1
|
Song HM, Li ZW, Huang Q, Wu CG, Li MH, Shen JK. A diagnostic signatures for intervertebral disc degeneration using TNFAIP6 and COL6A2 based on single-cell RNA-seq and bulk RNA-seq analyses. Ann Med 2025; 57:2443568. [PMID: 39704340 DOI: 10.1080/07853890.2024.2443568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 04/01/2024] [Accepted: 09/17/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Intervertebral disc degeneration (IVDD) is a prevalent degenerative condition associated with a high incidence rate of low back pain and disability. This study aimed to identify potential biomarkers and signaling pathways associated with IVDD. METHODS Biomarkers were discerned through bulk-RNA and single-cell RNA sequencing (scRNA-Seq) investigations of IVDD cases from the Gene Expression Omnibus (GEO) database. Following this, two central genes were identified. Furthermore, gene set enrichment analysis (GSEA) and receiver operating characteristic (ROC) curve analysis were conducted. The transcriptional factor (TF) derived from nucleus pulposus (NP) cells was examined through the DoRothEA R package. RT-qPCR and IHC techniques were employed to confirm the expression of the two hub genes and their associated genes in tissue samples. RESULTS The proteins Tumor necrosis factor-inducible gene 6 protein (TNFAIP6) and collagen VI-α2 (COL6A2) were frequently analyzed using a combination of DEGs from datasets GSE70362, GSE124272, and scRNA-seq. Examination of gene expression across multiple datasets indicated significant differences in TNFAIP6 and COL6A2 levels in IVDD compared to control or normal groups (p < 0.05). These two central genes demonstrated strong diagnostic utility in the training cohort and reliable predictive value in the validation datasets. Our study verified the potential role of ZEB2 as a TF in regulating two key genes associated with IVDD. Furthermore, qPCR and IHC confirmed elevated expression levels of the hub genes and transcription factor. CONCLUSION We identified biomarkers, specifically TNFAIP6 and COL6A2, that have the potential to predict disease activity and aid in the diagnosis of IVDD.
Collapse
Affiliation(s)
- Hong-Mei Song
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuo-Wei Li
- Department of Urological Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Huang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Gen Wu
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Hua Li
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Kang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Hu C, Shi Y, Zhao L, Zhu W, Jiao K, Yu L, Li X, Wang Y. Clinical, Pathologic, and Genetic Spectrum of Collagen VI-Related Disorder in China-A Retrospective Observational Multicenter Study. Hum Mutat 2024; 2024:3503253. [PMID: 40225934 PMCID: PMC11918884 DOI: 10.1155/2024/3503253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 04/15/2025]
Abstract
Background: Collagen VI-related disorder (COLVI-RD) is one of the most common congenital muscular dystrophies. However, data is limited in China. Methods: We conducted a retrospective study at two tertiary centers. Clinical presentations, lab findings (including serum creatine kinase levels), muscle biopsy, and molecular test results for patients diagnosed with definite COLVI-RD were collected. Results: A total of 82 patients were enrolled in the study, including 4 with early-severe Ullrich congenital muscular dystrophy (E-S UCMD) (4.8%), 45 with moderate-progressive Ullrich congenital muscular dystrophy (M-P UCMD, 54.9%), 19 with mild UCMD (23.2%), and 14 with Bethlem myopathy (BM, 17.1%). Feeding difficulty, DDH, and neurogenic damage were more common in E-S and M-P UCMD, while contracture of distal joints, atrophic scars, and hyperkeratosis was more prominent in mild UCMD and BM. Seventy patients harbored 64 pathogenic mutations in COLVI-related genes: 28 patients in COL6A1 gene, 25 patients in the COL6A2 gene, and 17 patients in the COL6A3 gene, among which 33 mutations were novel. Missense and splicing mutations were predominant for COL6A1 and COL6A3 genes, which were mostly located in N-terminus of THD, in a dominant pattern, while mutations in the COL6A2 gene were much more polymorphic, which spread throughout the whole length of the gene, in a dominant or recessive pattern. Immunofluorescence dual labeling of Collagen VI/IV in 44 patients showed complete deficiency of Collagen VI in 10 patients (22.7%), sarcolemma-specific Collagen VI deficiency in 25 patients (56.8%), and normal Collagen VI staining in 9 patients (20.5%). Conclusion: Our study reported the largest cohort of COLVI-RD in China, which showed M-P UCMD was the most common phenotype, followed by mild UCMD and BM. We identified 30 novel mutations and expanded the genetic spectrum. Missense and splicing mutations were predominant for COL6A1 and COL6A3 genes, while mutations in the COL6A2 gene were much more polymorphic. For severe phenotypes, most mutations are sporadic, while some are AD or recessive inherited. For milder phenotypes, sporadic and AD inherited were both common, while only 1 patient with recessive mutations was observed.
