS and EAE - might initiate within the meninges and propagate from there to the underlying parenchyma. However, the patterns of inflammation within the respective meningeal and parenchymal compartments along the length of the spinal cord, and the progression with which these patterns develop during EAE, have yet to be detailed. Such analysis could hold key to identifying factors critical for spreading, as well as constraining, inflammation along the neuraxis. To address this issue, high-resolution 3-dimensional (3D) confocal microscopy was performed to visualize, in detail, the sequence of leukocyte infiltration at distinct regions of the spinal cord. High quality virtual slide scanning for imaging the entire spinal cord using epifluorescence was further conducted to highlight the directionality and relative degree of inflammation. Meningeal inflammation was found to precede parenchymal inflammation at all levels of the spinal cord, but did not develop equally or simultaneously throughout the subarachnoid space (SAS) of the meninges. Instead, meningeal inflammation was initially most obvious in the caudal SAS, from which it progressed to the immediate underlying parenchyma, paralleling the first signs of clinical disease in the tail and hind limbs. Meningeal inflammation could then be seen to extend in the caudal-to-rostral direction, followed by a similar, but delayed, trajectory of parenchymal inflammation. To additionally determine whether the course of ascending paralysis and leukocyte infiltration during EAE is reflected in differences in inflammatory gene expression by meningeal and parenchymal microvessels along the spinal cord, laser capture microdissection (LCM) coupled with gene expression profiling was performed. Expression profiles varied between these respective vessel populations at both the cervical and caudal levels of the spinal cord during disease progression, and within each vessel population at different levels of the cord at a given time during disease. These results reinforce a significant role for the meninges in the development and propagation of central nervous system inflammation associated with MS and EAE.
Collapse
Affiliation(s)
- Bandana Shrestha
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Xi Jiang
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Shujun Ge
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Debayon Paul
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Peter Chianchiano
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Joel S Pachter
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| |
Collapse
|
19
|
Araújo SES, Mendonça HR, Wheeler NA, Campello-Costa P, Jacobs KM, Gomes FCA, Fox MA, Fuss B. Inflammatory demyelination alters subcortical visual circuits. J Neuroinflammation 2017; 14:162. [PMID: 28821276 PMCID: PMC5562979 DOI: 10.1186/s12974-017-0936-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory demyelinating disease classically associated with axonal damage and loss; more recently, however, synaptic changes have been recognized as additional contributing factors. An anatomical area commonly affected in MS is the visual pathway; yet, changes other than those associated with inflammatory demyelination of the optic nerve, i.e., optic neuritis, have not been described in detail. Methods Adult mice were subjected to a diet containing cuprizone to mimic certain aspects of inflammatory demyelination as seen in MS. Demyelination and inflammation were assessed by real-time polymerase chain reaction and immunohistochemistry. Synaptic changes associated with inflammatory demyelination in the dorsal lateral geniculate nucleus (dLGN) were determined by immunohistochemistry, Western blot analysis, and electrophysiological field potential recordings. Results In the cuprizone model, demyelination was observed in retinorecipient regions of the subcortical visual system, in particular the dLGN, where it was found accompanied by microglia activation and astrogliosis. In contrast, anterior parts of the pathway, i.e., the optic nerve and tract, appeared largely unaffected. Under the inflammatory demyelinating conditions, as seen in the dLGN of cuprizone-treated mice, there was an overall decrease in excitatory synaptic inputs from retinal ganglion cells. At the same time, the number of synaptic complexes arising from gamma-aminobutyric acid (GABA)-generating inhibitory neurons was found increased, as were the synapses that contain the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2B and converge onto inhibitory neurons. These synaptic changes were functionally found associated with a shift toward an overall increase in network inhibition. Conclusions Using the cuprizone model of inflammatory demyelination, our data reveal a novel form of synaptic (mal)adaption in the CNS that is characterized by a shift of the excitation/inhibition balance toward inhibitory network activity associated with an increase in GABAergic inhibitory synapses and a possible increase in excitatory input onto inhibitory interneurons. In addition, our data recognize the cuprizone model as a suitable tool in which to assess the effects of inflammatory demyelination on subcortical retinorecipient regions of the visual system, such as the dLGN, in the absence of overt optic neuritis.
