1
|
Short- and Long-Term Effects of Cocaine on Enteric Neuronal Functions. Cells 2023; 12:cells12040577. [PMID: 36831246 PMCID: PMC9954635 DOI: 10.3390/cells12040577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Cocaine is one of the most consumed illegal drugs among (young) adults in the European Union and it exerts various acute and chronic negative effects on psychical and physical health. The central mechanism through which cocaine initially leads to improved performance, followed by addictive behavior, has already been intensively studied and includes effects on the homeostasis of the neurotransmitters dopamine, partly mediated via nicotinic acetylcholine receptors, and serotonin. However, effects on the peripheral nervous system, including the enteric nervous system, are much less understood, though a correlation between cocaine consumption and gastrointestinal symptoms has been reported. The aim of the present study was to gain more information on the effects of cocaine on enteric neuronal functions and the underlying mechanisms. For this purpose, functional experiments using an organ bath, Ussing chamber and neuroimaging techniques were conducted on gastrointestinal tissues from guinea pigs. Key results obtained are that cocaine (1) exhibits a stimulating, non-neuronal effect on gastric antrum motility, (2) acutely (but not chronically) diminishes responses of primary cultured enteric neurons to nicotinic and serotonergic stimulation and (3) reversibly attenuates neuronal-mediated intestinal mucosal secretion. It can be concluded that cocaine, among its central effects, also alters enteric neuronal functions, providing potential explanations for the coexistence of cocaine abuse and gastrointestinal complaints.
Collapse
|
2
|
Hernandez J, Tamargo JA, Sales Martinez S, Martin HR, Campa A, Sékaly RP, Bordi R, Sherman KE, Rouster SD, Meeds HL, Khalsa JH, Mandler RN, Lai S, Baum MK. Cocaine use associated gut permeability and microbial translocation in people living with HIV in the Miami Adult Study on HIV (MASH) cohort. PLoS One 2022; 17:e0275675. [PMID: 36215260 PMCID: PMC9550062 DOI: 10.1371/journal.pone.0275675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Determine if cocaine use impacts gut permeability, promotes microbial translocation and immune activation in people living with HIV (PLWH) using effective antiretroviral therapy (ART). METHODS Cross-sectional analysis of 100 PLWH (ART ≥6 months, HIV-RNA <200 copies/mL) from the Miami Adult Studies on HIV (MASH) cohort. Cocaine use was assessed by self-report, urine screen, and blood benzoylecgonine (BE). Blood samples were collected to assess gut permeability (intestinal fatty acid-binding protein, I-FABP), microbial translocation (lipopolysaccharide, LPS), immune activation (sCD14, sCD27, and sCD163) and markers of inflammation (hs-CRP, TNF-α and IL-6). Multiple linear regression models were used to analyze the relationships of cocaine use. RESULTS A total of 37 cocaine users and 63 cocaine non-users were evaluated. Cocaine users had higher levels of I-FABP (7.92±0.35 vs. 7.69±0.56 pg/mL, P = 0.029) and LPS (0.76±0.24 vs. 0.54±0.27 EU/mL, P<0.001) than cocaine non-users. Cocaine use was also associated with the levels of LPS (P<0.001), I-FABP (P = 0.033), and sCD163 (P = 0.010) after adjusting for covariates. Cocaine users had 5.15 times higher odds to exhibit higher LPS levels than non-users (OR: 5.15 95% CI: 1.89-13.9; P<0.001). Blood levels of BE were directly correlated with LPS (rho = 0.276, P = 0.028), sCD14 (rho = 0.274, P = 0.031), and sCD163 (rho = 0.250, P = 0.049). CONCLUSIONS Cocaine use was associated with markers of gut permeability, microbial translocation, and immune activation in virally suppressed PLWH. Mitigation of cocaine use may prevent further gastrointestinal damage and immune activation in PLWH.