Collapse
Affiliation(s)
- Chaoping Hu
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
- National Children's Medical Center, Shanghai, China
| | - Yiyun Shi
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
- National Children's Medical Center, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
- National Children's Medical Center, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Lifei Yu
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
- National Children's Medical Center, Shanghai, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
- National Children's Medical Center, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
- National Children's Medical Center, Shanghai, China
| |
Collapse
|
3
|
El-Sobky TA, Abdulhady H, Mahmoud S, Amen J. Orthopedic manifestations of congenital muscular dystrophy subtypes in children: Emerging signatures need consolidation: a scoping review. JOURNAL OF MUSCULOSKELETAL SURGERY AND RESEARCH 2024; 8:11-23. [DOI: 10.25259/jmsr_229_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Our objective was to screen the literature on congenital muscular dystrophy (CMD) children/adolescents regarding the extent/nature of reporting orthopedic manifestations/deformities and to assess its appropriateness in informing clinical practice/research. We searched PubMed for original research on orthopedic surgical/non-surgical manifestations of CMD. Eligible articles needed to focus on orthopedic manifestations/deformities as one of the study objectives with no restrictions on study designs/types or search period. Eight hundred and thirty articles were initially identified and screened. Following the exclusion of 501 articles for disagreeing titles/abstracts, 329 were available for eligibility assessment. Two hundred and fifty-five articles were excluded for reasons. Of one hundred articles, 15 were captured manually and 11 through pre-submission searches, with 1078 patients included in the final analysis. The most common subtype was Laminin alpha-2 (LAMA2)-relatedCMD. Orthopedic manifestations of CMD are generally underreported and insufficiently detailed. There is reliable evidence that accurate reporting of orthopedic manifestations can be a valuable clinical supplement to the complex differential diagnosis process in collagen VI-related CMD, LAMA2-related-CMD, LMNA-related-CMD, and SEPN1-related CMD (SELENON). For alpha dystroglycan-related CMD, there is insufficient information to delineate a subtype-specific pattern. There is emerging evidence that reporting spine surgery outcomes may facilitate orthopedic decision making. The greatest clinical/research utility was provided by articles with longitudinal, comprehensive, and correlative reporting of larger cohorts. Detailed reporting of the orthopedic phenotype of CMD in future research may further uncover its diagnostic potential.
Collapse
Affiliation(s)
- Tamer A. El-Sobky
- Department of Orthopaedic Surgery, Division of Paediatric Orthopaedics, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| | - Hala Abdulhady
- Department of Physical Medicine and Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| | - Shady Mahmoud
- Department of Orthopaedic Surgery, Division of Paediatric Orthopaedics, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| | - John Amen
- Department of Orthopaedic Surgery, Division of Paediatric Orthopaedics, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| |
Collapse
|
4
|
Merlini L, Sabatelli P, Gualandi F, Redivo E, Di Martino A, Faldini C. New Clinical and Immunofluoresence Data of Collagen VI-Related Myopathy: A Single Center Cohort of 69 Patients. Int J Mol Sci 2023; 24:12474. [PMID: 37569848 PMCID: PMC10420187 DOI: 10.3390/ijms241512474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Pathogenetic mechanism recognition and proof-of-concept clinical trials were performed in our patients affected by collagen VI-related myopathies. This study, which included 69 patients, aimed to identify innovative clinical data to better design future trials. Among the patients, 33 had Bethlem myopathy (BM), 24 had Ullrich congenital muscular dystrophy (UCMD), 7 had an intermediate phenotype (INTM), and five had myosclerosis myopathy (MM). We obtained data on muscle strength, the degree of contracture, immunofluorescence, and genetics. In our BM group, only one third had a knee extension strength greater than 50% of the predicted value, while only one in ten showed similar retention of elbow flexion. These findings should be considered when recruiting BM patients for future trials. All the MM patients had axial and limb contractures that limited both the flexion and extension ranges of motion, and a limitation in mouth opening. The immunofluorescence analysis of collagen VI in 55 biopsies from 37 patients confirmed the correlation between collagen VI defects and the severity of the clinical phenotype. However, biopsies from the same patient or from patients with the same mutation taken at different times showed a progressive increase in protein expression with age. The new finding of the time-dependent modulation of collagen VI expression should be considered in genetic correction trials.
