1
|
Lasiwa D, Kursula I. Crystal structure of Anopheles gambiae actin depolymerizing factor explains high affinity to monomeric actin. FEBS J 2025; 292:2381-2397. [PMID: 39932036 DOI: 10.1111/febs.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 05/11/2025]
Abstract
Actin is an intrinsically dynamic protein, the function and state of which are modulated by actin-binding proteins. Actin-depolymerizing factors (ADF)/cofilins are ubiquitous actin-binding proteins that accelerate actin turnover. Malaria is an infectious disease caused by parasites of the genus Plasmodium, which belong to the phylum Apicomplexa. The parasites require two hosts to complete their life cycle: the definitive host, or the vector, an Anopheles spp. mosquito, and a vertebrate intermediate host, such as humans. Here, the malaria vector Anopheles gambiae ADF (AgADF) crystal structure is reported. AgADF has a conserved ADF/cofilin fold with six central β-strands surrounded by five α-helices with a long β-hairpin loop protruding out of the structure. The G- and F-actin-binding sites of AgADF are conserved, and the structure shows features of potential importance for regulation by membrane binding and redox state. AgADF binds monomeric ATP- and ADP-actin with a high affinity, having a nanomolar Kd, and binds effectively also to actin filaments.
Collapse
Affiliation(s)
- Devaki Lasiwa
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
2
|
Sun ZG, Murrell M. Cofilin-Mediated Filament Softening and Crosslinking Counterbalance to Enhance Actin Network Flexibility. PHYSICAL REVIEW LETTERS 2024; 133:218402. [PMID: 39642486 DOI: 10.1103/physrevlett.133.218402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
Filamentous-actin (F-actin) crosslinking within the cell cytoskeleton mediates the transmission of mechanical forces, enabling changes in cell shape, as occurs during cell division and cell migration. Crosslinking by actin binding proteins (ABPs) generally increases the connectivity of the F-actin network, but also increases network rigidity. As a result, there is a narrow range in the concentration of crosslinker protein at which F-actin networks are both connected and labile. Another ABP, cofilin, severs F-actin filaments at high pH through increasing their bending flexibility and concentrating mechanical stress, inducing fragmentation. By contrast, at lower pH, cofilin increases filament flexibility yet does not sever. Instead, it forms disulfide bonds, which crosslink F-actin into bundles, and bundles into networks. Here, we combine light microscopy and rheology to determine the impact of two potentially opposing effects on the mechanics of F-actin networks-increased flexibility at the filament level, and increased connectivity at the network level. Indeed, by linear rheology, we find that these mechanisms are counterbalanced, such that cofilactin network moduli are only weakly dependent on cofilin concentration over a broad range, in contrast to the dramatic stiffening that occurs with F-actin crosslinking protein. Further, by nonlinear rheology, the network stiffens at a higher stress than crosslinking protein, indicative of a broader range in which the material remains flexible. These results may enable F-actin networks to increase connectivity without heavy penalties to rigidity, and thus provide a new route to modulating active polymer mechanics unseen using traditional F-actin accessory proteins.
Collapse
Affiliation(s)
- Zachary Gao Sun
- Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Michael Murrell
- Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
3
|
Kadzik RS, Kovar DR. A step-by-step guide to fragmenting bundled actin filaments. J Cell Biol 2024; 223:e202403191. [PMID: 38748453 PMCID: PMC11096848 DOI: 10.1083/jcb.202403191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
There has long been conflicting evidence as to how bundled actin filaments, found in cellular structures such as filopodia, are disassembled. In this issue, Chikireddy et al. (https://doi.org/10.1083/jcb.202312106) provide a detailed in vitro analysis of the steps involved in fragmentation of fascin-bundled actin filaments and propose a novel mechanism for severing two-filament bundles.
