1
|
Adib AA, Karim MM. Design of therapeutic siRNAs for potential application to infection with chikungunya virus. Heliyon 2025; 11:e41824. [PMID: 39897885 PMCID: PMC11782961 DOI: 10.1016/j.heliyon.2025.e41824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Emergence of the Chikungunya virus (CHIKV) is a new threat in the world. The disastrous effect of this virus and the unavailability of specific drugs complicated the control and management of the disease. The development of a siRNA-based drug using multiple computational tools could be a way out as one of its therapeutics. Currently, very few siRNAs against CHIKV have been computationally designed and published. Here, we considered various parts of the CHIKV genome encoding different essential protein-coding genes for designing siRNAs with a view to silencing them, thereby rendering the virus inactive. Seven potential primary siRNAs were constructed, of which, five are hereafter recommended to be used as a therapeutic tool against the virus.
Collapse
Affiliation(s)
- Ahmed Ahsan Adib
- Department of Microbiology, University of Dhaka, Dhaka, 1100, Bangladesh
| | | |
Collapse
|
2
|
Li S, Chu Y, Guo X, Mao C, Xiao SJ. Circular RNA oligonucleotides: enzymatic synthesis and scaffolding for nanoconstruction. NANOSCALE HORIZONS 2024; 9:1749-1755. [PMID: 39042106 DOI: 10.1039/d4nh00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We report the efficient synthesis of monomeric circular RNAs (circRNAs) in the size range of 16-44 nt with a novel DNA dumbbell splinting plus T4 DNA ligation strategy. Such a DNA dumbbell splinting strategy was developed by one group among ours recently for near-quantitative conversion of short linear DNAs into monomeric circular ones. Furthermore, using the 44 nt circRNA as scaffold strands, we constructed hybrid RNA:DNA and pure RNA:RNA double crossover tiles and their assemblies of nucleic acid nanotubes and flat arrays.
Collapse
Affiliation(s)
- Shijie Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yanxin Chu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xin Guo
- Bruker (Beijing) Scientific Technology Co. Ltd, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Shou-Jun Xiao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
3
|
Nawaz R, Arif MA, Ahmad Z, Ahad A, Shahid M, Hassan Z, Husnain A, Aslam A, Raza MS, Mehmood U, Idrees M. An ncRNA transcriptomics-based approach to design siRNA molecules against SARS-CoV-2 double membrane vesicle formation and accessory genes. BMC Infect Dis 2023; 23:872. [PMID: 38087193 PMCID: PMC10718025 DOI: 10.1186/s12879-023-08870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The corona virus SARS-CoV-2 is the causative agent of recent most global pandemic. Its genome encodes various proteins categorized as non-structural, accessory, and structural proteins. The non-structural proteins, NSP1-16, are located within the ORF1ab. The NSP3, 4, and 6 together are involved in formation of double membrane vesicle (DMV) in host Golgi apparatus. These vesicles provide anchorage to viral replicative complexes, thus assist replication inside the host cell. While the accessory genes coded by ORFs 3a, 3b, 6, 7a, 7b, 8a, 8b, 9b, 9c, and 10 contribute in cell entry, immunoevasion, and pathological progression. METHODS This in silico study is focused on designing sequence specific siRNA molecules as a tool for silencing the non-structural and accessory genes of the virus. The gene sequences of NSP3, 4, and 6 along with ORF3a, 6, 7a, 8, and 10 were retrieved for conservation, phylogenetic, and sequence logo analyses. siRNA candidates were predicted using siDirect 2.0 targeting these genes. The GC content, melting temperatures, and various validation scores were calculated. Secondary structures of the guide strands and siRNA-target duplexes were predicted. Finally, tertiary structures were predicted and subjected to structural validations. RESULTS This study revealed that NSP3, 4, and 6 and accessory genes ORF3a, 6, 7a, 8, and 10 have high levels of conservation across globally circulating SARS-CoV-2 strains. A total of 71 siRNA molecules were predicted against the selected genes. Following rigorous screening including binary validations and minimum free energies, final siRNAs with high therapeutic potential were identified, including 7, 2, and 1 against NSP3, NSP4, and NSP6, as well as 3, 1, 2, and 1 targeting ORF3a, ORF7a, ORF8, and ORF10, respectively. CONCLUSION Our novel in silico pipeline integrates effective methods from previous studies to predict and validate siRNA molecules, having the potential to inhibit viral replication pathway in vitro. In total, this study identified 17 highly specific siRNA molecules targeting NSP3, 4, and 6 and accessory genes ORF3a, 7a, 8, and 10 of SARS-CoV-2, which might be used as an additional antiviral treatment option especially in the cases of life-threatening urgencies.
Collapse
Affiliation(s)
- Rabia Nawaz
- Department of Biological Sciences, Superior University, Lahore, Pakistan.
