1
|
Lin CC, Fang KC, Balbo I, Liang TY, Liu CW, Liu WC, Wang YM, Hung YL, Yang KC, Geng SK, Ni CL, Driscoll CP, Ruff DS, Kumar A, Amokrane N, Desai N, Faust PL, Louis ED, Kuo SH, Pan MK. Reduced cerebellar rhythm by climbing fiber denervation is linked to motor rhythm deficits in mice and ataxia severity in patients. Sci Transl Med 2025; 17:eadk3922. [PMID: 40009696 DOI: 10.1126/scitranslmed.adk3922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/18/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Cerebellar ataxia results from various genetic and nongenetic disorders and is characterized by involuntary movements that impair precision and motor rhythm. Here, we report that climbing fiber (CF) denervation is a common pathophysiology underlying motor rhythm loss in cerebellar ataxia. By examining cerebellar pathology in patients with spinocerebellar ataxia (SCA) types 1, 2, and 6 and multiple system atrophy, we identified CF degeneration with synaptic loss as a shared pathophysiology. Optogenetic silencing of CF synaptic activity in mice induced ataxia-like motor dysfunctions and loss of motor precision. In addition, CF silencing resulted in cerebellar and motor rhythm loss, another core feature of ataxia. This rhythm loss was predominantly CF dependent and resistant to Purkinje cell-specific lesioning by diphtheria toxin. Correspondingly, two patients with inferior olive pathology, the brain site that provides CFs to Purkinje cells, presented with ataxia and cerebellar rhythm loss. Patients with genetic or nongenetic cerebellar ataxia exhibited cerebellar rhythm loss that correlated with the Scale for the Assessment and Rating of Ataxia. Chemogenetic stimulation of CFs improved cerebellar and motor rhythms as well as motor performance in the SCA type 1 mouse model of ataxia. These results suggest that CF-dependent cerebellar rhythm loss occurs across different types of cerebellar ataxia, contributing to motor imprecision and motor rhythm loss, two defining features of ataxia.
Collapse
Affiliation(s)
- Chih-Chun Lin
- Ataxia Center, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA
| | - Ke-Chu Fang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
| | - Ilaria Balbo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA
| | - Ting-Yu Liang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Chia-Wei Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
| | - Wen-Chuan Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Yi-Mei Wang
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 64041, Taiwan
| | - Yen-Ling Hung
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Scott Kun Geng
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Chun-Lun Ni
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher P Driscoll
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA
| | - David S Ruff
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA
| | - Ami Kumar
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA
| | - Nadia Amokrane
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA
| | - Natasha Desai
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA
| | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 64041, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10638, Taiwan
| |
Collapse
|
2
|
Sasun AR, Raghuveer R, Qureshi MI. Benefits of Targeting Proprioceptors to Improve the Dynamic Trunk Balance and Quality of Life of Patients With Cerebellar Ataxia: A Case Report. Cureus 2025; 17:e78890. [PMID: 40091941 PMCID: PMC11909615 DOI: 10.7759/cureus.78890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Cerebellar ataxia is characterized by a variety of motor and non-motor manifestations. This case report aims to present a case of cerebellar ataxia secondary to cerebellar infarct and the pivotal role of physiotherapy in gaining patients' functional recovery, thereby improving their dynamic trunk balance and quality of life. We glance at the case of a 50-year-old man, complaining of bilateral upper and lower limb weakness with clumsy balance while sitting and walking. This case report presents neurophysiotherapy rehabilitation, specifically targeting the proprioceptors to manage the condition. Interventions to improve proprioception include proprioceptive neuromuscular facilitation (PNF), sit-ups, four-point kneeling exercises, standing with upper limb movement, standing with upper limb resisted movement, and scapular retraction and protraction. Outcome measures like the Scale of Assessment and Rating of Ataxia (SARA), Berg Balance Scale (BBS), Barthel Index (BI), Trunk Impairment Scale (TIS), and World Health Organization Quality of Life (WHO-QOL) Scale were assessed. At the end of six weeks, there was a significant improvement in clinical outcome scores. The duration of rehabilitation was five days/week for a total of six weeks. We infer that the patient's symptoms ultimately improved by physiotherapy rehabilitation. Additionally, it boosted his quality of life and increased his functional independence.
Collapse
Affiliation(s)
- Anam R Sasun
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| | - Raghumahanti Raghuveer
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| | - Moh'd Irshad Qureshi
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| |
Collapse
|
3
|
Brito R, Fabrício JV, Araujo A, Sacchi M, Baltar A, Lima FA, Ribeiro AC, Sousa B, Santos C, Tanaka C, Monte-Silva K. Differential Effects of Cerebellar Transcranial Direct Current Stimulation with Gait Training on Functional Mobility, Balance, and Ataxia Symptoms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2457-2467. [PMID: 39367955 DOI: 10.1007/s12311-024-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cerebellar transcranial direct current stimulation (ctDCS) has emerged as a promising, non-invasive, and safe neuromodulatory intervention capable of reducing ataxia symptoms and restoring cerebellum-motor connectivity. However, previous studies have only applied ctDCS in isolation, without association with specific training. This study aimed to assess the effect of ctDCS combined with gait training on functional mobility, balance, and symptoms and severity of ataxia. A randomized, triple-blind, sham-controlled, bi-center clinical trial was conducted with forty-four adults with cerebellar ataxia. Volunteers were randomized to receive five daily sessions of either real ctDCS (n = 11; 2 mA for 25 min) or sham ctDCS (n = 11) during gait training. Functional mobility, balance, and symptoms and severity of ataxia were assessed using the Time Up and Go test, the MiniBESTest, and the Scale for the Assessment and Rating of Ataxia (SARA), respectively, before and after the interventions. Both groups showed improvement in functional mobility, but there was no significant difference between the ctDCS and sham groups. However, the ctDCS group demonstrated significant improvements in cerebellar ataxia severity as reflected by SARA scores, particularly in tests of stance, sitting, speech disturbance, nose-finger test, and heel-shin slide test. Notably, no improvements were observed in balance. This study indicates that while ctDCS combined with gait training may improve specific symptoms of cerebellar ataxia, it does not significantly enhance overall functional mobility compared to sham treatment.