Collapse
Affiliation(s)
- Sheila Espírito Santo Araújo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Rocha Mendonça
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Paula Campello-Costa
- Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
20
|
Musella A, Fresegna D, Rizzo FR, Gentile A, Bullitta S, De Vito F, Guadalupi L, Centonze D, Mandolesi G. A novel crosstalk within the endocannabinoid system controls GABA transmission in the striatum. Sci Rep 2017; 7:7363. [PMID: 28779174 PMCID: PMC5544685 DOI: 10.1038/s41598-017-07519-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022] Open
Abstract
The N-palmitoylethanolamine (PEA) is an endogenous member of the endocannabinoid system (ECS) with several biological functions, including a neuromodulatory activity in the central nervous system. To shed light on the neuronal function of PEA, we investigated its involvement in the control of both excitatory and inhibitory transmission in the murine striatum, a brain region strongly modulated by the ECS. By means of electrophysiological recordings, we showed that PEA modulates inhibitory synaptic transmission, through activation of GPR55 receptors, promoting a transient increase of GABAergic spontaneous inhibitory postsynaptic current (sIPSC) frequency. The subsequently rundown effect on sIPSC frequency was secondary to the delayed stimulation of presynaptic cannabinoid CB1 receptors (CB1Rs) by the endocannabinoid 2-AG, whose synthesis was stimulated by PEA on postsynaptic neurons. Our results indicate that PEA, acting on GPR55, enhances GABA transmission in the striatum, and triggers a parallel synthesis of 2-AG at the postsynaptic site, that in turn acts in a retrograde manner to inhibit GABA release through the stimulation of presynaptic CB1Rs. This electrophysiological study identifies a previously unrecognized function of PEA and of GPR55, demonstrating that GABAergic transmission is under the control of this compound and revealing that PEA modulates the release of the endocannabinoid 2-AG.
Collapse
Affiliation(s)
- A Musella
- Centro Europeo per la Ricerca sul Cervello (CERC), IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - D Fresegna
- Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli (IS), Italy
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - F R Rizzo
- Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli (IS), Italy
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - A Gentile
- Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli (IS), Italy
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - S Bullitta
- Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli (IS), Italy
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - F De Vito
- Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli (IS), Italy
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - L Guadalupi
- Centro Europeo per la Ricerca sul Cervello (CERC), IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - D Centonze
- Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli (IS), Italy.
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy.
| | - G Mandolesi
- Centro Europeo per la Ricerca sul Cervello (CERC), IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| |
Collapse
|
21
|
Patejdl R, Zettl UK. Spasticity in multiple sclerosis: Contribution of inflammation, autoimmune mediated neuronal damage and therapeutic interventions. Autoimmun Rev 2017; 16:925-936. [PMID: 28698092 DOI: 10.1016/j.autrev.2017.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 12/19/2022]
Abstract
In contrast to other diseases that go along with spasticity (e.g. spinal cord injury), spasticity in chronic autoimmune diseases involving the CNS is complicated by the ongoing damage of neuronal networks that leads to permanent changes in the clinical picture of spasticity. Multiple sclerosis (MS) is the most frequent autoimmune disease of the central nervous system (CNS) and spasticity is one of the most disabling symptoms. It occurs in more than 80% MS patients at some point of the disease and is associated with impaired ambulation, pain and the development of contractures. Besides causing cumulative structural damage, neuroinflammation occurring in MS leads to dynamic changes in motor circuit function and muscle tone that are caused by cytokines, prostaglandins, reactive oxygen species and stress hormones that affect neuronal circuits and thereby spasticity. The situation is complicated further by the fact that therapeutics used for the immunotherapy of MS may worsen spasticity and drugs used for the symptomatic treatment of spasticity have been shown to have the potential to alter immune cell function and CNS autoimmunity itself. This review summarizes the current knowledge on the immunologic pathways that are involved in the development, maintenance, dynamic changes and pharmacological modulation of spasticity in MS.
Collapse
Affiliation(s)
- Robert Patejdl
- University of Rostock, Department of Physiology, Germany.