- Division of Molecular Virology, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Ali Arif
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Zainab Ahmad
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Ammara Ahad
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zohal Hassan
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Ali Husnain
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Ali Aslam
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Saad Raza
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Uqba Mehmood
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Vice chancellor, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
4
|
Sartaj Sohrab S, Aly El-Kafrawy S, Mirza Z, Hassan AM, Alsaqaf F, Ibraheem Azhar E. Delivery of siRNAs against MERS-CoV in Vero and HEK-293 cells: A comparative evaluation of transfection reagents. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102540. [PMID: 36624781 PMCID: PMC9814285 DOI: 10.1016/j.jksus.2023.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 05/28/2023]
Abstract
Background A new coronavirus was identified in Jeddah, Saudi Arabia in 2012 and designated as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). To date, this virus has been reported in 27 countries. The virus transmission to humans has already been reported from camels. Currently, there is no vaccine or antiviral therapy available against this virus. Methods The siRNAs were in silico predicted, designed, and chemically synthesized by using the MERS-CoV-orf1ab region as a target. The antiviral activity was experimentally evaluated by delivering the siRNAs with Lipofectamine™ 2000 and JetPRIMER as transfection reagents in both Vero cell and HEK-293-T cell lines at two different concentrations (10.0 nM and 5.0 nM). The Ct value of quantitative Real-Time PCR (qRT-PCR) was used to calculate and determine the reduction of viral RNA level in both cell supernatant and cell lysate isolated from both cell lines. Results The sequence alignment resulted in the selection of highly conserved regions. The orf1ab region was used to predict and design the siRNAs and a total of twenty-one siRNAs were finally selected from four hundred and twenty-six siRNAs generated by online software. Inhibition of viral replication and significant reduction of viral RNA was observed against selected siRNAs in both cell lines at both concentrations. Based on the Ct value, the siRNAs # 11, 12, 18, and 20 were observed to be the best performing in both cell lines at both concentrations. Conclusion Based on the results and data analysis, it is concluded that the use of two different transfection reagents was significantly effective. But the Lipofectamine™ 2000 was found to be a better transfection reagent than the JetPRIMER for the delivery of siRNAs in both cell lines.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif Aly El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatima Alsaqaf
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Computational Design and Experimental Evaluation of MERS-CoV siRNAs in Selected Cell Lines. Diagnostics (Basel) 2023; 13:diagnostics13010151. [PMID: 36611443 PMCID: PMC9818142 DOI: 10.3390/diagnostics13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a well-known coronavirus first identified in a hospitalized patient in the Kingdom of Saudi Arabia. MERS-CoV is a serious pathogen affecting both human and camel health globally, with camels being known carriers of viruses that spread to humans. In this work, MERS-CoV genomic sequences were retrieved and analyzed by multiple sequence alignment to design and predict siRNAs with online software. The siRNAs were designed from the orf1ab region of the virus genome because of its high sequence conservation and vital role in virus replication. The designed siRNAs were used for experimental evaluation in selected cell lines: Vero cells, HEK-293-T, and Huh-7. Virus inhibition was assessed according to the cycle threshold value during a quantitative real-time polymerase chain reaction. Out of 462 potential siRNAs, we filtered out 21 based on specific selection criteria without off-target effect. The selected siRNAs did not show any cellular toxicity in the tested cell lines at various concentrations. Based on our results, it was obvious that the combined use of siRNAs exhibited a reduction in MERS-CoV replication in the Vero, HEK-293-T, and Huh-7 cell lines, with the highest efficacy displayed in the Vero cells.
Collapse
|
6
|
Mahfuz A, Khan MA, Sajib EH, Deb A, Mahmud S, Hasan M, Saha O, Islam A, Rahaman MM. Designing potential siRNA molecules for silencing the gene of the nucleocapsid protein of Nipah virus: A computational investigation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105310. [PMID: 35636695 DOI: 10.1016/j.meegid.2022.105310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nipah virus (NiV), a zoonotic virus, engenders severe infections with noticeable complications and deaths in humans and animals. Since its emergence, it is frightening, this virus has been causing regular outbreaks in various countries, particularly in Bangladesh, India, and Malaysia. Unfortunately, no efficient vaccine or drug is available now to combat this baneful virus. NiV employs its nucleocapsid protein for genetic material packaging, which is crucial for viral replication inside the host cells. The small interfering RNAs (siRNAs) can play a central role in inhibiting the expression of disease-causing viral genes by hybridization and subsequent inactivation of the complementary target viral mRNAs through the RNA interference (RNAi) pathway. Therefore, potential siRNAs as molecular therapeutics against the nucleocapsid protein gene of NiV were designed in this study. First, ten prospective siRNAs were identified using the conserved nucleocapsid gene sequences among all available NiV strains collected from various countries. After that, off-target binding, GC (guanine-cytosine) content, secondary structure, binding affinity with the target, melting temperature, efficacy analysis, and binding capacity with the human argonaute protein 2 (AGO2) of these siRNAs were evaluated to predict their suitability. These designed siRNA molecules bear promise in silencing the NiV gene encoding the nucleocapsid protein and thus can alleviate the severity of this dangerous virus. Further in vivo experiments are recommended before using these designed siRNAs as alternative and effective molecular therapeutic agents against NiV.
Collapse
Affiliation(s)
- Amub Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh; Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh.
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Anamika Deb
- Department of Pharmaceuticals and Industrial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Shafi Mahmud
- Microbiology Laboratory, Bioinformatics Division, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Pharmaceuticals and Industrial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh; EcoHealth Alliance, New York, NY 10018, USA
| | | |
Collapse
|
7
|
Kooshkaki O, Asghari A, Mahdavi R, Azarkar G, Parsamanesh N. Potential of MicroRNAs As Biomarkers and Therapeutic Targets in Respiratory Viruses: A Literature Review. DNA Cell Biol 2022; 41:544-563. [PMID: 35699380 DOI: 10.1089/dna.2021.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Asghari
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Mahdavi
- Department of Hematology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghodsiyeh Azarkar
- Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Department of Hematology, Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
8
|
Chavda VP, Prajapati R, Lathigara D, Nagar B, Kukadiya J, Redwan EM, Uversky VN, Kher MN, Rajvi P. Therapeutic monoclonal antibodies for COVID-19 management: an update. Expert Opin Biol Ther 2022; 22:763-780. [PMID: 35604379 DOI: 10.1080/14712598.2022.2078160] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The first case of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral disease in the world was announced on 31st December 2019 in Wuhan, China. Since then, this virus has affected more than 440 million people, and today the world is facing different mutant strains of the virus, leading to increased morbidity rates, fatality rates, and surfacing re-infections. Various therapies, such as prophylactic treatments, repurposed drug treatments, convalescent plasma, and polyclonal antibody therapy have been developed to help combat the coronavirus disease 2019 (COVID-19). AREA COVERED This review article provides insights into the basic aspects of monoclonal antibodies (mAbs) for the therapy of COVID-19, as well as its advancement in terms of clinical trial and current approval status. EXPERT OPINION Monoclonal antibodies represents the most effective and viable therapy and/or prophylaxis option against COVID-19, and have shown a reduction of the viral load, as well as lowering hospitalizations and death rates. In different countries, various mAbs are undergoing different phases of clinical trials, with a few of them having entered phases III and IV. Due to the soaring number of cases worldwide, the FDA has given emergency approval for the mAb combinations bamlanivimab with etesevimab and casirivimab with imdevimab.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Riddhi Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Disha Lathigara