Collapse
Affiliation(s)
- Rachel S. Kadzik
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Li C, Wei TY, Cheung MS, Tsai MY. Deciphering the Cofilin Oligomers via Intermolecular Disulfide Bond Formation: A Coarse-Grained Molecular Dynamics Approach to Understanding Cofilin's Regulation on Actin Filaments. J Phys Chem B 2024; 128:4590-4601. [PMID: 38701111 PMCID: PMC11104348 DOI: 10.1021/acs.jpcb.3c07938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Cofilin, a key actin-binding protein, orchestrates the dynamics of the actomyosin network through its actin-severing activity and by promoting the recycling of actin monomers. Recent experiments suggest that cofilin forms functionally distinct oligomers via thiol post-translational modifications (PTMs) that promote actin nucleation and assembly. Despite these advances, the structural conformations of cofilin oligomers that modulate actin activity remain elusive because there are combinatorial ways to oxidize thiols in cysteines to form disulfide bonds rapidly. This study employs molecular dynamics simulations to investigate human cofilin 1 as a case study for exploring cofilin dimers via disulfide bond formation. Utilizing a biasing scheme in simulations, we focus on analyzing dimer conformations conducive to disulfide bond formation. Additionally, we explore potential PTMs arising from the examined conformational ensemble. Using the free energy profiling, our simulations unveil a range of probable cofilin dimer structures not represented in current Protein Data Bank entries. These candidate dimers are characterized by their distinct population distributions and relative free energies. Of particular note is a dimer featuring an interface between cysteines 139 and 147 residues, which demonstrates stable free energy characteristics and intriguingly symmetrical geometry. In contrast, the experimentally proposed dimer structure exhibits a less stable free energy profile. We also evaluate frustration quantification based on the energy landscape theory in the protein-protein interactions at the dimer interfaces. Notably, the 39-39 dimer configuration emerges as a promising candidate for forming cofilin tetramers, as substantiated by frustration analysis. Additionally, docking simulations with actin filaments further evaluate the stability of these cofilin dimer-actin complexes. Our findings thus offer a computational framework for understanding the role of thiol PTM of cofilin proteins in regulating oligomerization, and the subsequent cofilin-mediated actin dynamics in the actomyosin network.
Collapse
Affiliation(s)
- Chengxuan Li
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
- Center
for Theoretical Biological Physics, Rice
University, Houston, Texas 77005, United States
| | - Ting-Yi Wei
- Department
of Chemistry and Biochemistry, National
Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
| | - Margaret S. Cheung
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
- Center
for Theoretical Biological Physics, Rice
University, Houston, Texas 77005, United States
- Pacific
Northwest National Laboratory, Seattle, Washington 98109, United States
| | - Min-Yeh Tsai
- Department
of Chemistry and Biochemistry, National
Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Division
of Physics, National Center for Theoretical Sciences, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
5
|
Sun ZG, Yadav V, Amiri S, Cao W, De La Cruz EM, Murrell M. Cofilin-mediated actin filament network flexibility facilitates 2D to 3D actomyosin shape change. Eur J Cell Biol 2024; 103:151379. [PMID: 38168598 DOI: 10.1016/j.ejcb.2023.151379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
The organization of actin filaments (F-actin) into crosslinked networks determines the transmission of mechanical stresses within the cytoskeleton and subsequent changes in cell and tissue shape. Principally mediated by proteins such as α-actinin, F-actin crosslinking increases both network connectivity and rigidity, thereby facilitating stress transmission at low crosslinking yet attenuating transmission at high crosslinker concentration. Here, we engineer a two-dimensional model of the actomyosin cytoskeleton, in which myosin-induced mechanical stresses are controlled by light. We alter the extent of F-actin crosslinking by the introduction of oligomerized cofilin. At pH 6.5, F-actin severing by cofilin is weak, but cofilin bundles and crosslinks filaments. Given its effect of lowering the F-actin bending stiffness, cofilin- crosslinked networks are significantly more flexible and softer in bending than networks crosslinked by α-actinin. Thus, upon local activation of myosin-induced contractile stress, the network bends out-of-plane in contrast to the in-plane compression as observed with networks crosslinked by α-actinin. Here, we demonstrate that local effects on filament mechanics by cofilin introduces novel large-scale network material properties that enable the sculpting of complex shapes in the cell cytoskeleton.
Collapse
Affiliation(s)
- Zachary Gao Sun
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | - Vikrant Yadav
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Sorosh Amiri
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Mechanical Engineering and Material Science, Yale University, New Haven, CT 06511, USA
| | - Wenxiang Cao
- Department of Molecular Biology & Biophysics, Yale University, New Haven, CT 06511, USA
| | - Enrique M De La Cruz
- Department of Molecular Biology & Biophysics, Yale University, New Haven, CT 06511, USA
| | - Michael Murrell
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Sexton JA, Potchernikov T, Bibeau JP, Casanova-Sepúlveda G, Cao W, Lou HJ, Boggon TJ, De La Cruz EM, Turk BE. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. Nat Commun 2024; 15:1426. [PMID: 38365893 PMCID: PMC10873347 DOI: 10.1038/s41467-024-45878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short, unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but specific aspects driving this conservation are unclear. Here, we screen a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and biochemical analysis of individual variants reveal distinct sequence requirements for actin binding and regulation by LIM kinase. LIM kinase recognition only partly explains sequence constraints on phosphoregulation, which are instead driven to a large extent by the capacity for phosphorylation to inactivate cofilin. We find loose sequence requirements for actin binding and phosphoinhibition, but collectively they restrict the N-terminus to sequences found in natural cofilins. Our results illustrate how a phosphorylation site can balance potentially competing sequence requirements for function and regulation.