Collapse
Affiliation(s)
- Rodrigo Brito
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Recife, Brazil
| | - João Victor Fabrício
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Aurine Araujo
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | | | - Adriana Baltar
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Recife, Brazil
| | - Fernanda Albuquerque Lima
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Ana Cecília Ribeiro
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Bárbara Sousa
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Camilla Santos
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Clarice Tanaka
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Recife, Brazil
- Universidade de São Paulo, São Paulo, Brazil
| | - Kátia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil.
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Recife, Brazil.
| |
Collapse
|
4
|
Kang J, Lee H, Yu S, Lee M, Kim HJ, Kwon R, Kim S, Fond G, Boyer L, Rahmati M, Koyanagi A, Smith L, Nehs CJ, Kim MS, Sánchez GFL, Dragioti E, Kim T, Yon DK. Effects and safety of transcranial direct current stimulation on multiple health outcomes: an umbrella review of randomized clinical trials. Mol Psychiatry 2024; 29:3789-3801. [PMID: 38816583 DOI: 10.1038/s41380-024-02624-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Transcranial direct current stimulation (tDCS), which delivers a direct current to the brain, emerged as a non-invasive potential therapeutic in treating a range of neurological and neuropsychiatric disorders. However, a comprehensive quantitative evidence synthesis on the effects of tDCS on a broad range of mental illnesses is lacking. Here, we systematically assess the certainty of the effects and safety of tDCS on several health outcomes using an umbrella review of randomized controlled trials (RCTs). The methodological quality of each included original meta-analysis was assessed by the A Measurement Tool for Assessing Systematic Reviews 2 (AMSTAR2), and the certainty of the evidence for each effect was evaluated with Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). We followed an a priori protocol (PROSPERO CRD42023458700). We identified 15 meta-analyses of RCTs (AMSTAR 2; high 3, moderate 3, and low 9) that included 282 original articles, covering 22 unique health endpoints across 22 countries and six continents. From meta-analyses of RCTs supported by very low to high certainty of evidence, it was found that tDCS improved symptoms related to post-stroke, including post-stroke depression scale score (equivalent standardized mean difference [eSMD], 1.61 [95% confidence level, 0.72-2.50]; GRADE=moderate), activities of daily living independence (7.04 [3.41-10.67]; GRADE=high), motor recovery of upper and lower extremity (upper extremity: 0.15 [0.06-0.24], GRADE=high; lower extremity: 0.10 [0.03-0.16], GRADE=high), swallowing performance (GRADE=low), and spasticity (GRADE=moderate). In addition, tDCS had treatment effects on symptoms of several neurological and neuropsychiatric disorders, including obsessive-compulsive disorder (0.81 [0.44-1.18]; GRADE=high), pain in fibromyalgia (GRADE=low), disease of consciousness (GRADE=low), insight score (GRADE=moderate) and working memory (0.34 [0.01-0.67]; GRADE=high) in schizophrenia, migraine-related pain (-1.52 [-2.91 to -0.13]; GRADE=high), attention-deficit/hyperactivity disorder (reduction in overall symptom severity: 0.24 [0.04-0.45], GRADE=low; reduction in inattention: 0.56 [0.02-1.11], GRADE=low; reduction in impulsivity: 0.28 [0.04-0.51], GRADE=low), depression (GRADE=low), cerebellar ataxia (GRADE=low), and pain (GRADE=very low). Importantly, tDCS induced an increased number of reported cases of treatment-emergent mania or hypomania (0.88 [0.62-1.13]; GRADE=moderate). We found varied levels of evidence for the effects of tDCS with multiple neurological and neuropsychiatric conditions, from very low to high certainty of evidence. tDCS was effective for people with stroke, obsessive-compulsive disorder, fibromyalgia, disease of consciousness, schizophrenia, migraine, attention-deficit/hyperactivity disorder, depression, cerebellar ataxia, and pain. Therefore, these findings suggest the benefit of tDCS for several neurological and neuropsychiatric disorders; however, further studies are needed to understand the underlying mechanism and optimize its therapeutic potential.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Hyeri Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Seungyeong Yu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Myeongcheol Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hyeon Jin Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Rosie Kwon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Sunyoung Kim
- Department of Family Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Guillaume Fond
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Laurent Boyer
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Masoud Rahmati
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Min Seo Kim
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guillermo F López Sánchez
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, School of Medicine, University of Murcia, Murcia, Spain
| | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Research Laboratory Psychology of Patients, Families, and Health Professionals, Department of Nursing, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea.
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea.