Collapse
Affiliation(s)
- Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Cavalli Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesca Gualandi
- Department of Medical Sciences, Unit of Medical Genetics, Università degli Studi di Ferrara, 44100 Ferrara, Italy;
| | - Edoardo Redivo
- Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Alberto Di Martino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
5
|
Cheng J, Li G, Wang W, Stovall DB, Sui G, Li D. Circular RNAs with protein-coding ability in oncogenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188909. [PMID: 37172651 DOI: 10.1016/j.bbcan.2023.188909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
As ubiquitously expressed transcripts in eukaryotes, circular RNAs (circRNAs) are covalently closed and lack a 5'-cap and 3'-polyadenylation (poly (A)) tail. Initially, circRNAs were considered non-coding RNA (ncRNA), and their roles as sponging molecules to adsorb microRNAs have been extensively reported. However, in recent years, accumulating evidence has demonstrated that circRNAs could encode functional polypeptides through the initiation of translation mediated by internal ribosomal entry sites (IRESs) or N6-methyladenosine (m6A). In this review, we collectively discuss the biogenesis, cognate mRNA products, regulatory mechanisms, aberrant expression and biological phenotypes or clinical relevance of all currently reported, cancer-relevant protein-coding circRNAs. Overall, we provide a comprehensive overview of circRNA-encoded proteins and their physiological and pathological functions.
Collapse
Affiliation(s)
- Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, United States
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Nekouei E, Yancheshmeh ES, Mohammadi-Asl J, Moghaddam ZM. Exome sequencing identified a novel Col6α1 mutation in an Iranian patient with Ullrich congenital muscular dystrophy: a case report. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Introduction
Ullrich congenital muscular dystrophy (UCMD) is a severe form of inherited muscle weakness at birth. Recent genetic studies discovered that different gene mutations are responsible for UCMD clinical manifestation.
Case report
In this study, we carried out whole exome sequencing (WES) to recognize probable gene defects in an Iranian boy with UCMD. We found a novel disease-causing COL6α1 gene mutation (c.2551_2562del; p.Phe851_Arg854del), located in exon35 (NM_001848.3), causing a deletion mutation that has eliminated 12 bp. The WES-identified variant that was confirmed by Sanger sequencing for the patient and his consanguineous parents. Here, we report the clinical manifestations of 4-year-old Iranian patient who presented with muscle weakness since birth and proved compound homozygous mutation of the COL6A1 gene.
Conclusion
Our findings established that this detected COL6α1 mutation is the pathogenic variant for UCMD. This is the first genetic study indicating that c.2551_2562 mutation in homozygous state in COL6α1 gene is responsible for the UCMD phenotype.
Collapse
|
7
|
Zhu J, Lin Q, Zheng H, Rao Y, Ji T. The pro-invasive factor COL6A2 serves as a novel prognostic marker of glioma. Front Oncol 2022; 12:897042. [PMID: 36505882 PMCID: PMC9732579 DOI: 10.3389/fonc.2022.897042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022] Open
Abstract
Background Glioma is an incurable malignant lesion with poor outcome characterized by easy recurrence after surgery with or without radiotherapy and chemotherapy. Studies have shown that COL6A2 is closely related to the tumorigenesis and development of a variety of tumors. However, the role of COL6A2 in glioma and the relationship between COL6A2 and tumor infiltrating immune cells remain unclear. Methods Western blot, real-time PCR, a tissue microarray and immunohistochemistry were applied to detect COL6A2 mRNA and protein amounts in glioma, and all experiments were repeated three times. A tissue microarray of glioma samples was used for prognostic analysis. Detection of COL6A2 co-expression with immune genes using immunohistochemical methods, and tumor modeling using nude mice for prevention and treatment studies. Based on the mRNA expression of COL6A2, patients with glioma in TCGA were divided into the low and high COL6A2 expression groups, and GO and KEGG pathway analyses were performed. A PPI network was constructed using STRING, and the associations of COL6A2 with tumor-infiltrating