Collapse
Affiliation(s)
- Joel A Sexton
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Tony Potchernikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jeffrey P Bibeau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Iannotta D, A A, Kijas AW, Rowan AE, Wolfram J. Entry and exit of extracellular vesicles to and from the blood circulation. NATURE NANOTECHNOLOGY 2024; 19:13-20. [PMID: 38110531 PMCID: PMC10872389 DOI: 10.1038/s41565-023-01522-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/17/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles that promote intercellular communication by delivering bioactive cargo over short and long distances. Short-distance communication takes place in the interstitium, whereas long-distance communication is thought to require transport through the blood circulation to reach distal sites. Extracellular vesicle therapeutics are frequently injected systemically, and diagnostic approaches often rely on the detection of organ-derived EVs in the blood. However, the mechanisms by which EVs enter and exit the circulation are poorly understood. Here, the lymphatic system and transport across the endothelial barrier through paracellular and transcellular routes are discussed as potential pathways for EV entry to and exit from the blood circulatory system.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
8
|
Quadri R, Rotondo G, Sertic S, Pozzi S, dell’Oca MC, Guerrini L, Muzi-Falconi M. A Haspin-ARHGAP11A axis regulates epithelial morphogenesis through Rho-ROCK dependent modulation of LIMK1-Cofilin. iScience 2023; 26:108011. [PMID: 37841592 PMCID: PMC10570125 DOI: 10.1016/j.isci.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Throughout mitosis, a plethora of processes must be efficiently concerted to ensure cell proliferation and tissue functionality. The mitotic spindle does not only mediate chromosome segregation, but also defines the axis of cellular division, thus determining tissue morphology. Functional spindle orientation relies on precise actin dynamics, shaped in mitosis by the LIMK1-Cofilin axis. The kinase Haspin acts as a guardian of faithful chromosome segregation that ensures amphitelic chromosome attachment and prevents unscheduled cohesin cleavage. Here, we report an unprecedented role for Haspin in the determination of spindle orientation in mitosis. We show that, during mitosis, Haspin regulates Rho-ROCK activity through ARHGAP11A, a poorly characterized GAP, and that ROCK is in turn responsible for the mitotic activation of LIMK1 and stabilization of the actin cytoskeleton, thus supporting a functional spindle orientation. By exploiting 3D cell cultures, we show that this pathway is pivotal for the establishment of a morphologically functional tissue.
Collapse
Affiliation(s)
- Roberto Quadri
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Giuseppe Rotondo
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sarah Sertic
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sara Pozzi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | - Luisa Guerrini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Marco Muzi-Falconi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
9
|
Cao W, Taylor EW, De La Cruz EM. Cooperative ligand binding to a double-stranded Ising lattice-Application to cofilin binding to actin filaments. PNAS NEXUS 2023; 2:pgad331. [PMID: 37885622 PMCID: PMC10599439 DOI: 10.1093/pnasnexus/pgad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Cooperative ligand binding to linear polymers is fundamental in many scientific disciplines, particularly biological and chemical physics and engineering. Such ligand binding interactions have been widely modeled using infinite one-dimensional (1D) Ising models even in cases where the linear polymers are more complex (e.g. actin filaments and other double-stranded linear polymers). Here, we use sequence-generating and transfer matrix methods to obtain an analytical method for cooperative equilibrium ligand binding to double-stranded Ising lattices. We use this exact solution to evaluate binding properties and features and analyze experimental binding data of cooperative binding of the regulatory protein, cofilin, to actin filaments. This analysis, with additional experimental information about the observed bound cofilin cluster sizes and filament structure, reveals that a bound cofilin promotes cooperative binding to its longitudinal nearest-neighbors but has very modest effects on lateral nearest-neighbors. The bound cofilin cluster sizes calculated from the best fit parameters from the double-stranded model are considerably larger than when calculated with the 1D model, consistent with experimental observations made by electron microscopy and fluorescence imaging. The exact solution obtained and the method for using the solution developed here can be widely used for analysis of variety of multistranded lattice systems.