| |
Collapse
|
5
|
Matsugi A, Tsuzaki A, Jinai S, Okada Y, Mori N, Hosomi K. Cerebellar repetitive transcranial magnetic stimulation has no effect on contraction-induced facilitation of corticospinal excitability. PLoS One 2024; 19:e0310173. [PMID: 39485742 PMCID: PMC11530076 DOI: 10.1371/journal.pone.0310173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/27/2024] [Indexed: 11/03/2024] Open
Abstract
This study aimed to investigate whether the cerebellum contributes to contraction-induced facilitation (CIF) of contralateral corticospinal excitability. To this end, repetitive cerebellar transcranial magnetic stimulation (TMS) was used to test whether it modulates CIF. Overall, 20 healthy young individuals participated in the study. Single-pulse TMS was applied to the left primary motor cortex to induce motor-evoked potentials (MEP) on electromyography of the right first dorsal interosseous (FDI) muscle to test corticospinal excitability. This measurement was conducted during contraction (10% maximum voluntary contraction [MVC]) and rest (0% MVC) of the FDI muscle. CIF, cerebellar brain inhibition (CBI), cortical silent period (cSP), and resting motor threshold (rMT) were measured before and after low-frequency repetitive TMS (crTMS) of the right cerebellum to downregulate cerebellar output. The CIF (contraction/rest of the MEP), CBI (conditioned/unconditioned MEP) during contraction, cSP, and rMT were not affected by crTMS. At rest, CBI was decreased. These findings indicated that the primary motor cortex function for the increase in corticospinal excitability was not affected by crTMS. This study contributes to our understanding of the role of the cerebellum in motor control. Additionally, it may inform decision-making for the site of cerebellar ataxia treatment using non-invasive brain stimulation.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Aki Tsuzaki
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Soichi Jinai
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Yohei Okada
- Neurorehabilitation Research Center of Kio University, Koryo-cho, Kitakatsuragi-gun, Nara, Japan
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Department of Neurosurgery, Toyonaka Municipal Hospital, Toyonaka City, Osaka, Japan
| |
Collapse
|
6
|
Matsugi A, Ohtsuka H, Bando K, Kondo Y, Kikuchi Y. Effects of Non-Invasive Brain Stimulation for Degenerative Cerebellar Ataxia: A Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2024; 11:1323-1334. [PMID: 39221650 PMCID: PMC11542298 DOI: 10.1002/mdc3.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis aimed to assess the effectiveness of non-invasive brain stimulation (NIBS), including repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES), as a neurological intervention for degenerative cerebellar ataxia (DCA) based on preregistration (PROSPERO: CRD42023379192). OBJECTIVE We aimed to explore clinical outcomes and examine the parameters associated with NIBS efficacy in DCA patients. METHODS The PubMed, Cochrane Library, CHINAL, and PEDro databases were searched for relevant randomized controlled trials (RCTs). Data extraction, quality assessment, and heterogeneity analyses were conducted; the Grading, Recommendations, Assessment, Development, and Evaluation was used to assess the quality of evidence and a meta-analysis was performed. RESULTS Seventeen RCTs that included 661 patients on the scale for assessment and rating of ataxia (SARA) and 606 patients on the International Cooperative Ataxia Rating Scale (ICARS) were included. These RCTs showed a serious risk of bias (RoB) and low certainty of evidence for both outcomes. NIBS significantly reduced SARA (MD = -2.49, [95% confidence interval: -3.34, -1.64]) and ICARS (-5.27 [-7.06, -3.47]); the subgroup analysis showed significant effects: rTMS and tES reduced both outcomes. However, there were no significant differences in the effects of rTMS and tES. Additional subgroup analysis indicated the impact of rTMS frequency and the total number of tES sessions on ataxia. CONCLUSION Non-invasive brain stimulation may reduce ataxia in DCA patients, but the estimated effect size may change in future studies because the RoB was serious and the certainty of evidence was low, and the heterogeneity was high. To establish evidence for selecting NIBS methods and parameters, continued high-quality RCTs are required.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of RehabilitationShijonawate Gakuen UniversityDaitōJapan
| | - Hiroyuki Ohtsuka
- Department of Physical TherapyShowa University School of Nursing and Rehabilitation SciencesTokyoJapan
| | - Kyota Bando
- National Center HospitalNational Center of Neurology and PsychiatryTokyoJapan
| | - Yuki Kondo
- National Center HospitalNational Center of Neurology and PsychiatryTokyoJapan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological DisordersInstitute of Brain and Blood Vessels Mihara Memorial HospitalIsesakiJapan
| |
Collapse
|
7
|
Jahromi MM, Vlček P, Kvašňák E, Lippertová MG. Posture enhancement with cerebellum transcranial electrical stimulation: a systematic review of current methods and findings. Exp Brain Res 2024; 242:991-1009. [PMID: 38546838 DOI: 10.1007/s00221-024-06808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 07/13/2024]
Abstract
Recently, transcranial electrical stimulation (tES) has gained increasing popularity among researchers, especially for recovery and improvement, but interpretation of these results is difficult due to variations in study methods and outcome measurements. The main goal of this study was to better understand the postural and balance indicators affected by cerebellar tES, as the cerebellum is the main brain region responsible for controlling balance. For this systematic literature review, three databases were searched for articles where the cerebellum was stimulated by any type of tES in either healthy participants or those with neurologic disorders. Postural, dynamic, and/or static stability measurements were recorded, and risk of bias was assessed on the PEDro scale. A total of 21 studies were included in the analysis. 17 studies reported improvements after application of tES. 14 studies stimulated the cerebellum unilaterally and 15 used this modality for 20 min. Moreover, all studies exclusively used transcranial direct current as the type of stimulation. Evaluation of PEDro results showed that studies included in the analysis utilized good methodology. Although there were some inconsistencies in study results, overall, it was demonstrated that tES can improve balance and postural index under both healthy and neurological conditions. Further research of bilateral cerebellar stimulation or the use of transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial pulsed current stimulation is needed for a more comprehensive assessment of the potential positive effects of cerebellar tES on the balance system.