immune cells and immune genes were analyzed in the CIBERSORT and TISIDB databases. COL6A2 mRNA and protein amounts were increased in glioma. Results Multiple-database and tissue microarray analyses showed that COL6A2 expression in glioma was associated with poor prognosis, Tissue microarray showed that COL6A2 was the highest expressed in WHO IV and significantly higher in TCGA-GBM than in TCGA-LGG. Immunohistochemistry can well demonstrate the co-expression of COL6A2 with immune genes in a tumor model established in nude mice, showing that interference with COL6A2 expression may have an inhibitory effect on tumors. The mRNA expression of COL6A2 was involved in 22 KEGG pathways, and GSEA analysis showed that 28 and 57 gene sets were significantly enriched at nominal p values <0.01 and <0.05, respectively, protein network revealed a tight interaction between COL6A2 and SPARC. The CIBERSORT database indicated that COL6A2 was correlated with 15 types of tumor-infiltrating immune cells, including M2 macrophages, CD8 T cells, neutrophils, gamma delta T cells, activated CD4 memory T cells, follicular helper T cells, M0 macrophages, M1 macrophages, regulatory T cells (Tregs), activated NK cells, eosinophils, activated mast cells, monocytes, activated dendritic cells, and resting CD4 memory T cells. The TISIDB database indicated that COL6A2 was significantly correlated with lymphocytes such as regulatory T cell, Type 17 T helper cell, Type 1 T helper cell, and immunomodulatory genes. In addition, COL6A2-related immune regulatory genes show that most immune regulatorygenes have prognostic value for glioma, and high-risk immune genes are notconducive to the survival of glioma patients. Conclusions COL6A2-related immune regulatory genes show that most immune regulatory genes have prognostic value for glioma, and high-risk immune genes are not conducive to the survival of glioma patients. COL6A2 may be a novel potential prognostic biomarker of glioma and associated with tumor-infiltrating immune cells in the tumor microenvironment, and interference with COL6A2 expression can inhibit tumor growth, which suggests COL6A2 as a potential target for future treatment.
Collapse
|
8
|
Aqueous Lumican Correlates with Central Retinal Thickness in Patients with Idiopathic Epiretinal Membrane: A Proteome Study. DISEASE MARKERS 2022; 2022:9886846. [PMID: 35571611 PMCID: PMC9106516 DOI: 10.1155/2022/9886846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
Idiopathic epiretinal membrane (iERM) is a pathological fibrocellular change in the vitreoretinal junction over the macular area; however, possible pathogenic mechanisms remain unclear. Changes in the differential protein composition of the aqueous humor (AH) may represent potential molecular changes associated with iERM. To gain new insights into the molecular mechanisms of iERM pathology, a sensitive label-free proteomics analysis was performed to compare AH protein expressions in patients with cataracts with or without iERM. This study employed nanoflow ultra-high-performance liquid chromatography-tandem mass spectrometry to investigate protein compositions of the AH obtained from individual human cataract eyes from 10 patients with iERM and 10 age-matched controls without iERM. Eight proteins were differentially expressed between the iERM and control samples, among which six proteins were upregulated and two were downregulated. A gene ontology (GO) analysis revealed that iERM was closely associated with several biological processes, such as immunity interactions, cell proliferation, and extracellular matrix remodeling. Additionally, multiple proteins, including lumican, cyclin-dependent kinase 13, and collagen alpha-3(VI) chain, were correlated with the central retinal thickness, indicating a multifactorial response in the pathogenic process of iERM. Changes in the AH level of lumican between iERM and control samples were also confirmed by an enzyme-linked immunosorbent assay. In conclusion, several pathological pathways involved in iERM were identified in the AH by a proteomic analysis, including immune reactions, cell proliferation, and remodeling of the extracellular matrix. Lumican is a potential aqueous biomarker for predicting iERM development and monitoring its progression. More clinical parameters also need to be identified to complete the analysis, and those could provide additional targets for treating and preventing iERM.