- Biocharecterization Lab, Intas Pharmaceutical Ltd. (Biopharma Division), Ahmedabad, India
| | - Bhumi Nagar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, India
| | - Jay Kukadiya
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, India
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Mukesh N Kher
- Department of Quality Assurance, L. M. College of Pharmacy, Ahmedabad, India
| | - Patel Rajvi
- Drug Product Development Lab, Intas Pharmaceutical Ltd. (Biopharma Division), Ahmedabad, India
| |
Collapse
|
9
|
Design of siRNA molecules for silencing of membrane glycoprotein, nucleocapsid phosphoprotein, and surface glycoprotein genes of SARS-CoV2. J Genet Eng Biotechnol 2022; 20:65. [PMID: 35482116 PMCID: PMC9047631 DOI: 10.1186/s43141-022-00346-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/18/2022] [Indexed: 12/24/2022]
Abstract
The global COVID-19 pandemic caused by SARS-CoV2 infected millions of people and resulted in more than 4 million deaths worldwide. Apart from vaccines and drugs, RNA silencing is a novel approach for treating COVID-19. In the present study, siRNAs were designed for the conserved regions targeting three structural genes, M, N, and S, from forty whole-genome sequences of SARS-CoV2 using four different software, RNAxs, siDirect, i-Score Designer, and OligoWalk. Only siRNAs which were predicted in common by all the four servers were considered for further shortlisting. A multistep filtering approach has been adopted in the present study for the final selection of siRNAs by the usage of different online tools, viz., siRNA scales, MaxExpect, DuplexFold, and SMEpred. All these web-based tools consider several important parameters for designing functional siRNAs, e.g., target-site accessibility, duplex stability, position-specific nucleotide preference, inhibitory score, thermodynamic parameters, GC content, and efficacy in cleaving the target. In addition, a few parameters like GC content and dG value of the entire siRNA were also considered for shortlisting of the siRNAs. Antisense strands were subjected to check for any off-target similarities using BLAST. Molecular docking was carried out to study the interactions of guide strands with AGO2 protein. A total of six functional siRNAs (two for each gene) have been finally selected for targeting M, N, and S genes of SARS-CoV2. The siRNAs have not shown any off-target effects, interacted with the domain(s) of AGO2 protein, and were efficacious in cleaving the target mRNA. However, the siRNAs designed in the present study need to be tested in vitro and in vivo in the future.
Collapse
|
10
|
Chavda VP, Kapadia C, Soni S, Prajapati R, Chauhan SC, Yallapu MM, Apostolopoulos V. A global picture: therapeutic perspectives for COVID-19. Immunotherapy 2022; 14:351-371. [PMID: 35187954 PMCID: PMC8884157 DOI: 10.2217/imt-2021-0168] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic is a lethal virus outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has severely affected human lives and the global economy. The most vital part of the research and development of therapeutic agents is to design drug products to manage COVID-19 efficiently. Numerous attempts have been in place to determine the optimal drug dose and combination of drugs to treat the disease on a global scale. This article documents the information available on SARS-CoV-2 and its life cycle, which will aid in the development of the potential treatment options. A consolidated summary of several natural and repurposed drugs to manage COVID-19 is depicted with summary of current vaccine development. People with high age, comorbity and concomitant illnesses such as overweight, metabolic disorders, pulmonary disease, coronary heart disease, renal failure, fatty liver and neoplastic disorders are more prone to create serious COVID-19 and its consequences. This article also presents an overview of post-COVID-19 complications in patients.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
- Department of Pharmaceutics, K B Institute of Pharmaceutical Education & Research, Kadi Sarva Vishwavidhyalaya, Gandhinagar, Gujarat, 382023, India
| | - Carron Kapadia
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Shailvi Soni
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Riddhi Prajapati
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Subhash C Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
| | - Murali M Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
| | - Vasso Apostolopoulos
- Institute for Health & Sport, Victoria University, Melbourne, VIC, 3030, Australia
| |
Collapse
|
11
|
Chavda VP, Kapadia C, Soni S, Prajapati R, Chauhan SC, Yallapu MM, Apostolopoulos V. A global picture: therapeutic perspectives for COVID-19. Immunotherapy 2022. [PMID: 35187954 DOI: 10.2217/imt-2021-0168.10.2217/imt-2021-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The COVID-19 pandemic is a lethal virus outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has severely affected human lives and the global economy. The most vital part of the research and development of therapeutic agents is to design drug products to manage COVID-19 efficiently. Numerous attempts have been in place to determine the optimal drug dose and combination of drugs to treat the disease on a global scale. This article documents the information available on SARS-CoV-2 and its life cycle, which will aid in the development of the potential treatment options. A consolidated summary of several natural and repurposed drugs to manage COVID-19 is depicted with summary of current vaccine development. People with high age, comorbity and concomitant illnesses such as overweight, metabolic disorders, pulmonary disease, coronary heart disease, renal failure, fatty liver and neoplastic disorders are more prone to create serious COVID-19 and its consequences. This article also presents an overview of post-COVID-19 complications in patients.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
- Department of Pharmaceutics, K B Institute of Pharmaceutical Education & Research, Kadi Sarva Vishwavidhyalaya, Gandhinagar, Gujarat, 382023, India
| | - Carron Kapadia
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Shailvi Soni
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Riddhi Prajapati
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Subhash C Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
| | - Murali M Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
| | - Vasso Apostolopoulos
- Institute for Health & Sport, Victoria University, Melbourne, VIC, 3030, Australia
| |
Collapse
|
12
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
13
|
Ambike S, Cheng CC, Feuerherd M, Velkov S, Baldassi D, Afridi SQ, Porras-Gonzalez D, Wei X, Hagen P, Kneidinger N, Stoleriu MG, Grass V, Burgstaller G, Pichlmair A, Merkel OM, Ko C, Michler T. Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread. Nucleic Acids Res 2021; 50:333-349. [PMID: 34928377 PMCID: PMC8754636 DOI: 10.1093/nar/gkab1248] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023] Open
Abstract
A promising approach to tackle the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) could be small interfering (si)RNAs. So far it is unclear, which viral replication steps can be efficiently inhibited with siRNAs. Here, we report that siRNAs can target genomic RNA (gRNA) of SARS-CoV-2 after cell entry, and thereby terminate replication before start of transcription and prevent virus-induced cell death. Coronaviruses replicate via negative sense RNA intermediates using a unique discontinuous transcription process. As a result, each viral RNA contains identical sequences at the 5′ and 3′ end. Surprisingly, siRNAs were not active against intermediate negative sense transcripts. Targeting common sequences shared by all viral transcripts allowed simultaneous suppression of gRNA and subgenomic (sg)RNAs by a single siRNA. The most effective suppression of viral replication and spread, however, was achieved by siRNAs that targeted open reading frame 1 (ORF1) which only exists in gRNA. In contrast, siRNAs that targeted the common regions of transcripts were outcompeted by the highly abundant sgRNAs leading to an impaired antiviral efficacy. Verifying the translational relevance of these findings, we show that a chemically modified siRNA that targets a highly conserved region of ORF1, inhibited SARS-CoV-2 replication ex vivo in explants of the human lung. Our work encourages the development of siRNA-based therapies for COVID-19 and suggests that early therapy start, or prophylactic application, together with specifically targeting gRNA, might be key for high antiviral efficacy.