Collapse
Affiliation(s)
- Jacqueline Hernandez
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Javier A. Tamargo
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Sabrina Sales Martinez
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Haley R. Martin
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Adriana Campa
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Rafick-Pierre Sékaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rebeka Bordi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kenneth E. Sherman
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Susan D. Rouster
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Heidi L. Meeds
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jag H. Khalsa
- Department of Microbiology, Immunology and Tropical Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Raul N. Mandler
- National Institute on Drug Abuse, Rockville, Maryland, United States of America
| | - Shenghan Lai
- Department of Epidemiology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marianna K. Baum
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
3
|
Oral Enrichment of Streptococcus and its Role in Systemic Inflammation Related to Monocyte Activation in Humans with Cocaine Use Disorder. J Neuroimmune Pharmacol 2022; 17:305-317. [PMID: 34448131 PMCID: PMC8881519 DOI: 10.1007/s11481-021-10007-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
Cocaine use is commonly associated with increased chronic systemic inflammation. However, the drivers for cocaine use-mediated systemic inflammation are not fully understood. In the current study, we recruited individuals with cocaine use disorder and healthy individuals who did not use cocaine and collected paired saliva and blood samples. The saliva samples were used to assess the oral microbiome, and the plasma samples were evaluated for 33 cytokines and chemokines. Cocaine users exhibited decreased saliva microbial diversities compared to non-users. Streptococcus was the only increased genus in the saliva from cocaine users, whereas several genera were decreased in cocaine users compared to non-users. Notably, cocaine users exhibited increased plasma levels of several monocyte activation markers, including monocyte chemoattractant protein (MCP)-4, macrophage inflammatory protein (MIP)-3α, macrophage-derived chemokine (MDC), and thymus and activation-regulated chemokine (TARC), all of which were correlated with increased saliva levels of three Streptococcus species. Furthermore, treatment with Streptococcus or its lipoteichoic acid preferentially activated primary human monocytes to produce proinflammatory cytokines and chemokines, such as MIP-3α and TARC, in vitro compared to controls. However, monocytes failed to produce these chemokines after exposure to cocaine or cocaine plus bacteria compared to medium or bacteria alone. This study revealed that chronic cocaine use-associated inflammation in the blood may result from increased oral Streptococcus and its effects on myeloid cell activation, but does not result from cocaine directly.
Collapse
|
4
|
Farooq U, Gondal AB, Susheela A, Tarar ZI, Malik A, Zafar MU, Sharif A, Ghous G. Does the Route of Cocaine Use Affect the Mortality and Outcomes of Cocaine-Induced Intestinal Ischemia? A Systematic Review. J Investig Med High Impact Case Rep 2021; 9:23247096211051921. [PMID: 34663104 PMCID: PMC8529301 DOI: 10.1177/23247096211051921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Intestinal ischemia results from diminished perfusion of the colon resulting in tissue hypoxia. Anecdotal reports suggest that cocaine-induced intestinal ischemia has the highest mortality and longer length of stay among the vasoconstrictors. The present study aimed to summarize the available studies in the literature to assess the effect of routes of consumption on the outcomes of cocaine-induced intestinal ischemia. We conducted a systematic search of MEDLINE from inception through October 2019. Studies of cocaine-induced intestinal ischemia were included if data were available on comorbidities, mortality, and hospital length of stay (LOS). The study's primary outcomes were mortality and need for surgery, while secondary outcomes included the hospital length of stay, LACE index, and hospital score. Statistical tests used included linear and binary logistic regression. STATA 2015 was used, and P < 0.05 was statistically significant. Of the 304 studies, 8 case series and 45 case reports (n = 69 patients) met the inclusion criteria. Different routes of cocaine use had similar mortality odds and the need for surgery for intestinal ischemia. Hospital LOS showed significant difference among the subgroups. Readmission scores (LACE and hospital score) were higher for intravenous and smoking than ingestion and intranasal use (P < 0.05). In conclusion, different routes of cocaine use appear to have similar mortality odds for intestinal ischemia, which vary significantly among the different routes of cocaine consumption for the length of stay and readmission scores. Prompt recognition of the route of cocaine use is vital to improve the outcome. Large-scale and well-designed observational studies are needed to investigate this topic further.