Collapse
|
9
|
Zhong J, Xie Y, Dang Y, Zhang J, Song Y, Lan D. Use of RNA‑sequencing to detect abnormal transcription of the collagen α‑2 (VI) chain gene that can lead to Bethlem myopathy. Int J Mol Med 2021; 47:28. [PMID: 33537799 PMCID: PMC7895517 DOI: 10.3892/ijmm.2021.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Bethlem myopathy (BM) is an autosomal dominant or autosomal recessive disorder and is usually associated with mutations in the collagen VI genes. In the present study, the pathogenicity of a novel splice-site mutation was explored using RNA-sequencing in a family with suspected BM, and a myopathy panel was performed in the proband. The genetic status of all family members was confirmed using Sanger sequencing. Clinical data and magnetic resonance imaging (MRI) features were also documented. In silico analysis was performed to predict the effects of the splice mutation. RNA-sequencing and reverse transcription (RT)-PCR were used to assess aberrant splicing. Immunocytochemistry was conducted to measure collagen VI protein levels within the gastrocnemius and in cultured skin fibroblasts. The results revealed that three patients in the family shared a similar classic BM presentation. MRI revealed distinct patterns of fatty infiltration in the lower extremities. A novel splicing mutation c.736-1G>C in the collagen α-2 (VI) chain (COL6A2) gene was found in all three patients. In silico analysis predicted that the mutation would destroy the normal splice acceptor site. RNA-sequencing detected two abnormal splicing variants adjacent to the mutation site, and RT-PCR confirmed the RNA-sequencing findings. Furthermore, a defect in the collagen protein within cultured fibroblasts was detected using immunocytochemistry. The mutation c.736-1G>C in the COL6A2 gene caused aberrant splicing and led to premature termination of protein translation. In conclusion, these findings may improve our knowledge of mutations of the COL6A2 gene associated with BM and demonstrated that RNA-sequencing can be a powerful tool for finding the underlying mechanism of a disease-causing mutations at a splice site.
Collapse
Affiliation(s)
- Jingzi Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanshu Xie
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yiwu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiapeng Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yingru Song
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dan Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Kim SY, Kim WJ, Kim H, Choi SA, Lee JS, Cho A, Jang SS, Lim BC, Kim KJ, Kim JI, Hahn SH, Chae JH. Collagen VI-related myopathy: Expanding the clinical and genetic spectrum. Muscle Nerve 2019; 58:381-388. [PMID: 29406609 DOI: 10.1002/mus.26093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We aimed to analyze the clinical and genetic characteristics of collagen VI-related myopathy. METHODS We analyzed the clinical course and mutation spectrum in patients with collagen VI gene mutations among our congenital muscular dystrophy cohort. RESULTS Among 24 patients with mutations in collagen VI coding genes, 13 (54.2%) were categorized as Ullrich type, and 11 (45.8%) as non-Ullrich type. Congenital orthopedic problems were similarly observed in both types, yet multiple joint contractures were found only in the Ullrich type. Clinical courses and pathology findings varied between patients. Mutations in COL6A1, COL6A2, and COL6A3 were found in 15 (65%), 3 (13%), and 5 (22%) patients, respectively, without genotype-phenotype association. Five novel variants were detected. DISCUSSION We verified clinical heterogeneity of collagen VI-related myopathy, which emphasizes the importance of genetic testing. Genotype-phenotype association or early predictors for progression were not identified. Multiple joint contractures predict rapid deterioration. Muscle Nerve 58: 381-388, 2018.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Woo Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Hyuna Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Sun Ah Choi
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Jin Sook Lee
- Department of Pediatrics, Department of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea
| | - Anna Cho
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Korea
| | - Se Song Jang
- Department of biomedical Science, Seoul National University Graduate School, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Jong-Il Kim
- Department of biomedical Science, Seoul National University Graduate School, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Si Houn Hahn
- Department of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Hospital, Seattle, Washington, USA
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| |
Collapse
|
11
|
Fan Y, Liu A, Wei C, Yang H, Chang X, Wang S, Yuan Y, Bonnemann C, Wu Q, Wu X, Xiong H. Genetic and clinical findings in a Chinese cohort of patients with collagen VI-related myopathies. Clin Genet 2018; 93:1159-1171. [PMID: 29419890 DOI: 10.1111/cge.13230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Collagen VI-related myopathy, caused by pathogenic variants in the genes encoding collagen VI, represents a clinical continuum from Ullrich congenital muscular dystrophy (UCMD) to Bethlem myopathy (BM). Clinical data of 60 probands and their family members were collected and muscle biopsies of 26 patients were analyzed. COL6A1, COL6A2 and COL6A3 exons were analyzed by direct sequencing or next generation sequencing (NGS). Sixty patients were characterized by delayed motor milestones, muscle weakness, skin and joint changes with 40 UCMD and 20 BM. Muscle with biopsies revealed dystrophic changes and showed completely deficiency of collagen VI or sarcolemma specific collagen VI deficiency. We identified 62 different pathogenic variants in these 60 patients, with 34 were first reported while 28 were previously known; 72 allelic pathogenic variants in COL6A1 (25/72, 34.7%), COL6A2 (33/72, 45.8%) and COL6A3 (14/72, 19.4%). We also found somatic mosaic variant in the parent of 1 proband by personal genome machine amplicon deep sequencing for mosaicism. Here we provide clinical, histological and genetic evidence of collagen VI-related myopathy in 60 Chinese patients. NGS is a valuable approach for diagnosis and accurate diagnosis provides useful information for genetic counseling of related families.