| | - Uwe K Zettl
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Germany
| |
Collapse
|
22
|
Levite M. Glutamate, T cells and multiple sclerosis. J Neural Transm (Vienna) 2017; 124:775-798. [PMID: 28236206 DOI: 10.1007/s00702-016-1661-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/25/2016] [Indexed: 12/18/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the nervous system, where it induces multiple beneficial and essential effects. Yet, excess glutamate, evident in a kaleidoscope of acute and chronic pathologies, is absolutely catastrophic, since it induces excitotoxicity and massive loss of brain function. Both the beneficial and the detrimental effects of glutamate are mediated by a large family of glutamate receptors (GluRs): the ionotropic glutamate receptors (iGluRs) and the metabotropic glutamate receptors (mGluRs), expressed by most/all cells of the nervous system, and also by many non-neural cells in various peripheral organs and tissues. T cells express on their cell surface several types of functional GluRs, and so do few other immune cells. Furthermore, glutamate by itself activates resting normal human T cells, and induces/elevates key T cell functions, among them: T cell adhesion, chemotactic migration, cytokine secretion, gene expression and more. Glutamate has also potent effects on antigen/mitogen/cytokine-activated T cells. Furthermore, T cells can even produce and release glutamate, and affect other cells and themselves via their own glutamate. Multiple sclerosis (MS) and its animal model Experimental Autoimmune Encephalomyelitis (EAE) are mediated by autoimmune T cells. In MS and EAE, there are excess glutamate levels, and multiple abnormalities in glutamate degrading enzymes, glutamate transporters, glutamate receptors and glutamate signaling. Some GluR antagonists block EAE. Enhancer of mGluR4 protects from EAE via regulatory T cells (Tregs), while mGluR4 deficiency exacerbates EAE. The protective effect of mGluR4 on EAE calls for testing GluR4 enhancers in MS patients. Oral MS therapeutics, namely Fingolimod, dimethyl fumarate and their respective metabolites Fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. Furthermore, Fingolimod reduce glutamate-mediated intracortical excitability in relapsing-remitting MS. Glatiramer acetate -COPAXONE®, an immunomodulator drug for MS, reverses TNF-α-induced alterations of striatal glutamate-mediated excitatory postsynaptic currents in EAE-afflicted mice. With regard to T cells of MS patients: (1) The cell surface expression of a specific GluR: the AMPA GluR3 is elevated in T cells of MS patients during relapse and with active disease, (2) Glutamate and AMPA (a selective agonist for glutamate/AMPA iGluRs) augment chemotactic migration of T cells of MS patients, (3) Glutamate augments proliferation of T cells of MS patients in response to myelin-derived proteins: MBP and MOG, (4) T cells of MS patients respond abnormally to glutamate, (5) Significantly higher proliferation values in response to glutamate were found in MS patients assessed during relapse, and in those with gadolinium (Gd)+ enhancing lesions on MRI. Furthermore, glutamate released from autoreactive T cells induces excitotoxic cell death of neurons. Taken together, the evidences accumulated thus far indicate that abnormal glutamate levels and signaling in the nervous system, direct activation of T cells by glutamate, and glutamate release by T cells, can all contribute to MS. This may be true also to other neurological diseases. It is postulated herein that the detrimental activation of autoimmune T cells by glutamate in MS could lead to: (1) Cytotoxicity in the CNS: T cell-mediated killing of neurons and glia cells, which would subsequently increase the extracellular glutamate levels, and by doing so increase the excitotoxicity mediated by excess glutamate, (2) Release of proinflammatory cytokines, e.g., TNFα and IFNγ that increase neuroinflammation. Finally, if excess glutamate, abnormal neuronal signaling, glutamate-induced activation of T cells, and glutamate release by T cells are indeed all playing a key detrimental role in MS, then optional therapeutic tolls include GluR antagonists, although these may have various side effects. In addition, an especially attractive therapeutic strategy is the novel and entirely different therapeutic approach to minimize excess glutamate and excitotoxicity, titled: 'brain to blood glutamate scavenging', designed to lower excess glutamate levels in the CNS by 'pumping it out' from the brain to the blood. The glutamate scavanging is achieved by lowering glutamate levels in the blood by intravenous injection of the blood enzyme glutamate oxaloacetate transaminase (GOT). The glutamate-scavenging technology, which is still experimental, validated so far for other brain pathologies, but not tested on MS or EAE yet, may be beneficial for MS too, since it could decrease both the deleterious effects of excess glutamate on neural cells, and the activation of autoimmune T cells by glutamate in the brain. The topic of glutamate scavenging, and also its potential benefit for MS, are discussed towards the end of the review, and call for research in this direction.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, School of Pharmacy, The Hebrew University, Jerusalem, Israel. .,Institute of Gene Therapy, Hadassah Medical Center, 91120, Ein Karem, Jerusalem, Israel.