Collapse
Affiliation(s)
- Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Edwin W Taylor
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Thota N, Quirk S, Zhuang Y, Stover ER, Lieberman RL, Hernandez R. Correlation between chemical denaturation and the unfolding energetics of Acanthamoeba actophorin. Biophys J 2023; 122:2921-2937. [PMID: 36461639 PMCID: PMC10398266 DOI: 10.1016/j.bpj.2022.11.2941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The actin filament network is in part remodeled by the action of a family of filament severing proteins that are responsible for modulating the ratio between monomeric and filamentous actin. Recent work on the protein actophorin from the amoeba Acanthamoeba castellani identified a series of site-directed mutations that increase the thermal stability of the protein by 22°C. Here, we expand this observation by showing that the mutant protein is also significantly stable to both equilibrium and kinetic chemical denaturation, and employ computer simulations to account for the increase in thermal or chemical stability through an accounting of atomic-level interactions. Specifically, the potential of mean force (PMF) can be obtained from steered molecular dynamics (SMD) simulations in which a protein is unfolded. However, SMD can be inefficient for large proteins as they require large solvent boxes, and computationally expensive as they require increasingly many SMD trajectories to converge the PMF. Adaptive steered molecular dynamics (ASMD) overcomes the second of these limitations by steering the particle in stages, which allows for convergence of the PMF using fewer trajectories compared with SMD. Use of the telescoping water scheme within ASMD partially overcomes the first of these limitations by reducing the number of waters at each stage to only those needed to solvate the structure within a given stage. In the PMFs obtained from ASMD, the work of unfolding Acto-2 was found to be higher than the Acto-WT by approximately 120 kCal/mol and reflects the increased stability seen in the chemical denaturation experiments. The evolution of the average number of hydrogen bonds and number of salt bridges during the pulling process provides a mechanistic view of the structural changes of the actophorin protein as it is unfolded, and how it is affected by the mutation in concert with the energetics reported through the PMF.
Collapse
Affiliation(s)
- Nikhil Thota
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | | | - Yi Zhuang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland
| | - Erica R Stover
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Rigoberto Hernandez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Chemistry, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
11
|
Sexton JA, Potchernikov T, Bibeau JP, Casanova-Sepúlveda G, Cao W, Lou HJ, Boggon TJ, De La Cruz EM, Turk BE. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547189. [PMID: 37425676 PMCID: PMC10327202 DOI: 10.1101/2023.06.30.547189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but the aspects of cofilin functionality driving this conservation are not clear. Here, we screened a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and subsequent biochemical analysis of individual variants revealed distinct sequence requirements for actin binding and regulation by LIM kinase. While the presence of a serine, rather than threonine, phosphoacceptor residue was essential for phosphorylation by LIM kinase, the native cofilin N-terminus was otherwise a suboptimal LIM kinase substrate. This circumstance was not due to sequence requirements for actin binding and severing, but rather appeared primarily to maintain the capacity for phosphorylation to inactivate cofilin. Overall, the individual sequence requirements for cofilin function and regulation were remarkably loose when examined separately, but collectively restricted the N-terminus to sequences found in natural cofilins. Our results illustrate how a regulatory phosphorylation site can balance potentially competing sequence requirements for function and regulation.
Collapse
Affiliation(s)
- Joel A. Sexton
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Tony Potchernikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Jeffrey P. Bibeau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | | | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Titus J. Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Enrique M. De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
12
|
Abstract
Actin cytoskeleton force generation, sensing, and adaptation are dictated by the bending and twisting mechanics of filaments. Here, we use magnetic tweezers and microfluidics to twist and pull individual actin filaments and evaluate their response to applied loads. Twisted filaments bend and dissipate torsional strain by adopting a supercoiled plectoneme. Pulling prevents plectoneme formation, which causes twisted filaments to sever. Analysis over a range of twisting and pulling forces and direct visualization of filament and single subunit twisting fluctuations yield an actin filament torsional persistence length of ~10 µm, similar to the bending persistence length. Filament severing by cofilin is driven by local twist strain at boundaries between bare and decorated segments and is accelerated by low pN pulling forces. This work explains how contractile forces generated by myosin motors accelerate filament severing by cofilin and establishes a role for filament twisting in the regulation of actin filament stability and assembly dynamics.