Collapse
Affiliation(s)
- Y Fan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - A Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - C Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - H Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - X Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - S Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Y Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - C Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke/NIH, Bethesda, Maryland
| | - Q Wu
- Human Genetics Resources Core Facility, School of Life Sciences, Peking University, Beijing, China
| | - X Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - H Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
12
|
Lamandé SR, Bateman JF. Collagen VI disorders: Insights on form and function in the extracellular matrix and beyond. Matrix Biol 2017; 71-72:348-367. [PMID: 29277723 DOI: 10.1016/j.matbio.2017.12.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the three canonical collagen VI genes, COL6A1, COL6A2 and COL6A3, cause a spectrum of muscle disease from Bethlem myopathy at the mild end to the severe Ullrich congenital muscular dystrophy. Mutations can be either dominant or recessive and the resulting clinical severity is influenced by the way mutations impact the complex collagen VI assembly process. Most mutations are found towards the N-terminus of the triple helical collagenous domain and compromise extracellular microfibril assembly. Outside the triple helix collagen VI is highly polymorphic and discriminating mutations from rare benign changes remains a major diagnostic challenge. Collagen VI deficiency alters extracellular matrix structure and biomechanical properties and leads to increased apoptosis and oxidative stress, decreased autophagy, and impaired muscle regeneration. Therapies that target these downstream consequences have been tested in a collagen VI null mouse and also in small human trials where they show modest clinical efficacy. An important role for collagen VI in obesity, cancer and diabetes is emerging. A major barrier to developing effective therapies is the paucity of information about how collagen VI deficiency in the extracellular matrix signals the final downstream consequences - the receptors involved and the intracellular messengers await further characterization.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia.
| | - John F Bateman
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
13
|
Hu Z, Zhou L, He T. Potential effect of exercise in ameliorating insulin resistance at transcriptome level. J Sports Med Phys Fitness 2017; 59:116-125. [PMID: 29072034 DOI: 10.23736/s0022-4707.17.07862-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Insulin resistance can lead to the pathogenesis of type 2 diabetes and exercise can increase insulin sensitivity. And different exercises may have different influences on the mitigation of insulin resistance. It is still unclear how exercise affects inherited insulin resistance at transcriptome level. The purpose of our study was to analyze the potential effects of exercise in ameliorating insulin resistance at transcriptome level. METHODS Herein, we analyzed two skeletal muscle transcriptome profiles, including gene profiles between inherited insulin resistant patients and matched healthy controls, and between trained and sedentary subjects (young and old subjects, respectively). RESULTS Analysis of differentially expressed genes revealed that 12 genes (SGK1, LOC101929876, MYL5, COL6A3, MLF1, LUM, MSTN, COL1A2, COL3A1, IL32, IRS2, and ID1) associated with insulin resistance were reversed by exercise in young subjects, while six genes (MSTN, CFHR1, PFKFB3, IL32, RGCC, and NMRK2) were identified in old subjects, suggesting that those genes play potential roles in insulin resistance response to exercise. In addition, we observed that two insulin resistance-related genes, MSTN and IL32, were identified in muscle cells of both young and old subjects, indicating their important roles in the mechanisms behind the beneficial effects of exercise on humans with inherited insulin resistance. Several pathways were also identified, such as "collagen metabolic process," "focal adhesion," and "negative regulation of myoblast differentiation." CONCLUSIONS Taken together, our findings provide novel markers in insulin resistant patients and exercise, and some valuable information for future functional studies on how exercise ameliorating insulin resistance.