Collapse
Affiliation(s)
- Shubhankar Ambike
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Cho-Chin Cheng
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Martin Feuerherd
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Stoyan Velkov
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany
| | - Suliman Qadir Afridi
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Diana Porras-Gonzalez
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Xin Wei
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Philipp Hagen
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mircea Gabriel Stoleriu
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Pulmonary Hospital; Marchioninistraße 15, 81377 Munich and Robert-Koch-Allee 2, 82131 Gauting, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany.,German Center for Infection Research (DZIF), Munich partner site, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany.,Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Chunkyu Ko
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany.,Infectious Diseases Therapeutic Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 34114 Daejeon, Republic of Korea
| | - Thomas Michler
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany.,German Center for Infection Research (DZIF), Munich partner site, Germany
| |
Collapse
|
14
|
Pashkov EA, Korchevaya ER, Faizuloev EB, Svitich OA, Pashkov EP, Nechaev DN, Zverev VV. Potential of application of the RNA interference phenomenon in the treatment of new coronavirus infection COVID-19. Vopr Virusol 2021; 66:241-251. [PMID: 34545716 DOI: 10.36233/0507-4088-61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
COVID-19 has killed more than 4 million people to date and is the most significant global health problem. The first recorded case of COVID-19 had been noted in Wuhan, China in December 2019, and already on March 11, 2020, World Health Organization declared a pandemic due to the rapid spread of this infection. In addition to the damage to the respiratory system, SARS-CoV-2 is capable of causing severe complications that can affect almost all organ systems. Due to the insufficient effectiveness of the COVID-19 therapy, there is an urgent need to develop effective specific medicines. Among the known approaches to the creation of antiviral drugs, a very promising direction is the development of drugs whose action is mediated by the mechanism of RNA interference (RNAi). A small interfering RNA (siRNA) molecule suppresses the expression of a target gene in this regulatory pathway. The phenomenon of RNAi makes it possible to quickly create a whole series of highly effective antiviral drugs, if the matrix RNA (mRNA) sequence of the target viral protein is known. This review examines the possibility of clinical application of siRNAs aimed at suppressing reproduction of the SARS-CoV-2, taking into account the experience of similar studies using SARS-CoV and MERS-CoV infection models. It is important to remember that the effectiveness of siRNA molecules targeting viral genes may decrease due to the formation of viral resistance. In this regard, the design of siRNAs targeting the cellular factors necessary for the reproduction of SARS-CoV-2 deserves special attention.
Collapse
Affiliation(s)
- E A Pashkov
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia; FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - E R Korchevaya
- FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - E B Faizuloev
- FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - O A Svitich
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia; FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - E P Pashkov
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia
| | - D N Nechaev
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia
| | - V V Zverev
- FSAEI HE I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of the Health of Russia; FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| |
Collapse
|
15
|
In Vitro Inhibitory Analysis of Rationally Designed siRNAs against MERS-CoV Replication in Huh7 Cells. Molecules 2021; 26:molecules26092610. [PMID: 33947034 PMCID: PMC8125306 DOI: 10.3390/molecules26092610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
MERS-CoV was identified for the first time in Jeddah, Saudi Arabia in 2012 in a hospitalized patient. This virus subsequently spread to 27 countries with a total of 939 deaths and 2586 confirmed cases and now has become a serious concern globally. Camels are well known for the transmission of the virus to the human population. In this report, we have discussed the prediction, designing, and evaluation of potential siRNA targeting the ORF1ab gene for the inhibition of MERS-CoV replication. The online software, siDirect 2.0 was used to predict and design the siRNAs, their secondary structure and their target accessibility. ORF1ab gene folding was performed by RNAxs and RNAfold software. A total of twenty-one siRNAs were selected from 462 siRNAs according to their scoring and specificity. siRNAs were evaluated in vitro for their cytotoxicity and antiviral efficacy in Huh7 cell line. No significant cytotoxicity was observed for all siRNAs in Huh7 cells. The in vitro study showed the inhibition of viral replication by three siRNAs. The data generated in this study provide preliminary and encouraging information to evaluate the siRNAs separately as well as in combination against MERS-CoV replication in other cell lines. The prediction of siRNAs using online software resulted in the filtration and selection of potential siRNAs with high accuracy and strength. This computational approach resulted in three effective siRNAs that can be taken further to in vivo animal studies and can be used to develop safe and effective antiviral therapies for other prevalent disease-causing viruses.
Collapse
|
16
|
Hasan M, Ashik AI, Chowdhury MB, Tasnim AT, Nishat ZS, Hossain T, Ahmed S. Computational prediction of potential siRNA and human miRNA sequences to silence orf1ab associated genes for future therapeutics against SARS-CoV-2. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100569. [PMID: 33846694 PMCID: PMC8028608 DOI: 10.1016/j.imu.2021.100569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused by an RNA virus termed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 possesses an almost 30kbp long genome. The genome contains open-reading frame 1ab (ORF1ab) gene, the largest one of SARS-CoV-2, encoding polyprotein PP1ab and PP1a responsible for viral transcription and replication. Several vaccines have already been approved by the respective authorities over the world to develop herd immunity among the population. In consonance with this effort, RNA interference (RNAi) technology holds the possibility to strengthen the fight against this virus. Here, we have implemented a computational approach to predict potential short interfering RNAs including small interfering RNAs (siRNAs) and microRNAs (miRNAs), which are presumed to be intrinsically active against SARS-CoV-2. In doing so, we have screened miRNA library and siRNA library targeting the ORF1ab gene. We predicted the potential miRNA and siRNA candidate molecules utilizing an array of bioinformatic tools. By extending the analysis, out of 24 potential pre-miRNA hairpins and 131 siRNAs, 12 human miRNA and 10 siRNA molecules were sorted as potential therapeutic agents against SARS-CoV-2 based on their GC content, melting temperature (Tm), heat capacity (Cp), hybridization and minimal free energy (MFE) of hybridization. This computational study is focused on lessening the extensive time and labor needed in conventional trial and error based wet lab methods and it has the potential to act as a decent base for future researchers to develop a successful RNAi therapeutic.