Collapse
|
13
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
14
|
Floyd C, Ni H, Gunaratne RS, Erban R, Papoian GA. On Stretching, Bending, Shearing, and Twisting of Actin Filaments I: Variational Models. J Chem Theory Comput 2022; 18:4865-4878. [PMID: 35895330 DOI: 10.1021/acs.jctc.2c00318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanochemical simulations of actomyosin networks are traditionally based on one-dimensional models of actin filaments having zero width. Here, and in the follow up paper (arXiv, DOI 10.48550/arXiv.2203.01284), approaches are presented for more efficient modeling that incorporates stretching, shearing, and twisting of actin filaments. Our modeling of a semiflexible filament with a small but finite width is based on the Cosserat theory of elastic rods, which allows for six degrees of freedom at every point on the filament's backbone. In the variational models presented in this paper, a small and discrete set of parameters is used to describe a smooth filament shape having all degrees of freedom allowed in the Cosserat theory. Two main approaches are introduced: one where polynomial spline functions describe the filament's configuration, and one in which geodesic curves in the space of the configurational degrees of freedom are used. We find that in the latter representation the strain energy function can be calculated without resorting to a small-angle expansion, so it can describe arbitrarily large filament deformations without systematic error. These approaches are validated by a dynamical model of a Cosserat filament, which can be further extended by using multiresolution methods to allow more detailed monomer-based resolution in certain parts of the actin filament, as introduced in the follow up paper. The presented framework is illustrated by showing how torsional compliance in a finite-width filament can induce broken chiral symmetry in the structure of a cross-linked bundle.
Collapse
Affiliation(s)
- Carlos Floyd
- Department of Chemistry & Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Haoran Ni
- Department of Chemistry & Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Ravinda S Gunaratne
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
| | - Radek Erban
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
| | - Garegin A Papoian
- Department of Chemistry & Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Hylton RK, Heebner JE, Grillo MA, Swulius MT. Cofilactin filaments regulate filopodial structure and dynamics in neuronal growth cones. Nat Commun 2022; 13:2439. [PMID: 35508487 PMCID: PMC9068697 DOI: 10.1038/s41467-022-30116-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cofilin is best known for its ability to sever actin filaments and facilitate cytoskeletal recycling inside of cells, but at higher concentrations in vitro, cofilin stabilizes a more flexible, hyper-twisted state of actin known as “cofilactin”. While this filament state is well studied, a structural role for cofilactin in dynamic cellular processes has not been observed. With a combination of cryo-electron tomography and fluorescence imaging in neuronal growth cones, we observe that filopodial actin filaments switch between a fascin-linked and a cofilin-decorated state, and that cofilactin is associated with a variety of dynamic events within filopodia. The switch to cofilactin filaments occurs in a graded fashion and correlates with a decline in fascin cross-linking within the filopodia, which is associated with curvature in the bundle. Our tomographic data reveal that the hyper-twisting of actin from cofilin binding leads to a rearrangement of filament packing, which largely excludes fascin from the base of filopodia. Our results provide mechanistic insight into the fundamentals of cytoskeletal remodeling inside of confined cellular spaces, and how the interplay between fascin and cofilin regulates the dynamics of searching filopodia. In this manuscript the authors show that Filopodia switch between bundles of fascin-crosslinked actin and cofilin-decorated filaments, which exclude fascin binding due to altered structure and packing, as well as affect filopodial searching dynamics.
Collapse
Affiliation(s)
- Ryan K Hylton
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Jessica E Heebner
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael A Grillo
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew T Swulius
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
16
|
Quirk S, Lieberman RL. Structure and activity of a thermally stable mutant of Acanthamoeba actophorin. Acta Crystallogr F Struct Biol Commun 2022; 78:150-160. [PMID: 35400667 PMCID: PMC8996146 DOI: 10.1107/s2053230x22002448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Actophorin, which was recently tested for crystallization under microgravity on the International Space Station, was subjected to mutagenesis to identify a construct with improved biophysical properties that were expected to improve the extent of diffraction. First, 20 mutations, including one C-terminal deletion of three residues, were introduced individually into actophorin, resulting in modest increases in thermal stability of between +0.5°C and +2.2°C. All but two of the stabilizing mutants increased both the rates of severing F-actin filaments and of spontaneous polymerization of pyrenyl G-actin in vitro. When the individual mutations were combined into a single actophorin variant, Acto-2, the overall thermal stability was 22°C higher than that of wild-type actophorin. When an inactivating S2P mutation in Acto-2 was restored, Acto-2/P2S was more stable by 20°C but was notably more active than the wild-type protein. The inactivating S2P mutation reaffirms the importance that Ser2 plays in the F-actin-severing reaction. The crystal structure of Acto-2 was solved to 1.7 Å resolution in a monoclinic space group, a first for actophorin. Surprisingly, despite the increase in thermal stability, the extended β-turn region, which is intimately involved in interactions with F-actin, is disordered in one copy of Acto-2 in the asymmetric unit. These observations emphasize the complex interplay among protein thermal stability, function and dynamics.