| |
Collapse
|
23
|
Makinodan M, Ikawa D, Miyamoto Y, Yamauchi J, Yamamuro K, Yamashita Y, Toritsuka M, Kimoto S, Okumura K, Yamauchi T, Fukami SI, Yoshino H, Wanaka A, Kishimoto T. Social isolation impairs remyelination in mice through modulation of IL-6. FASEB J 2016; 30:4267-4274. [PMID: 27613805 DOI: 10.1096/fj.201600537r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022]
Abstract
Recent studies have revealed that social experience affects myelination. These findings have important implications for disorders that feature abnormal myelination, such as multiple sclerosis (MS), as previous studies have shown that psychosocial stress exacerbates the pathobiology of MS. However, most studies have focused on psychosocial stress during the demyelination phase of MS and have not investigated the effects of social experience on remyelination. Thus, the current study sought to determine whether social experience can alter remyelination after myelin depletion. Myelin in the mouse medial prefrontal cortex was depleted with cuprizone, and the effects of subsequent social isolation on remyelination were evaluated. Remyelination was severely impaired in socially isolated mice. Social isolation also increased IL-6 levels in the medial prefrontal cortex, and administration of an IL-6 inhibitor (ND50 = 0.01-0.03 μg for 0.25 ng/ml IL-6) ameliorated remyelination impairments. Consistent with this result, IL-6 administration (ED50 = 0.02-0.06 ng/ml) disturbed remyelination. In addition, neuron-oligodendrocyte coculture experiments showed that IL-6 treatment (ED50 ≤ 0.02 ng/ml) markedly impeded myelination, which was recovered with IL-6 inhibitor administration (ND50 = 0.01-0.03 μg for 0.25 ng/ml IL-6). This study provides the first direct evidence, to our knowledge, that social experience influences remyelination via modulation of IL-6 expression. These findings indicate that psychosocial stress may disturb remyelination through regulation of IL-6 expression in patients with such demyelinating diseases that involve remyelination as MS.-Makinodan, M., Ikawa, D., Miyamoto, Y., Yamauchi, J., Yamamuro, K., Yamashita, Y., Toritsuka, M., Kimoto, S., Okumura, K., Yamauchi, T., Fukami, S., Yoshino, H., Wanaka, A., Kishimoto, T. Social isolation impairs remyelination in mice through modulation of IL-6.
Collapse
Affiliation(s)
- Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan;
| | - Daisuke Ikawa
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; and
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; and
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Yasunori Yamashita
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Kazuki Okumura
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Shin-Ichi Fukami
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Hiroki Yoshino
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University School of Medicine, Nara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
24
|
Yuan XL, Li Y, Pan XH, Zhou M, Gao QY, Li MC. Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells. Mol Biol 2016. [DOI: 10.1134/s0026893316030134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Potter LE, Paylor JW, Suh JS, Tenorio G, Caliaperumal J, Colbourne F, Baker G, Winship I, Kerr BJ. Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis. J Neuroinflammation 2016; 13:142. [PMID: 27282914 PMCID: PMC4901403 DOI: 10.1186/s12974-016-0609-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic neuropathic pain is a common symptom of multiple sclerosis (MS). MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) has been used as an animal model to investigate the mechanisms of pain in MS. Previous studies have implicated sensitization of spinal nociceptive networks in the pathogenesis of pain in EAE. However, the involvement of supraspinal sites of nociceptive integration, such as the primary somatosensory cortex (S1), has not been defined. We therefore examined functional, structural, and immunological alterations in S1 during the early stages of EAE, when pain behaviors first appear. We also assessed the effects of the antidepressant phenelzine (PLZ) on S1 alterations and nociceptive (mechanical) sensitivity in early EAE. PLZ has been shown to restore central nervous system (CNS) tissue concentrations of GABA and the monoamines (5-HT, NA) in EAE. We hypothesized that PLZ treatment would also normalize nociceptive sensitivity in EAE by restoring the balance of excitation and inhibition (E-I) in the CNS. METHODS We used in vivo flavoprotein autofluorescence imaging (FAI) to assess neural ensemble responses in S1 to vibrotactile stimulation of the limbs in early EAE. We also used immunohistochemistry (IHC), and Golgi-Cox staining, to examine synaptic changes and neuroinflammation in S1. Mechanical sensitivity was assessed at the clinical onset of EAE with Von Frey hairs. RESULTS Mice with early EAE exhibited significantly intensified and expanded FAI responses in S1 compared to controls. IHC revealed increased vesicular glutamate transporter (VGLUT1) expression and disrupted parvalbumin+ (PV+) interneuron connectivity in S1 of EAE mice. Furthermore, peri-neuronal nets (PNNs) were significantly reduced in S1. Morphological analysis of excitatory neurons in S1 revealed increased dendritic spine densities. Iba-1+ cortical microglia were significantly elevated early in the disease. Chronic PLZ treatment was found to normalize mechanical thresholds in EAE. PLZ also normalized S1 FAI responses, neuronal morphologies, and cortical microglia numbers and attenuated VGLUT1 reactivity-but did not significantly attenuate the loss of PNNs. CONCLUSIONS These findings implicate a pro-excitatory shift in the E-I balance of the somatosensory CNS, arising early in the pathogenesis EAE and leading to large-scale functional and structural plasticity in S1. They also suggest a novel antinociceptive effect of PLZ treatment.