Collapse
Affiliation(s)
| | - Přemysl Vlček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
- Applied Brain Electroencephalography, National Institute of Mental Health, Topolova 748, 25067, Klecany, Czech Republic.
| | - Eugen Kvašňák
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | |
Collapse
|
8
|
Libri I, Cantoni V, Benussi A, Rivolta J, Ferrari C, Fancellu R, Synofzik M, Alberici A, Padovani A, Borroni B. Comparing Cerebellar tDCS and Cerebellar tACS in Neurodegenerative Ataxias Using Wearable Sensors: A Randomized, Double-Blind, Sham-Controlled, Triple-Crossover Trial. CEREBELLUM (LONDON, ENGLAND) 2024; 23:570-578. [PMID: 37349632 PMCID: PMC10951038 DOI: 10.1007/s12311-023-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Cerebellar transcranial direct current stimulation (tDCS) represents a promising therapeutic approach for both motor and cognitive symptoms in neurodegenerative ataxias. Recently, transcranial alternating current stimulation (tACS) was also demonstrated to modulate cerebellar excitability by neuronal entrainment. To compare the effectiveness of cerebellar tDCS vs. cerebellar tACS in patients with neurodegenerative ataxia, we performed a double-blind, randomized, sham controlled, triple cross-over trial with cerebellar tDCS, cerebellar tACS or sham stimulation in twenty-six participants with neurodegenerative ataxia. Before entering the study, each participant underwent motor assessment with wearable sensors considering gait cadence (steps/minute), turn velocity (degrees/second) and turn duration (seconds), and a clinical evaluation with the scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS). After each intervention, participants underwent the same clinical assessment along with cerebellar inhibition (CBI) measurement, a marker of cerebellar activity. The gait cadence, turn velocity, SARA, and ICARS significantly improved after both tDCS and tACS, compared to sham stimulation (all p<0.010). Comparable effects were observed for CBI (p<0.001). Overall, tDCS significantly outperformed tACS on clinical scales and CBI (p<0.01). A significant correlation between changes of wearable sensors parameters from baseline and changes of clinical scales and CBI scores was detected. Cerebellar tDCS and cerebellar tACS are effective in ameliorating symptoms of neurodegenerative ataxias, with the former being more beneficial than the latter. Wearable sensors may serve as rater-unbiased outcome measures in future clinical trials. ClinicalTrial.gov Identifier: NCT05621200.
Collapse
Affiliation(s)
- Ilenia Libri
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Jasmine Rivolta
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberto Fancellu
- UO Neurologia, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany
- German Research Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Antonella Alberici
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy.
| |
Collapse
|
9
|
Qiu YT, Chen Y, Tan HX, Su W, Guo QF, Gao Q. Efficacy and Safety of Repetitive Transcranial Magnetic Stimulation in Cerebellar Ataxia: a Systematic Review and Meta-analysis. CEREBELLUM (LONDON, ENGLAND) 2024; 23:243-254. [PMID: 36604400 DOI: 10.1007/s12311-022-01508-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Cerebellar ataxia(CA) is defined as a degenerative disease of the nervous system. Repetitive transcranial magnetic stimulation (rTMS) has been a promising treatment for neurological and psychiatric diseases. Hence, to find out whether cerebellar rTMS impacts CA as a potential therapy, we performed a systematic review and meta-analysis. Qualified studies through a systematic search were retrieved for randomized controlled trials (RCTs) using acknowledged databases. Review Manager 5.4 software was employed to synthesize the data. A total of seven studies were identified as eligible and included in the quantitative review. Comparing real and sham-rTMS interventions, the utilization of rTMS on cerebellum improved the scale for the assessment and rating of ataxia (SARA) (SMD - 0.87, 95% CI - 1.41 to - 0.34; P = 0.001; I2 = 62%), the International Cooperative Ataxia Rating Scale (ICARS) (SMD - 1.06, 95% CI - 1.47 to - 0.64; P < 0.00001; I2 = 0%) and Berg balance Scale (BBS) (SMD 0.76, 95% CI 0.33 to 1.19; P = 0.0005; I2 = 39%). The subgroup analysis demonstrated high-frequency of rTMS had a positive effect (SMD - 1.28, 95% CI - 1.82 to - 0.74; P < 0.00001; I2 = 0%). For the safety, the incidence of adverse events between the two groups was not significantly different (OR 1.73, 95% CI 0.55 to 5.46; P = 0.35; I2 = 0%). In conclusion, this meta-analysis provided limited evidence, suggesting a possible strategy that rTMS over the cerebellum could be a viable therapy for symptoms associated with CA. Besides, rTMS intervention was well-attended and did not result in unanticipated negative effects.
Collapse
Affiliation(s)
- Yi-Tong Qiu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Key Laboratory of Rehabilitation Medicine of Sichuan Province, Chengdu, Sichuan Province, China
| | - Yi Chen
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Key Laboratory of Rehabilitation Medicine of Sichuan Province, Chengdu, Sichuan Province, China
| | - Hui-Xin Tan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Key Laboratory of Rehabilitation Medicine of Sichuan Province, Chengdu, Sichuan Province, China
| | - Wei Su
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Key Laboratory of Rehabilitation Medicine of Sichuan Province, Chengdu, Sichuan Province, China
| | - Qi-Fan Guo
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Key Laboratory of Rehabilitation Medicine of Sichuan Province, Chengdu, Sichuan Province, China
| | - Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China.
- Key Laboratory of Rehabilitation Medicine of Sichuan Province, Chengdu, Sichuan Province, China.