Collapse
Affiliation(s)
- Stephen Quirk
- Kimberly Clark, 1400 Holcomb Bridge Road, Roswell, GA 30076, USA
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|
17
|
Dynamics of the Actin Cytoskeleton at Adhesion Complexes. BIOLOGY 2021; 11:biology11010052. [PMID: 35053050 PMCID: PMC8773209 DOI: 10.3390/biology11010052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023]
Abstract
The shape of cells is altered to allow cells to adapt to their changing environments, including responding to internally generated and externally applied force. Force is sensed by cell surface adhesion proteins that are enriched in sites where cells bind to the extracellular matrix (focal adhesions) and neighboring cells (cell-cell or adherens junctions). Receptors at these adhesion sites stimulate intracellular signal transduction cascades that culminate in dramatic changes in the actin cytoskeleton. New actin filaments form, and/or new and existing filaments can be cleaved, branched, or bundled. Here, we discuss the actin cytoskeleton and its functions. We will examine the current understanding for how the actin cytoskeleton is tethered to adhesion sites. Finally, we will highlight recent studies describing how the actin cytoskeleton at these adhesion sites is remodeled in response to force.
Collapse
|
18
|
Quirk S, Lieberman RL. Improved resolution crystal structure of Acanthamoeba actophorin reveals structural plasticity not induced by microgravity. Acta Crystallogr F Struct Biol Commun 2021; 77:452-458. [PMID: 34866600 PMCID: PMC8647214 DOI: 10.1107/s2053230x21011419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Actophorin, a protein that severs actin filaments isolated from the amoeba Acanthamoeba castellanii, was employed as a test case for crystallization under microgravity. Crystals of purified actophorin were grown under microgravity conditions aboard the International Space Station (ISS) utilizing an interactive crystallization setup between the ISS crew and ground-based experimenters. Crystals grew in conditions similar to those grown on earth. The structure was solved by molecular replacement at a resolution of 1.65 Å. Surprisingly, the structure reveals conformational changes in a remote β-turn region that were previously associated with actophorin phosphorylated at the terminal residue Ser1. Although crystallization under microgravity did not yield a higher resolution than crystals grown under typical laboratory conditions, the conformation of actophorin obtained from solving the structure suggests greater flexibility in the actophorin β-turn than previously appreciated and may be beneficial for the binding of actophorin to actin filaments.
Collapse
Affiliation(s)
- Stephen Quirk
- Kimberley-Clark, 1400 Holcomb Bridge Road, Roswell, GA 30076, USA
| | - Raquel L. Lieberman
- Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|
19
|
Abstract
The turnover of actin filament networks in cells has long been considered to reflect the treadmilling behavior of pure actin filaments in vitro, where only the pointed ends depolymerize. Newly discovered molecular mechanisms challenge this notion, as they provide evidence of situations in which growing and depolymerizing barbed ends coexist.