Collapse
Key Words
- ACE-2, Angiotensin-converting enzyme 2
- COVID-19
- COVID-19, coronavirus disease 2019
- Cp, heat capacity
- Gene silencing
- ORF, open reading frame
- Posttranscriptional regulation
- RNAi Therapeutics
- RNAi, RNA interference
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus-2
- TMPRSS2, transmembrane protease serine 2
- Tm, melting temperature
- UTR, untranslated region
- hsa-miR, human microRNA
- miRNA
- miRNA, microRNA
- sgRNA, sub-genomic RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Mahedi Hasan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Arafat Islam Ashik
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Belal Chowdhury
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Atiya Tahira Tasnim
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Zakia Sultana Nishat
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shamim Ahmed
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
17
|
Panda K, Alagarasu K, Cherian SS, Parashar D. Prediction of potential small interfering RNA molecules for silencing of the spike gene of SARS-CoV-2. Indian J Med Res 2021; 153:182-189. [PMID: 33818475 PMCID: PMC8184069 DOI: 10.4103/ijmr.ijmr_2855_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Kingshuk Panda
- Chikungunya-Dengue Group, ICMR-National Institute of Virology, Pune 411 001, Maharashtra, India
| | - Kalichamy Alagarasu
- Chikungunya-Dengue Group, ICMR-National Institute of Virology, Pune 411 001, Maharashtra, India
| | - Sarah S Cherian
- Bioinformatics Group, ICMR-National Institute of Virology, Pune 411 001, Maharashtra, India
| | - Deepti Parashar
- Chikungunya-Dengue Group, ICMR-National Institute of Virology, Pune 411 001, Maharashtra, India
| |
Collapse
|
18
|
Song LG, Xie QX, Lao HL, Lv ZY. Human coronaviruses and therapeutic drug discovery. Infect Dis Poverty 2021; 10:28. [PMID: 33726861 PMCID: PMC7962087 DOI: 10.1186/s40249-021-00812-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Background Coronaviruses (CoVs) are distributed worldwide and have various susceptible hosts; CoVs infecting humans are called human coronaviruses (HCoVs). Although HCoV-specific drugs are still lacking, many potent targets for drug discovery are being explored, and many vigorously designed clinical trials are being carried out in an orderly manner. The aim of this review was to gain a comprehensive understanding of the current status of drug development against HCoVs, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Main text A scoping review was conducted by electronically searching research studies, reviews, and clinical trials in PubMed and the CNKI. Studies on HCoVs and therapeutic drug discovery published between January 2000 and October 2020 and in English or Chinese were included, and the information was summarized. Of the 3248 studies identified, 159 publication were finally included. Advances in drug development against HCoV, especially SARS-CoV-2, are summarized under three categories: antiviral drugs aimed at inhibiting the HCoV proliferation process, drugs acting on the host's immune system, and drugs derived from plants with potent activity. Furthermore, clinical trials of drugs targeting SARS-CoV-2 are summarized. Conclusions During the spread of COVID-19 outbreak, great efforts have been made in therapeutic drug discovery against the virus, although the pharmacological effects and adverse reactions of some drugs under study are still unclear. However, well-designed high-quality studies are needed to further study the effectiveness and safety of these potential drugs so as to provide valid recommendations for better control of the COVID-19 pandemic. ![]()
Collapse
Affiliation(s)
- Lan-Gui Song
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Qing-Xing Xie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui-Lin Lao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi-Yue Lv
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,NHC Key Laboratory of Control of Tropical Diseases, the First Affiliated Hospital, Hainan Medical University, Haikou, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
19
|
Sohrab SS, Aly El-Kafrawy S, Mirza Z, Hassan AM, Alsaqaf F, Azhar EI. In silico prediction and experimental validation of siRNAs targeting ORF1ab of MERS-CoV in Vero cell line. Saudi J Biol Sci 2021; 28:1348-1355. [PMID: 33519276 PMCID: PMC7833792 DOI: 10.1016/j.sjbs.2020.11.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
The Middle East Respiratory Syndrome Coronavirus is well known to cause respiratory syndrome and this virus was identified and isolated for the first time from Jeddah, Saudi Arabia in 2012 from infected patient. In this report, we have conducted the in-silico prediction, designing and evaluation of siRNAs targeting Middle East Respiratory Syndrome Coronavirus orf1ab gene to inhibit the virus replication. By using bioinformatics software, total twenty-one functional, off-target reduced siRNA were selected from four hundred and sixty-two siRNAs based on their greater potency and specificity. We have evaluated only seven siRNAs to analyze their performance and efficacy as antivirals by reverse transfection approach in Vero cells. There was no cytotoxicity of siRNAs at various concentrations was observed in Vero cells. Based on the real-time PCR results, better inhibition of viral replication was observed in the siRNA-1 and 4 as compared to other siRNAs. The results generated from this work provided suitable information about the efficacy of siRNAs which encouraged us to further evaluate the remaining siRNAs to determine their inhibitory effect on the virus replication. We concluded that the insilico prediction and designing resulted in the screening of potential siRNAs with better efficiency, and strength. This can be used to develop oligonucleotide-based antiviral therapeutics against MERS-CoV in the near future.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No-80216, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif Aly El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No-80216, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No-80216, Jeddah 21589, Saudi Arabia
| | - Fatima Alsaqaf
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No-80216, Jeddah 21589, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No-80216, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Rabaan AA, Al-Ahmed SH, Sah R, Alqumber MA, Haque S, Patel SK, Pathak M, Tiwari R, Yatoo MI, Haq AU, Bilal M, Dhama K, Rodriguez-Morales AJ. MERS-CoV: epidemiology, molecular dynamics, therapeutics, and future challenges. Ann Clin Microbiol Antimicrob 2021; 20:8. [PMID: 33461573 PMCID: PMC7812981 DOI: 10.1186/s12941-020-00414-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