| |
Collapse
|
10
|
Gong C, Long Y, Peng XM, Hu H, Chen J, Xiao L, Zhong YB, Wang MY, Luo Y. Efficacy and safety of noninvasive brain stimulation for patients with cerebellar ataxia: a systematic review and meta-analysis of randomized controlled trials. J Neurol 2023; 270:4782-4799. [PMID: 37460852 DOI: 10.1007/s00415-023-11799-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND With the development of noninvasive brain stimulation (NIBS) techniques, many researchers have turned their attention to NIBS as a promising treatment for cerebellar ataxia. Therefore, we conducted a systematic review and meta-analysis to investigate the efficacy and safety of NIBS in treating patients with cerebellar ataxia. METHODS Databases, including PubMed, Embase, Web of Science, Medline, and Cochrane Library, were retrieved for relevant randomized controlled trials (RCTs). Two researchers conducted literature screening, data extraction, literature quality assessment, and heterogeneity analysis between RCTs. According to the magnitude of heterogeneity I2, an appropriate data analysis model was selected for meta-analysis. RESULTS A total of 14 RCTs including 406 patients with cerebellar ataxia met the inclusion criteria. The included RCTs had an overall low-risk bias and an intermediate level of evidence recommendation for key outcome indicators, such as the scale for the assessment and rating of ataxia (SARA) and international cooperative ataxia rating scale (ICARS). The results of meta-analysis showed that cerebellar NIBS, including transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), was effective in reducing the SARA scores (MD = - 3.45, 95%CI = [- 4.85, - 2.50], P < 0.05) and ICARS scores (MD = - 10.87, 95%CI = [- 14.46, - 7.28], P < 0.05) in patients with cerebellar ataxia compared to controls. Subgroup analysis showed that the efficacy of tDCS and rTMS was statistically different in patients with cerebellar ataxia as assessed by the SARA scores, but not by the ICARS scores. There was statistically significant difference in the efficacy of NIBS for the treatment of cerebellar ataxia caused by different etiologies. As for safety, 8 of 14 included studies documented the adverse effects of NIBS, and only two studies reported the mild adverse events of NIBS. CONCLUSIONS Cerebellar NIBS was safe and effective in improving the motor coordination of patients with cerebellar ataxia, and tDCS was better than rTMS in the treatment of cerebellar ataxia. In addition, the efficacy of NIBS was different in the treatment of different types of cerebellar ataxia.
Collapse
Affiliation(s)
- Cheng Gong
- Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
| | - Yi Long
- Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
| | - Xu-Miao Peng
- Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
| | - Hao Hu
- Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
| | - Jing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China
| | - Li Xiao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China
| | - Yan-Biao Zhong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China.
| | - Mao-Yuan Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China.
| | - Yun Luo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China.
| |
Collapse
|
11
|
Naeije G, Rovai A, Destrebecq V, Trotta N, De Tiège X. Anodal Cerebellar Transcranial Direct Current Stimulation Reduces Motor and Cognitive Symptoms in Friedreich's Ataxia: A Randomized, Sham-Controlled Trial. Mov Disord 2023; 38:1443-1450. [PMID: 37310043 DOI: 10.1002/mds.29453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Friedreich Ataxia is the most common recessive ataxia with only one therapeutic drug approved solely in the United States. OBJECTIVE The aim of this work was to investigate whether anodal cerebellar transcranial direct current stimulation (ctDCS) reduces ataxic and cognitive symptoms in individuals with Friedreich's ataxia (FRDA) and to assess the effects of ctDCS on the activity of the secondary somatosensory (SII) cortex. METHODS We performed a single-blind, randomized, sham-controlled, crossover trial with anodal ctDCS (5 days/week for 1 week, 20 min/day, density current: 0.057 mA/cm2 ) in 24 patients with FRDA. Each patient underwent a clinical evaluation (Scale for the Assessment and Rating of Ataxia, composite cerebellar functional severity score, cerebellar cognitive affective syndrome scale) before and after anodal and sham ctDCS. Activity of the SII cortex contralateral to a tactile oddball stimulation of the right index finger was evaluated with brain functional magnetic resonance imaging at baseline and after anodal/sham ctDCS. RESULTS Anodal ctDCS led to a significant improvement in the Scale for the Assessment and Rating of Ataxia (-6.5%) and in the cerebellar cognitive affective syndrome scale (+11%) compared with sham ctDCS. It also led to a significant reduction in functional magnetic resonance imaging signal at the SII cortex contralateral to tactile stimulation (-26%) compared with sham ctDCS. CONCLUSIONS One week of treatment with anodal ctDCS reduces motor and cognitive symptoms in individuals with FRDA, likely by restoring the neocortical inhibition normally exerted by cerebellar structures. This study provides class I evidence that ctDCS stimulation is effective and safe in FRDA. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gilles Naeije
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Antonin Rovai
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| | - Virginie Destrebecq
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Nicola Trotta
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| |
Collapse
|
12
|
Matsugi A, Ohtsuka H, Bando K, Kondo Y, Kikuchi Y. Effects of non-invasive brain stimulation for degenerative cerebellar ataxia: a protocol for a systematic review and meta-analysis. BMJ Open 2023; 13:e073526. [PMID: 37385745 PMCID: PMC10314638 DOI: 10.1136/bmjopen-2023-073526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
INTRODUCTION To date, the medical and rehabilitation needs of people with degenerative cerebellar ataxia (DCA) are not fully met because no curative treatment has yet been established. Movement disorders such as cerebellar ataxia and balance and gait disturbance are common symptoms of DCA. Recently, non-invasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation and transcranial electrical stimulation, have been reported as possible intervention methods to improve cerebellar ataxia. However, evidence of the effects of NIBS on cerebellar ataxia, gait ability, and activity of daily living is insufficient. This study will aim to systematically evaluate the clinical effects of NIBS on patients with DCA. METHODS AND ANALYSIS We will conduct a preregistered systematic review and meta-analysis based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. We will include randomised controlled trials to assess the effects of NIBS on patients with DCA. The primary clinical outcome will be cerebellar ataxia, as measured by the Scale for Assessment and Rating of Ataxia and the International Cooperative Ataxia Rating Scale. The secondary outcomes will include gait speed, functional ambulatory capacity and functional independence measure, as well as any other reported outcomes that the reviewer considers important. The following databases will be searched: PubMed, Cochrane Central Register of Controlled Trials, CINAHL and PEDro. We will assess the strength of the evidence included in the studies and estimate the effects of NIBS. ETHICS AND DISSEMINATION Because of the nature of systematic reviews, no ethical issues are anticipated. This systematic review will provide evidence on the effects of NIBS in patients with DCA. The findings of this review are expected to contribute to clinical decision-making towards selecting NIBS techniques for treatment and generating new clinical questions to be addressed. PROSPERO REGISTRATION NUMBER CRD42023379192.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daito, Japan
| | - Hiroyuki Ohtsuka
- Department of Rehabilitation, School of Nursing and Rehabilitation Sciences, Showa University, Midoriku, Yokohama-shi, Kanagawa, Japan
| | - Kyota Bando
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuki Kondo
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological Disorders, Mihara Memorial Hospital, Isesaki, Gunma, Japan
| |
Collapse
|
13
|
Neuromodulation of the cerebellum: the importance of the assessment of the cerebellar reserve. J Neurol 2023; 270:1774-1775. [PMID: 36308528 DOI: 10.1007/s00415-022-11455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 10/31/2022]
|
14
|
Radmard S, Zesiewicz TA, Kuo SH. Evaluation of Cerebellar Ataxic Patients. Neurol Clin 2023; 41:21-44. [PMID: 36400556 PMCID: PMC10354692 DOI: 10.1016/j.ncl.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebellar ataxia results from damage to the cerebellum and presents as movement incoordination and variability, gait impairment, and slurred speech. Patients with cerebellar ataxia can also have cognitive and mood changes. Although the identification of causes for cerebellar ataxia can be complex, age of presentation, chronicity, family history, and associated movement disorders may provide diagnostic clues. There are many genetic causes for cerebellar ataxia, and the common autosomal dominant and recessive ataxia are due to genetic repeat expansions. Step-by-step approach will lead to the identification of the causes. Symptomatic and potential disease-modifying therapies may benefit patients with cerebellar ataxia.