Collapse
Affiliation(s)
- Guillaume Romet-Lemonne
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
20
|
Khan MI, Ferdous SF, Adnan A. Mechanical behavior of actin and spectrin subjected to high strain rate: A molecular dynamics simulation study. Comput Struct Biotechnol J 2021; 19:1738-1749. [PMID: 33897978 PMCID: PMC8050423 DOI: 10.1016/j.csbj.2021.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Recent nanoscopy and super-resolution microscopy studies have substantiated the structural contribution of periodic actin-spectrin lattice to the axonal cytoskeleton of neuron. However, sufficient mechanical insight is not present for spectrin and actin-spectrin network, especially in high strain rate scenario. To quantify the mechanical behavior of actin-spectrin cytoskeleton in such conditions, this study determines individual stretching characteristics of actin and spectrin at high strain rate by molecular dynamics (MD) simulation. The actin-spectrin separation criteria are also determined. It is found that both actin and spectrin have high stiffness when susceptible to high strain rate and show strong dependence on applied strain rate. The stretching stiffness of actin and forced unfolding mechanism of spectrin are in harmony with the current literature. Actin-spectrin model provides novel insight into their interaction and separation stretch. It is shown that the region vulnerable to failure is the actin-spectrin interface at lower strain rate, while it is the inter-repeat region of spectrin at higher strain rate.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sheikh Fahad Ferdous
- Department of Applied Engineering and Technology Management, Indiana State University, Terre Haute, IN 47809, USA
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
21
|
Bibeau JP, Gray S, De La Cruz EM. Clusters of a Few Bound Cofilins Sever Actin Filaments. J Mol Biol 2021; 433:166833. [PMID: 33524412 DOI: 10.1016/j.jmb.2021.166833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Cofilin is an essential actin filament severing protein that accelerates the assembly dynamics and turnover of actin networks by increasing the number of filament ends where subunits add and dissociate. It binds filament subunits stoichiometrically and cooperatively, forming clusters of contiguously-bound cofilin at sub-saturating occupancies. Filaments partially occupied with cofilin sever at boundaries between bare and cofilin-decorated segments. Imaging studies concluded that bound clusters must reach a critical size (Cc) of 13-100 cofilins to sever filaments. In contrast, structural and modeling studies suggest that a few or even a single cofilin can sever filaments, possibly with different severing rate constants. How clusters grow through the cooperative incorporation of additional cofilin molecules, specifically if they elongate asymmetrically or uniformly from both ends and if they are modulated by filament shape and external force, also lacks consensus. Here, using hydrodynamic flow to visualize individual actin filaments with TIRF microscopy, we found that neither flow-induced filament bending, tension, nor surface attachment conditions substantially affected the kinetics of cofilin binding to actin filaments. Clusters of bound cofilin preferentially extended toward filament pointed ends and displayed severing competency at small sizes (Cc < 3), with no detectable severing dependence on cluster size. These data support models in which small clusters of cofilin introduce local, but asymmetric, structural changes in actin filaments that promote filament severing with a rate constant that depends weakly on the size of the cluster.
Collapse
Affiliation(s)
- Jeffrey P Bibeau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | - Shawn Gray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
22
|
Hocky GM, Sindelar CV, Cao W, Voth GA, De La Cruz EM. Structural basis of fast- and slow-severing actin-cofilactin boundaries. J Biol Chem 2021; 296:100337. [PMID: 33508320 PMCID: PMC7961102 DOI: 10.1016/j.jbc.2021.100337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/24/2023] Open
Abstract
Members of the ADF/cofilin family of regulatory proteins bind actin filaments cooperatively, locally change actin subunit conformation and orientation, and sever filaments at "boundaries" between bare and cofilin-occupied segments. A cluster of bound cofilin introduces two distinct classes of boundaries due to the intrinsic polarity of actin filaments, one at the "pointed" end side and the other at the "barbed" end-side of the cluster; severing occurs more readily at the pointed end side of the cluster ("fast-severing" boundary) than the barbed end side ("slow-severing" boundary). A recent electron-cryomicroscopy (cryo-EM) model of the slow-severing boundary revealed structural "defects" at the interface that potentially contribute to severing. However, the structure of the fast-severing boundary remains uncertain. Here, we use extensive molecular dynamics simulations to produce atomic resolution models of both severing boundaries. Our equilibrated simulation model of the slow-severing boundary is consistent with the cryo-EM structural model. Simulations indicate that actin subunits at both boundaries adopt structures intermediate between those of bare and cofilin-bound actin subunits. These "intermediate" states have compromised intersubunit contacts, but those at the slow-severing boundary are stabilized by cofilin bridging interactions, accounting for its lower fragmentation probability. Simulations where cofilin proteins are removed from cofilactin filaments favor a mechanism in which a cluster of two contiguously bound cofilins is needed to fully stabilize the cofilactin conformation, promote cooperative binding interactions, and accelerate filament severing. Together, these studies provide a molecular-scale foundation for developing coarse-grained and theoretical descriptions of cofilin-mediated actin filament severing.