Collapse
Affiliation(s)
- Liam E Potter
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada
| | - John W Paylor
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Jee Su Suh
- Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada
| | - Jayalakshmi Caliaperumal
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Fred Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Glen Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Ian Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Department of Pharmacology, University of Alberta, Edmonton, AB, T6E 2H7, Canada. .,Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
26
|
Yu JZ, Chen C, Zhang Q, Zhao YF, Feng L, Zhang HF, Meng J, Ma CG, Xiao BG. Changes of synapses in experimental autoimmune encephalomyelitis by using Fasudil. Wound Repair Regen 2016; 24:317-27. [PMID: 26789651 DOI: 10.1111/wrr.12407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
Abstract
The ROCK signaling pathway is involved in numerous fundamental cellular functions such as cell migration, apoptosis, inflammatory responses, and neurite outgrowth. Previous studies demonstrate that Fasudil exhibited therapeutic potential of experimental autoimmune encephalomyelitis (EAE) possibly through immune-modulation and anti-inflammation. In this study, we observed the effect of Fasudil on synaptic protection of EAE mice. Fasudil ameliorated the clinical severity of EAE and inhibited Rho kinase (ROCK), especially ROCK II, in brain and spinal cord of EAE mice. Protein extracts from spinal cord of Fasudil-treated EAE mice promoted the formation of neurite outgrowth when co-cultured with primary neurons, indicating that peripheral administration of Fasudil can enter the central nervous system (CNS) and exhibited its biological effect on the formation of neurite outgrowth. Synapse-related molecule synaptophysin was enhanced, and CRMP-2, AMPA receptor, and GSK-3β were declined in spinal cord of Fasudil-treated mice. Neurotrophic factor BDNF and GDNF as well as immunomodulatory cytokine IL-10 in spinal cord were elevated in Fasudil-treated mice, while inflammatory cytokine IL-17, IL-1β, IL-6, and TNF-α were obviously inhibited, accompanied by the decrease of inflammatory M1 iNOS and the increase of anti-inflammatory M2 Arg-1, providing a microenvironment that contributes to synaptic protection. Our results indicate that Fasudil treatment protected against synaptic damage and promoted synaptic formation, which may be related with increased neurotrophic factors as well as decreased inflammatory microenvironment in the CNS of EAE mice.
Collapse
Affiliation(s)
- Jie-Zhong Yu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Chan Chen
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qiong Zhang
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yong-Fei Zhao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Ling Feng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Hai-Fei Zhang
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Jian Meng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China.,"2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Blakely PK, Hussain S, Carlin LE, Irani DN. Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis. Front Neurosci 2015; 9:344. [PMID: 26500475 PMCID: PMC4598482 DOI: 10.3389/fnins.2015.00344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
The matricellular proteins, secreted protein acidic and rich in cysteine (SPARC) and SPARC-like 1 (SPARCL1), are produced by astrocytes and control excitatory synaptogenesis in the central nervous system. While SPARCL1 directly promotes excitatory synapse formation in vitro and in the developing nervous system in vivo, SPARC specifically antagonizes the synaptogenic actions of SPARCL1. We hypothesized these proteins also help maintain existing excitatory synapses in adult hosts, and that local inflammation in the spinal cord alters their production in a way that dynamically modulates motor synapses and impacts the severity of paralysis during experimental autoimmune encephalomyelitis (EAE) in mice. Using a spontaneously remitting EAE model, paralysis severity correlated inversely with both expression of synaptic proteins and the number of synapses in direct contact with the perikarya of motor neurons in spinal gray matter. In both remitting and non-remitting EAE models, paralysis severity also correlated inversely with sparcl1:sparc transcript and SPARCL1:SPARC protein ratios directly in lumbar spinal cord tissue. In vitro, astrocyte production of both SPARCL1 and SPARC was regulated by T cell-derived cytokines, causing dynamic modulation of the SPARCL1:SPARC expression ratio. Taken together, these data support a model whereby proinflammatory cytokines inhibit SPARCL1 and/or augment SPARC expression by astrocytes in spinal gray matter that, in turn, cause either transient or sustained synaptic retraction from lumbar spinal motor neurons thereby regulating hind limb paralysis during EAE. Ongoing studies seek ways to alter this SPARCL1:SPARC expression ratio in favor of synapse reformation/maintenance and thus help to modulate neurologic deficits during times of inflammation. This could identify new astrocyte-targeted therapies for diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Pennelope K Blakely
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Shabbir Hussain
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Lindsey E Carlin
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School Ann Arbor, MI, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|