Collapse
Affiliation(s)
- Sara Radmard
- Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, Floor 3, New York, NY 10032, USA.
| | - Theresa A Zesiewicz
- Department of Neurology, University of South Florida (USF), USF Ataxia Research Center, Tampa, FL, USA; James A Haley Veteran's Hospital, Tampa, FL, USA
| | - Sheng-Han Kuo
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, 650 West 168th Street, Room 305, New York, NY 10032, USA.
| |
Collapse
|
15
|
Cabaraux P, Agrawal SK, Cai H, Calabro RS, Casali C, Damm L, Doss S, Habas C, Horn AKE, Ilg W, Louis ED, Mitoma H, Monaco V, Petracca M, Ranavolo A, Rao AK, Ruggieri S, Schirinzi T, Serrao M, Summa S, Strupp M, Surgent O, Synofzik M, Tao S, Terasi H, Torres-Russotto D, Travers B, Roper JA, Manto M. Consensus Paper: Ataxic Gait. CEREBELLUM (LONDON, ENGLAND) 2022; 22:394-430. [PMID: 35414041 DOI: 10.1007/s12311-022-01373-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.
Collapse
Affiliation(s)
- Pierre Cabaraux
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.
| | | | - Huaying Cai
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Loic Damm
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Sarah Doss
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Christophe Habas
- Université Versailles Saint-Quentin, Versailles, France.,Service de NeuroImagerie, Centre Hospitalier National des 15-20, Paris, France
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig Maximilians-University Munich, Munich, Germany
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Vito Monaco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Petracca
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Ashwini K Rao
- Department of Rehabilitation & Regenerative Medicine (Programs in Physical Therapy), Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serena Ruggieri
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy.,Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.,Movement Analysis LAB, Policlinico Italia, Rome, Italy
| | - Susanna Summa
- MARlab, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig Maximilians-University Munich, Munich, Germany
| | - Olivia Surgent
- Neuroscience Training Program and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany
| | - Shuai Tao
- Dalian Key Laboratory of Smart Medical and Health, Dalian University, Dalian, 116622, China
| | - Hiroo Terasi
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Diego Torres-Russotto
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Brittany Travers
- Department of Kinesiology and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaimie A Roper
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Mario Manto
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.,Service Des Neurosciences, University of Mons, UMons, Mons, Belgium
| |
Collapse
|
16
|
Bhidayasiri R, Maytharakcheep S, Phumphid S, Maetzler W. Improving functional disability in patients with tremor: A clinical perspective of the efficacies, considerations, and challenges of assistive technology. J Neurol Sci 2022; 435:120197. [DOI: 10.1016/j.jns.2022.120197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
|
17
|
Ghanekar SD, Kuo SH, Staffetti JS, Zesiewicz TA. Current and Emerging Treatment Modalities for Spinocerebellar Ataxias. Expert Rev Neurother 2022; 22:101-114. [PMID: 35081319 DOI: 10.1080/14737175.2022.2029703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Spinocerebellar ataxias (SCA) are a group of rare neurodegenerative diseases that dramatically affect the lives of affected individuals and their families. Despite having a clear understanding of SCA's etiology, there are no current symptomatic or neuroprotective treatments approved by the FDA. AREAS COVERED Research efforts have greatly expanded the possibilities for potential treatments, including both pharmacological and non-pharmacological interventions. Great attention is also being given to novel therapeutics based in gene therapy, neurostimulation, and molecular targeting. This review article will address the current advances in the treatment of SCA and what potential interventions are on the horizon. EXPERT OPINION SCA is a highly complex and multifaceted disease family with the majority of research emphasizing symptomatic pharmacologic therapies. As pre-clinical trials for SCA and clinical trials for other neurodegenerative conditions illuminate the efficacy of disease modifying therapies such as AAV-mediated gene therapy and ASOs, the potential for addressing SCA at the pre-symptomatic stage is increasingly promising.