Collapse
Affiliation(s)
- Zhigang Hu
- Institute of Physical Education, Jiangxi Normal University, Nanchang, China -
| | - Lei Zhou
- Nanchang Institute of Science and Technology, Nanchang, China
| | - Tingting He
- Institute of Physical Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
14
|
Fu J, Zheng YM, Jin SQ, Yi JF, Liu XJ, Lyn H, Wang ZX, Zhang W, Xiao JX, Yuan Y. "Target" and "Sandwich" Signs in Thigh Muscles have High Diagnostic Values for Collagen VI-related Myopathies. Chin Med J (Engl) 2017; 129:1811-6. [PMID: 27453230 PMCID: PMC4976569 DOI: 10.4103/0366-6999.186638] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Collagen VI-related myopathies are autosomal dominant and recessive hereditary myopathies, mainly including Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM). Muscle magnetic resonance imaging (MRI) has been widely used to diagnosis muscular disorders. The purpose of this study was to evaluate the diagnostic value of thigh muscles MRI for collagen VI-related myopathies. Methods: Eleven patients with collagen VI gene mutation-related myopathies were enrolled in this study. MRI of the thigh muscles was performed in all patients with collagen VI gene mutation-related myopathies and in 361 patients with other neuromuscular disorders (disease controls). T1-weighted images were used to assess fatty infiltration of the muscles using a modified Mercuri's scale. We assessed the sensitivity and specificity of the MRI features of collagen VI-related myopathies. The relationship between fatty infiltration of muscles and specific collagen VI gene mutations was also investigated. Results: Eleven patients with collagen VI gene mutation-related myopathies included six UCMD patients and five BM patients. There was no significant difference between UCMD and BM patients in the fatty infiltration of each thigh muscle except sartorius (P = 0.033); therefore, we combined the UCMD and BM data. Mean fatty infiltration scores were 3.1 and 3.0 in adductor magnus and gluteus maximus, while the scores were 1.3, 1.3, and 1.5 in gracilis, adductor longus, and sartorius, respectively. A “target” sign in rectus femoris (RF) was present in seven cases, and a “sandwich” sign in vastus lateralis (VL) was present in ten cases. The “target” and “sandwich” signs had sensitivities of 63.6% and 90.9% and specificities of 97.3% and 96.9% for the diagnosis of collagen VI-related myopathies, respectively. Fatty infiltration scores were 2.0–3.0 in seven patients with mutations in the triple-helical domain, and 1.0–1.5 in three of four patients with mutations in the N- or C-domain of the collagen VI genes. Conclusions: The “target” sign in RF and “sandwich” sign in VL are common MRI features and are useful for the diagnosis of collagen VI-related myopathies. The severity of fatty infiltration of muscles may have a relationship with the mutation location of collagen VI gene.
Collapse
Affiliation(s)
- Jun Fu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yi-Ming Zheng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Su-Qin Jin
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jun-Fei Yi
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Xiu-Juan Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - He Lyn
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhao-Xia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jiang-Xi Xiao
- Department of Radiology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
15
|
Paladin L, Tosatto SCE, Minervini G. Structural in silico dissection of the collagen V interactome to identify genotype-phenotype correlations in classic Ehlers-Danlos Syndrome (EDS). FEBS Lett 2015; 589:3871-8. [PMID: 26608033 DOI: 10.1016/j.febslet.2015.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/23/2015] [Accepted: 11/14/2015] [Indexed: 01/18/2023]
Abstract
Collagen V mutations are associated with Elhers-Danlos syndrome (EDS), a group of heritable collagenopathies. Collagen V structure is not available and the disease-causing mechanism is unclear. To address this issue, we manually curated missense mutations suspected to promote classic type EDS (cEDS) insurgence from the literature and performed a genotype-phenotype correlation study. Further, we generated a homology model of the collagen V triple helix to evaluate the pathogenic effects. The resulting structure was used to map known protein-protein interactions enriched with in silico predictions. An interaction network model for collagen V was created. We found that cEDS heterogeneous manifestations may be explained by the involvement in two different extracellular matrix pathways, related to cell adhesion and tissue repair or cell differentiation, growth and apoptosis.
Collapse
Affiliation(s)
- Lisanna Paladin
- Department of Biomedical Sciences and CRIBI Biotechnology Center, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | - Silvio C E Tosatto
- Department of Biomedical Sciences and CRIBI Biotechnology Center, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy; CNR Institute of Neuroscience, Padova, Italy.
| | - Giovanni Minervini
- Department of Biomedical Sciences and CRIBI Biotechnology Center, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|