Collapse
Affiliation(s)
- Umer Farooq
- Loyola Medicine/MacNeal Hospital, Berwyn, IL, USA
| | | | | | | | - Adnan Malik
- Loyola University Health System, Maywood, IL, USA
| | | | - Aftab Sharif
- Mercy Health Grand Rapids, Grand Rapids, MI, USA
| | | |
Collapse
|
5
|
Cates AL, Farmer B. Chronic Drug Use and Abdominal Pain. Emerg Med Clin North Am 2021; 39:821-837. [PMID: 34600640 DOI: 10.1016/j.emc.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are a variety of gastrointestinal pathologies that may be emergently identified in the patient who chronically uses alcohol or other substances. Patients may present to an Emergency Department with abdominal complaints existing on a spectrum from vague and benign to systemically toxic and potentially life-threatening. This article highlights ethanol, opioids, and other common substances of abuse and how they may contribute to gastrointestinal complaints.
Collapse
Affiliation(s)
- Alexis L Cates
- Division of Medical Toxicology, Department of Emergency Medicine, Einstein Healthcare Network, Korman B-14, 5501 Old York Road, Philadelphia, PA 19141, USA.
| | - Brenna Farmer
- Quality and Patient Safety, Department of Emergency Medicine, Weill Cornell Medicine, New York Presbyterian/Lower Manhattan Hospital Emergency Department
| |
Collapse
|
6
|
Qin C, Hu J, Wan Y, Cai M, Wang Z, Peng Z, Liao Y, Li D, Yao P, Liu L, Rong S, Bao W, Xu G, Yang W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110093. [PMID: 32898589 DOI: 10.1016/j.pnpbp.2020.110093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
As a neuropsychiatric disorder, substance addiction represents a major public health issue with high prevalence and mortality in many countries. Recently, gut microbiota has been certified to play a part in substance addiction through various mechanisms. Hence, we mainly focused on three substance including alcohol, cocaine and methamphetamine in this review, and summarized their relationships with gut microbiota, respectively. Besides, we also concluded the possible treatments for substance addiction from the perspective of applying gut microbiota. This review aims to build a bridge between substance addiction and gut microbiota according to existing evidences, so as to excavate the possible bi-directional function of microbiota-gut-brain axis in substance addiction for developing therapeutic strategies in the future.
Collapse
Affiliation(s)
- Chenyuan Qin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Jiawei Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yiming Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Mengyao Cai
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhenting Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA
| | - Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
7
|
Chivero ET, Ahmad R, Thangaraj A, Periyasamy P, Kumar B, Kroeger E, Feng D, Guo ML, Roy S, Dhawan P, Singh AB, Buch S. Cocaine Induces Inflammatory Gut Milieu by Compromising the Mucosal Barrier Integrity and Altering the Gut Microbiota Colonization. Sci Rep 2019; 9:12187. [PMID: 31434922 PMCID: PMC6704112 DOI: 10.1038/s41598-019-48428-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/26/2019] [Indexed: 12/28/2022] Open
Abstract
Cocaine use disorder (CUD), a major health crisis, has traditionally been considered a complication of the CNS; however, it is also closely associated with malnourishment and deteriorating gut health. In light of emerging studies on the potential role of gut microbiota in neurological disorders, we sought to understand the causal association between CUD and gut dysbiosis. Using a comprehensive approach, we confirmed that cocaine administration in mice resulted in alterations of the gut microbiota. Furthermore, cocaine-mediated gut dysbiosis was associated with upregulation of proinflammatory mediators including NF-κB and IL-1β. In vivo and in vitro analyses confirmed that cocaine altered gut-barrier composition of the tight junction proteins while also impairing epithelial permeability by potentially involving the MAPK/ERK1/2 signaling. Taken together, our findings unravel a causal link between CUD, gut-barrier dysfunction and dysbiosis and set a stage for future development of supplemental strategies for the management of CUD-associated gut complications.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elisa Kroeger
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dan Feng
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Florida, FL, 33136, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- VA Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- VA Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Wernicke’s encephalopathy in crack–cocaine addiction. Med Hypotheses 2016; 89:68-71. [DOI: 10.1016/j.mehy.2016.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/30/2016] [Indexed: 12/14/2022]
|