Collapse
Affiliation(s)
- Shaila D Ghanekar
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, New York, New York, USA
| | - Joseph S Staffetti
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| | - Theresa A Zesiewicz
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| |
Collapse
|
18
|
Cerebellar tDCS as Therapy for Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2022; 21:755-761. [PMID: 35060077 DOI: 10.1007/s12311-021-01357-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
In recent years, a growing body of literature has investigated the use of non-invasive brain stimulation (NIBS) techniques to influence cerebellar activity and the effects of cerebellar stimulation on other brain regions through its multiple complex projections. From the early 1990s, with the discovery of the so-called cerebellar inhibition (CBI), several studies have focused their attention on the use of cerebellar NIBS as treatment for different motor disorders. Cerebellar ataxias (CAs) represent the prototypical clinical manifestation of cerebellar alterations, but other movement disorders, such as Parkinson's disease, essential tremor, and dystonia have also been associated with alterations of networks which include the cerebellum, or of the cerebellum itself. Cerebellar transcranial direct current stimulation (ctDCS) could indeed represent an economical, non-invasive therapeutic tool with minimal side effects, thus improving the clinical management of patients and their quality of life. Studies show that ctDCS is effective as a therapeutic option for motor symptoms in patients with CAs, and especially in those with less severe forms, suggesting that ctDCS efficacy could result from augmented neuronal compensation, which itself relies on preserved cerebellar volume. Evidence for the efficacy of ctDCS is less conclusive for the other aforementioned motor disorders, although preliminary results are promising. Future studies should adopt more rigorous methods (e.g., larger sample sizes, double blinding, better characterization of the sample, reliable biomarkers), in order to allow the scientific community to derive higher-quality evidence on the efficacy of ctDCS as a therapeutic option for motor disorders.
Collapse
|
19
|
Zhang M, He T, Wang Q. Effects of Non-invasive Brain Stimulation on Multiple System Atrophy: A Systematic Review. Front Neurosci 2021; 15:771090. [PMID: 34966257 PMCID: PMC8710715 DOI: 10.3389/fnins.2021.771090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background/Objective: Multiple system atrophy (MSA) refers to a progressive neurodegenerative disease characterized by autonomic dysfunction, parkinsonism, cerebellar ataxia, as well as cognitive deficits. Non-invasive brain stimulation (NIBS) has recently served as a therapeutic technique for MSA by personalized stimulation. The primary aim of this systematic review is to assess the effects of NIBS on two subtypes of MSA: parkinsonian-type MSA (MSA-P) and cerebellar-type MSA (MSA-C). Methods: A literature search for English articles was conducted from PubMed, Embase, Web of Science, Cochrane Library, CENTRAL, CINAHL, and PsycINFO up to August 2021. Original articles investigating the therapeutics application of NIBS in MSA were screened and analyzed by two independent reviewers. Moreover, a customized form was adopted to extract data, and the quality of articles was assessed based on the PEDro scale for clinical articles. Results: On the whole, nine articles were included, i.e., five for repetitive transcranial magnetic stimulation (rTMS), two for transcranial direct current stimulation (tDCS), one for paired associative stimulation, with 123 patients recruited. The mentioned articles comprised three randomized controlled trials, two controlled trials, two non-controlled trials, and two case reports which assessed NIBS effects on motor function, cognitive function, and brain modulatory effects. The majority of articles demonstrated significant motor symptoms improvement and increased cerebellar activation in the short term after active rTMS. Furthermore, short-term and long-term effects on improvement of motor performance were significant for tDCS. As opposed to the mentioned, no significant change of motor cortical excitability was reported after paired associative stimulation. Conclusion: NIBS can serve as a useful neurorehabilitation strategy to improve motor and cognitive function in MSA-P and MSA-C patients. However, further high-quality articles are required to examine the underlying mechanisms and standardized protocol of rTMS as well as its long-term effect. Furthermore, the effects of other NIBS subtypes on MSA still need further investigation.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Occupational Therapy, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.,Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
| | - Ting He
- Department of Occupational Therapy, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.,Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
| | - Quan Wang
- Department of Occupational Therapy, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.,Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Manto M, Argyropoulos GPD, Bocci T, Celnik PA, Corben LA, Guidetti M, Koch G, Priori A, Rothwell JC, Sadnicka A, Spampinato D, Ugawa Y, Wessel MJ, Ferrucci R. Consensus Paper: Novel Directions and Next Steps of Non-invasive Brain Stimulation of the Cerebellum in Health and Disease. CEREBELLUM (LONDON, ENGLAND) 2021; 21:1092-1122. [PMID: 34813040 DOI: 10.1007/s12311-021-01344-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
The cerebellum is involved in multiple closed-loops circuitry which connect the cerebellar modules with the motor cortex, prefrontal, temporal, and parietal cortical areas, and contribute to motor control, cognitive processes, emotional processing, and behavior. Among them, the cerebello-thalamo-cortical pathway represents the anatomical substratum of cerebellum-motor cortex inhibition (CBI). However, the cerebellum is also connected with basal ganglia by disynaptic pathways, and cerebellar involvement in disorders commonly associated with basal ganglia dysfunction (e.g., Parkinson's disease and dystonia) has been suggested. Lately, cerebellar activity has been targeted by non-invasive brain stimulation (NIBS) techniques including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to indirectly affect and tune dysfunctional circuitry in the brain. Although the results are promising, several questions remain still unsolved. Here, a panel of experts from different specialties (neurophysiology, neurology, neurosurgery, neuropsychology) reviews the current results on cerebellar NIBS with the aim to derive the future steps and directions needed. We discuss the effects of TMS in the field of cerebellar neurophysiology, the potentials of cerebellar tDCS, the role of animal models in cerebellar NIBS applications, and the possible application of cerebellar NIBS in motor learning, stroke recovery, speech and language functions, neuropsychiatric and movement disorders.