The Severe Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has gained research attention worldwide, given the current pandemic. Nevertheless, a previous zoonotic and highly pathogenic coronavirus, the Middle East Respiratory Syndrome coronavirus (MERS-CoV), is still causing concern, especially in Saudi Arabia and neighbour countries. The MERS-CoV has been reported from respiratory samples in more than 27 countries, and around 2500 cases have been reported with an approximate fatality rate of 35%. After its emergence in 2012 intermittent, sporadic cases, nosocomial infections and many community clusters of MERS continued to occur in many countries. Human-to-human transmission resulted in the large outbreaks in Saudi Arabia. The inherent genetic variability among various clads of the MERS-CoV might have probably paved the events of cross-species transmission along with changes in the inter-species and intra-species tropism. The current review is drafted using an extensive review of literature on various databases, selecting of publications irrespective of favouring or opposing, assessing the merit of study, the abstraction of data and analysing data. The genome of MERS-CoV contains around thirty thousand nucleotides having seven predicted open reading frames. Spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins are the four main structural proteins. The surface located spike protein (S) of betacoronaviruses has been established to be one of the significant factors in their zoonotic transmission through virus-receptor recognition mediation and subsequent initiation of viral infection. Three regions in Saudi Arabia (KSA), Eastern Province, Riyadh and Makkah were affected severely. The epidemic progression had been the highest in 2014 in Makkah and Riyadh and Eastern Province in 2013. With a lurking epidemic scare, there is a crucial need for effective therapeutic and immunological remedies constructed on sound molecular investigations.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Mohammed A Alqumber
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Alusteng Srinagar, Shalimar, Srinagar, Jammu and Kashmir, 190006, India
| | - Abrar Ul Haq
- Division of Clinical Veterinary Medicine Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher E Kashmir University of Agricultural Sciences and Technology, Kashmir, Shuhama, Srinagar, 190006, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia. .,Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia. .,School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
21
|
Khan MT, Irfan M, Ahsan H, Ahmed A, Kaushik AC, Khan AS, Chinnasamy S, Ali A, Wei DQ. Structures of SARS-CoV-2 RNA-Binding Proteins and Therapeutic Targets. Intervirology 2021; 64:55-68. [PMID: 33454715 PMCID: PMC7900486 DOI: 10.1159/000513686] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) epidemic has resulted in thousands of infections and deaths worldwide. Several therapies are currently undergoing clinical trials for the treatment of SARS-CoV-2 infection. However, the development of new drugs and the repositioning of existing drugs can only be achieved after the identification of potential therapeutic targets within structures, as this strategy provides the most precise solution for developing treatments for sudden epidemic infectious diseases. SUMMARY In the current investigation, crystal and cryo-electron microscopy structures encoded by the SARS-CoV-2 genome were systematically examined for the identification of potential drug targets. These structures include nonstructural proteins (Nsp-9; Nsp-12; and Nsp-15), nucleocapsid (N) proteins, and the main protease (Mpro). Key Message: The structural information reveals the presence of many potential alternative therapeutic targets, primarily involved in interaction between N protein and Nsp3, forming replication-transcription complexes (RTCs) which might be a potential drug target for effective control of current SARS-CoV-2 pandemic. RTCs consist of 16 nonstructural proteins (Nsp1-16) that play the most essential role in the synthesis of viral RNA. Targeting the physical linkage between the envelope and single-stranded positive RNA, a process facilitated by matrix proteins may provide a good alternative strategy. Our current study provides useful information for the development of new lead compounds against SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Hina Ahsan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abrar Ahmed
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | - Anwar Sheed Khan
- Department of Microbiology, University of Science and Technology, Kohat, Pakistan
| | - Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Arif Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China,
- Peng Cheng Laboratory, Shenzhen, China,
| |
Collapse
|
22
|
Sohrab SS, El-Kafrawy SA, Mirza Z, Hassan AM, Alsaqaf F, Azhar EI. Designing and evaluation of MERS-CoV siRNAs in HEK-293 cell line. J Infect Public Health 2020; 14:238-243. [PMID: 33493920 PMCID: PMC7771261 DOI: 10.1016/j.jiph.2020.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background The MERS-CoV was identified for the first time from Jeddah, Saudi Arabia in 2012 from a hospitalized patient. This virus has now been spread to 27 countries with a total of 858 deaths and 2494 confirmed cases and has become a serious concern for the human population. Camels are well known for the transmission of the virus to the human population. Methods In this report, we have discussed the designing, prediction, and evaluation of potential siRNAs against the orf1ab gene of MERS-CoV. The online software was used to predict and design the siRNAs and finally, total twenty-one siRNA were filtered out from four hundred and sixty-two sIRNAs as per their scoring and specificity criteria. We have used only ten siRNAs to evaluate their cytotoxicity and efficacy by reverse transfection approach in HEK-293-T cell lines. Results Based on the results and data generated; no cytotoxicity was observed for any siRNAs at various concentrations in HEK-293-T cells. The ct value of real-time PCR showed the inhibition of viral replication in siRNA-1, 2, 4, 6, and 9. The data generated provided the preliminary information and encouraged us to evaluate the remaining siRNAs separately as well as in combination to analyses the replication of MERS-CoV inhibition in other cell lines. Conclusion Based on the results obtained; it is concluded that the prediction of siRNAs using online software resulted in the filtration of potential siRNAs with high accuracy and strength. This technology can be used to design and develop antiviral therapy not only for MERS-CoV but also against other viruses.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sherif Aly El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia
| | - Fatima Alsaqaf