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium.,Service Des Neurosciences, UMons, 7000, Mons, Belgium
| | - Georgios P D Argyropoulos
- Division of Psychology, Faculty of Natural Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville. Victoria, Australia
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | - Giacomo Koch
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, UK.,Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Danny Spampinato
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy. .,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
21
|
Wang SM, Chan YW, Tsui YO, Chu FY. Effects of Anodal Cerebellar Transcranial Direct Current Stimulation on Movements in Patients with Cerebellar Ataxias: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10690. [PMID: 34682435 PMCID: PMC8535754 DOI: 10.3390/ijerph182010690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/26/2023]
Abstract
Cerebellar transcranial direct current stimulation (cerebellar tDCS) is a promising therapy for cerebellar ataxias and has attracted increasing attention from researchers and clinicians. A timely systematic review focusing on randomized sham-controlled trials and repeated measures studies is warranted. This study was to systematically review existing evidence regarding effects of anodal cerebellar tDCS on movements in patients with cerebellar ataxias. The searched databases included Web of Science, MEDLINE, PsycINFO, CINAHL, EMBASE, Cochrane Library, and EBSCOhost. Methodological quality of the selected studies was assessed using the Physiotherapy Evidence Database scale. Five studies with 86 patients were identified. Among these, four studies showed positive effects of anodal cerebellar tDCS. Specifically, anodal cerebellar tDCS decreased disease severity and improved finger dexterity and quality of life in patients, but showed incongruent effects on gait control and balance, which may be due to heterogeneity of research participants and choices of measures. The protocols of anodal cerebellar tDCS that improved movements in patients commonly placed the anode over the whole cerebellum and provided ten 2-mA 20-min stimulation sessions. The results may show preliminary evidence that anodal cerebellar tDCS is beneficial to reducing disease severity and improving finger dexterity and quality of life in patients, which lays the groundwork for future studies further examining responses in the cerebello-thalamo-cortical pathway. An increase in sample size, the use of homogeneous patient groups, exploration of the optimal stimulation protocol, and investigation of detailed neural mechanisms are clearly needed in future studies.
Collapse
Affiliation(s)
- Shu-Mei Wang
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong; (Y.-W.C.); (Y.-O.T.); (F.-Y.C.)
| | | | | | | |
Collapse
|
22
|
Benussi A, Cantoni V, Manes M, Libri I, Dell'Era V, Datta A, Thomas C, Ferrari C, Di Fonzo A, Fancellu R, Grassi M, Brusco A, Alberici A, Borroni B. Motor and cognitive outcomes of cerebello-spinal stimulation in neurodegenerative ataxia. Brain 2021; 144:2310-2321. [PMID: 33950222 DOI: 10.1093/brain/awab157] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 11/12/2022] Open
Abstract
Cerebellar ataxias represent a heterogeneous group of disabling disorders characterized by motor and cognitive disturbances, for which no effective treatment is currently available. In this randomized, double-blind, sham-controlled trial, followed by an open-label phase, we investigated whether treatment with cerebello-spinal transcranial direct current stimulation (tDCS) could improve both motor and cognitive symptoms in patients with neurodegenerative ataxia at short and long-term. Sixty-one patients were randomized in two groups for the first controlled phase. At baseline (T0), Group 1 received placebo stimulation (sham tDCS) while Group 2 received anodal cerebellar tDCS and cathodal spinal tDCS (real tDCS) for 5 days/week for two weeks (T1), with a 12-week (T2) follow-up (randomized, double-blind, sham controlled phase). At the 12-week follow-up (T2), all patients (Group 1 and Group 2) received a second treatment of anodal cerebellar tDCS and cathodal spinal tDCS (real tDCS) for 5 days/week for two weeks, with a 14-week (T3), 24-week (T4), 36-week (T5) and 52-week follow-up (T6) (open-label phase). At each time point, a clinical, neuropsychological and neurophysiological evaluation was performed. Cerebellar-motor cortex connectivity was evaluated using transcranial magnetic stimulation (TMS). We observed a significant improvement in all motor scores (scale for the assessment and rating of ataxia, international cooperative ataxia rating scale), in cognition (evaluated with the cerebellar cognitive affective syndrome scale), in quality-of-life scores, in motor cortex excitability and in cerebellar inhibition after real tDCS compared to sham stimulation and compared to baseline (T0), both at short and long-term. We observed an addon-effect after two repeated treatments with real tDCS compared to a single treatment with real tDCS. The improvement at motor and cognitive scores correlated with the restoration of cerebellar inhibition evaluated with TMS. Cerebello-spinal tDCS represents a promising therapeutic approach for both motor and cognitive symptoms in patients with neurodegenerative ataxia, a still orphan disorder of any pharmacological intervention.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marta Manes
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Aulss2 Marca Trevigiana, Treviso, Italy
| | - Ilenia Libri
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Dell'Era
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Department of Neurology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Abhishek Datta
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Chris Thomas
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Italy
| | - Alessio Di Fonzo
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Roberto Fancellu
- UO Neurologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy.,Medical Genetics Unit, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
23
|
Billeri L, Naro A. A narrative review on non-invasive stimulation of the cerebellum in neurological diseases. Neurol Sci 2021; 42:2191-2209. [PMID: 33759055 DOI: 10.1007/s10072-021-05187-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The cerebellum plays an important role in motor, cognitive, and affective functions owing to its dense interconnections with basal ganglia and cerebral cortex. This review aimed at summarizing the non-invasive cerebellar stimulation (NICS) approaches used to modulate cerebellar output and treat cerebellar dysfunction in the motor domain. OBSERVATION The utility of NICS in the treatment of cerebellar and non-cerebellar neurological diseases (including Parkinson's disease, dementia, cerebellar ataxia, and stroke) is discussed. NICS induces meaningful clinical effects from repeated sessions alone in both cerebellar and non-cerebellar diseases. However, there are no conclusive data on this issue and several concerns need to be still addressed before NICS could be considered a valuable, standard therapeutic tool. CONCLUSIONS AND RELEVANCE Even though some challenges must be overcome to adopt NICS in a wider clinical setting, this tool might become a useful strategy to help patients with lesions in the cerebellum and cerebral areas that are connected with the cerebellum whether one could enhance cerebellar activity with the intention of facilitating the cerebellum and the entire, related network, rather than attempting to facilitate a partially damaged cortical region or inhibiting the homologs' contralateral area. The different outcome of each approach would depend on the residual functional reserve of the cerebellum, which is confirmed as a critical element to be probed preliminary in order to define the best patient-tailored NICS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy.
| |
Collapse
|