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box, No-80216, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Alsamman AM, Zayed H. The transcriptomic profiling of SARS-CoV-2 compared to SARS, MERS, EBOV, and H1N1. PLoS One 2020; 15:e0243270. [PMID: 33301474 PMCID: PMC7728291 DOI: 10.1371/journal.pone.0243270] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 (COVID-19) pandemic is a global crisis that threatens our way of life. As of November 18, 2020, SARS-CoV-2 has claimed more than 1,342,709 lives, with a global mortality rate of ~2.4% and a recovery rate of ~69.6%. Understanding the interaction of cellular targets with the SARS-CoV-2 infection is crucial for therapeutic development. Therefore, the aim of this study was to perform a comparative analysis of transcriptomic signatures of infection of SARS-CoV-2 compared to other respiratory viruses (EBOV, H1N1, MERS-CoV, and SARS-CoV), to determine a unique anti-SARS-CoV-2 gene signature. We identified for the first time that molecular pathways for heparin-binding, RAGE, miRNA, and PLA2 inhibitors were associated with SARS-CoV-2 infection. The NRCAM and SAA2 genes, which are involved in severe inflammatory responses, and the FGF1 and FOXO1 genes, which are associated with immune regulation, were found to be associated with the cellular gene response to SARS-CoV-2 infection. Moreover, several cytokines, most significantly IL-8 and IL-6, demonstrated key associations with SARS-CoV-2 infection. Interestingly, the only response gene that was shared among the five viral infections was SERPINB1. The protein-protein interaction (PPI) analysis shed light on genes with high interaction activity that SARS-CoV-2 shares with other viral infections. The findings showed that the genetic pathways associated with rheumatoid arthritis, the AGE-RAGE signaling system, malaria, hepatitis B, and influenza A were of high significance. We found that the virogenomic transcriptome of infection, gene modulation of host antiviral responses, and GO terms of SARS-CoV-2 and EBOV were more similar than to SARS, H1N1, and MERS. This work compares the virogenomic signatures of highly pathogenic viruses and provides valid targets for potential therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Asadzadeh A, Pakkhoo S, Saeidabad MM, Khezri H, Ferdousi R. Information technology in emergency management of COVID-19 outbreak. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100475. [PMID: 33204821 PMCID: PMC7661942 DOI: 10.1016/j.imu.2020.100475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Emergency management of the emerging infectious disease outbreak is critical for public health threats. Currently, control of the COVID-19 outbreak is an international concern and has become a crucial challenge in many countries. This article reviews significant information technologyIT) applications in emergency management of COVID-19 by considering the prevention/mitigation, preparedness, response, and recovery phases of the crisis. This review was conducted using MEDLINE PubMed), Embase, IEEE, and Google Scholar. Expert opinions were collected to show existence gaps, useful technologies for each phase of emergency management, and future direction. Results indicated that various IT-based systems such as surveillance systems, artificial intelligence, computational methods, Internet of things, remote sensing sensor, online service, and GIS geographic information system) could have different outbreak management applications, especially in response phases. Information technology was applied in several aspects, such as increasing the accuracy of diagnosis, early detection, ensuring healthcare providers' safety, decreasing workload, saving time and cost, and drug discovery. We categorized these applications into four core topics, including diagnosis and prediction, treatment, protection, and management goals, which were confirmed by five experts. Without applying IT, the control and management of the crisis could be difficult on a large scale. For reducing and improving the hazard effect of disaster situations, the role of IT is inevitable. In addition to the response phase, communities should be considered to use IT capabilities in prevention, preparedness, and recovery phases. It is expected that IT will have an influential role in the recovery phase of COVID-19. Providing IT infrastructure and financial support by the governments should be more considered in facilitating IT capabilities.
Collapse
Affiliation(s)
- Afsoon Asadzadeh
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Pakkhoo
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mirzaei Saeidabad
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hero Khezri
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Lundstrom K. Coronavirus pandemic: treatment and future prevention. Future Microbiol 2020; 15:1507-1521. [PMID: 33140657 PMCID: PMC7675013 DOI: 10.2217/fmb-2020-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid spread of SARS-CoV-2 leading to the COVID-19 pandemic with more than 400,000 deaths worldwide and the global economy shut down has substantially accelerated the research and development of novel and efficient COVID-19 antiviral drugs and vaccines. In the short term, antiviral and other drugs have been subjected to repurposing against COVID-19 demonstrating some success, but some excessively hasty conclusions drawn from significantly suboptimal clinical evaluations have provided false hope. On the other hand, more than 300 potential therapies and at least 150 vaccine studies are in progress at various stages of preclinical or clinical research. The aim here is to provide a timely update of the development, which, due to the intense activities, moves forward with unprecedented speed.
Collapse
|
26
|
Lundstrom K. Viral Vectors Applied for RNAi-Based Antiviral Therapy. Viruses 2020; 12:v12090924. [PMID: 32842491 PMCID: PMC7552024 DOI: 10.3390/v12090924] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) provides the means for alternative antiviral therapy. Delivery of RNAi in the form of short interfering RNA (siRNA), short hairpin RNA (shRNA) and micro-RNA (miRNA) have demonstrated efficacy in gene silencing for therapeutic applications against viral diseases. Bioinformatics has played an important role in the design of efficient RNAi sequences targeting various pathogenic viruses. However, stability and delivery of RNAi molecules have presented serious obstacles for reaching therapeutic efficacy. For this reason, RNA modifications and formulation of nanoparticles have proven useful for non-viral delivery of RNAi molecules. On the other hand, utilization of viral vectors and particularly self-replicating RNA virus vectors can be considered as an attractive alternative. In this review, examples of antiviral therapy applying RNAi-based approaches in various animal models will be described. Due to the current coronavirus pandemic, a special emphasis will be dedicated to targeting Coronavirus Disease-19 (COVID-19).
Collapse
|
27
|
Abstract
The current global pandemic COVID-19 caused by the SARS-CoV-2 virus has already inflicted insurmountable damage both to the human lives and global economy. There is an immediate need for identification of effective drugs to contain the disastrous virus outbreak. Global efforts are already underway at a war footing to identify the best drug combination to address the disease. In this review, an attempt has been made to understand the SARS-CoV-2 life cycle, and based on this information potential druggable targets against SARS-CoV-2 are summarized. Also, the strategies for ongoing and future drug discovery against the SARS-CoV-2 virus are outlined. Given the urgency to find a definitive cure, ongoing drug repurposing efforts being carried out by various organizations are also described. The unprecedented crisis requires extraordinary efforts from the scientific community to effectively address the issue and prevent further loss of human lives and health.
Collapse
Affiliation(s)
- Ambrish Saxena
- Indian Institute of Technology Tirupati, Tirupati, India
| |
Collapse
|
28
|
Habtemariam S, Berindan-Neagoe I, Cismaru CA, Schaafsma D, Nabavi SF, Ghavami S, Banach M, Nabavi SM. Lessons from SARS and MERS remind us of the possible therapeutic effects of implementing a siRNA strategy to target COVID-19: Shoot the messenger! J Cell Mol Med 2020; 24:10267-10269. [PMID: 32677763 PMCID: PMC7405483 DOI: 10.1111/jcmm.15652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Kent, UK
| | - Ioana Berindan-Neagoe
- Research Center for functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cosmin Andrei Cismaru
- Research Center for functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Sciences, Immunology and Allergology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Division of Translational Medicine, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Division of Translational Medicine, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Uskoković V. Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic? Nanomedicine (Lond) 2020; 15:1719-1734. [PMID: 32462968 PMCID: PMC7265684 DOI: 10.2217/nnm-2020-0163] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Prior research on nanotechnologies in diagnostics, prevention and treatment of coronavirus infections is reviewed. Gold nanoparticles and semiconductor quantum dots in colorimetric and immunochromatographic assays, silica nanoparticles in the polymerase chain reaction and spike protein nanospheres as antigen carriers and adjuvants in vaccine formulations present notable examples in diagnostics and prevention, while uses of nanoparticles in coronavirus infection treatments have been merely sporadic. The current absence of antiviral therapeutics that specifically target human coronaviruses, including SARS-CoV-2, might be largely due to the underuse of nanotechnologies. Elucidating the interface between nanoparticles and coronaviruses is timely, but presents the only route to the rational design of precisely targeted therapeutics for coronavirus infections. Such a fundamental approach is also a viable prophylaxis against future pandemics of this type.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical & Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Lundstrom K. Coronavirus Pandemic-Therapy and Vaccines. Biomedicines 2020; 8:E109. [PMID: 32375268 PMCID: PMC7277397 DOI: 10.3390/biomedicines8050109] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The current coronavirus COVID-19 pandemic, which originated in Wuhan, China, has raised significant social, psychological and economic concerns in addition to direct medical issues. The rapid spread of severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 to almost every country on the globe and the failure to contain the infections have contributed to fear and panic worldwide. The lack of available and efficient antiviral drugs or vaccines has further worsened the situation. For these reasons, it cannot be overstated that an accelerated effort for the development of novel drugs and vaccines is needed. In this context, novel approaches in both gene therapy and vaccine development are essential. Previous experience from SARS- and MERS-coronavirus vaccine and drug development projects have targeted glycoprotein epitopes, monoclonal antibodies, angiotensin receptor blockers and gene silencing technologies, which may be useful for COVID-19 too. Moreover, existing antivirals used for other types of viral infections have been considered as urgent action is necessary. This review aims at providing a background of coronavirus genetics and biology, examples of therapeutic and vaccine strategies taken and potential innovative novel approaches in progress.
Collapse
|
31
|
Mohanty PS, Sharma S, Naaz F, Kumar D, Raikwar A, Patil SA. Inhibition of Mycobacterium tuberculosis tRNA-Ligases Using siRNA-Based Gene Silencing Method: A Computational Approach. J Comput Biol 2019; 27:91-99. [PMID: 31433209 DOI: 10.1089/cmb.2019.0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a major public health problem in several countries. Development of first-line and second-line drug resistance strains of Mycobacterium tuberculosis further complicated the management of the disease. Despite available drugs to treat TB, 1.6 million people died from the disease in 2017. In this study, we designed 10 siRNAs against 8 tRNA ligases of M. tuberculosis and validated their usefulness for inhibition of protein synthesis by using computational approach. We found that the predicted siRNAs efficiently form seed duplex complex against their respective mRNA targets. Other different computational approaches were also undertaken to assess the stability, accessibility, and strength of seed duplex complex of designed siRNA and targeted mRNA. On the basis of the computational approach, we reciprocated that the technique will help in opening a new window in the field of TB control program and could be taken for further clinical studies to find their appropriateness for TB eradication.
Collapse
Affiliation(s)
- Partha Sarathi Mohanty
- Department of Epidemiology and National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sandeep Sharma
- Department of Epidemiology and National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Farah Naaz
- Department of Epidemiology and National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Dilip Kumar
- Department of Epidemiology and National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Archana Raikwar
- Department of Epidemiology and National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Shripad A Patil
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
32
|
Wang Q, Wong G, Lu G, Yan J, Gao GF. MERS-CoV spike protein: Targets for vaccines and therapeutics. Antiviral Res 2016; 133:165-77. [PMID: 27468951 PMCID: PMC7113765 DOI: 10.1016/j.antiviral.2016.07.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/07/2016] [Accepted: 07/22/2016] [Indexed: 02/05/2023]
Abstract
The disease outbreak caused by Middle East respiratory syndrome coronavirus (MERS-CoV) is still ongoing in the Middle East. Over 1700 people have been infected since it was first reported in September 2012. Despite great efforts, licensed vaccines or therapeutics against MERS-CoV remain unavailable. The MERS-CoV spike (S) protein is an important viral antigen known to mediate host-receptor binding and virus entry, as well as induce robust humoral and cell-mediated responses in humans during infection. In this review, we highlight the importance of the S protein in the MERS-CoV life cycle, summarize recent advances in the development of vaccines and therapeutics based on the S protein, and discuss strategies that can be explored to develop new medical countermeasures against MERS-CoV. A licensed vaccine or therapeutic against MERS-CoV remains unavailable to date. The S protein plays a pivotal role for virus entry and thus is an ideal target for vaccine and antiviral development. DNA vaccines expressing the S protein merit further development for potential human application. nAbs and peptides targeting the S protein needs to be evaluated in NHPs before clinical trials.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Drug Discovery
- Humans
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/physiology
- Receptors, Virus/chemistry
- Receptors, Virus/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Structure-Activity Relationship
- Vaccines, DNA/immunology
- Vaccines, Subunit/immunology
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/immunology
- Virus Internalization
Collapse
Affiliation(s)
- Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China.
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|