Collapse
Affiliation(s)
- Glen M Hocky
- Department of Chemistry, New York University, New York, New York, USA.
| | - Charles V Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
23
|
Harris AR, Jreij P, Belardi B, Joffe AM, Bausch AR, Fletcher DA. Biased localization of actin binding proteins by actin filament conformation. Nat Commun 2020; 11:5973. [PMID: 33239610 PMCID: PMC7688639 DOI: 10.1038/s41467-020-19768-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
The assembly of actin filaments into distinct cytoskeletal structures plays a critical role in cell physiology, but how proteins localize differentially to these structures within a shared cytoplasm remains unclear. Here, we show that the actin-binding domains of accessory proteins can be sensitive to filament conformational changes. Using a combination of live cell imaging and in vitro single molecule binding measurements, we show that tandem calponin homology domains (CH1-CH2) can be mutated to preferentially bind actin networks at the front or rear of motile cells. We demonstrate that the binding kinetics of CH1-CH2 domain mutants varies as actin filament conformation is altered by perturbations that include stabilizing drugs and other binding proteins. These findings suggest that conformational changes of actin filaments in cells could help to direct accessory binding proteins to different actin cytoskeletal structures through a biophysical feedback loop.
Collapse
Affiliation(s)
- Andrew R Harris
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Pamela Jreij
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Aaron M Joffe
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Andreas R Bausch
- Lehrstuhl für Biophysik (E27), Technische Universität München, Garching, 85748, Germany
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
24
|
Tang VW, Nadkarni AV, Brieher WM. Catastrophic actin filament bursting by cofilin, Aip1, and coronin. J Biol Chem 2020; 295:13299-13313. [PMID: 32723865 DOI: 10.1074/jbc.ra120.015018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/24/2020] [Indexed: 11/06/2022] Open
Abstract
Cofilin is an actin filament severing protein necessary for fast actin turnover dynamics. Coronin and Aip1 promote cofilin-mediated actin filament disassembly, but the mechanism is somewhat controversial. An early model proposed that the combination of cofilin, coronin, and Aip1 disassembled filaments in bursts. A subsequent study only reported severing. Here, we used EM to show that actin filaments convert directly into globular material. A monomer trap assay also shows that the combination of all three factors produces actin monomers faster than any two factors alone. We show that coronin accelerates the release of Pi from actin filaments and promotes highly cooperative cofilin binding to actin to create long stretches of polymer with a hypertwisted morphology. Aip1 attacks these hypertwisted regions along their sides, disintegrating them into monomers or short oligomers. The results are consistent with a catastrophic mode of disassembly, not enhanced severing alone.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ambika V Nadkarni
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
25
|
Regulation of Actin Filament Length by Muscle Isoforms of Tropomyosin and Cofilin. Int J Mol Sci 2020; 21:ijms21124285. [PMID: 32560136 PMCID: PMC7352323 DOI: 10.3390/ijms21124285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022] Open
Abstract
In striated muscle the extent of the overlap between actin and myosin filaments contributes to the development of force. In slow twitch muscle fibers actin filaments are longer than in fast twitch fibers, but the mechanism which determines this difference is not well understood. We hypothesized that tropomyosin isoforms Tpm1.1 and Tpm3.12, the actin regulatory proteins, which are specific respectively for fast and slow muscle fibers, differently stabilize actin filaments and regulate severing of the filaments by cofilin-2. Using in vitro assays, we showed that Tpm3.12 bound to F-actin with almost 2-fold higher apparent binding constant (Kapp) than Tpm1.1. Cofilin2 reduced Kapp of both tropomyosin isoforms. In the presence of Tpm1.1 and Tpm3.12 the filaments were longer than unregulated F-actin by 25% and 40%, respectively. None of the tropomyosins affected the affinity of cofilin-2 for F-actin, but according to the linear lattice model both isoforms increased cofilin-2 binding to an isolated site and reduced binding cooperativity. The filaments decorated with Tpm1.1 and Tpm3.12 were severed by cofilin-2 more often than unregulated filaments, but depolymerization of the severed filaments was inhibited. The stabilization of the filaments by Tpm3.12 was more efficient, which can be attributed to lower dynamics of Tpm3.12 binding to actin.
Collapse
|
26
|
Bleicher P, Sciortino A, Bausch AR. The dynamics of actin network turnover is self-organized by a growth-depletion feedback. Sci Rep 2020; 10:6215. [PMID: 32277095 PMCID: PMC7148320 DOI: 10.1038/s41598-020-62942-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
The dynamics of actin networks is modulated by a machinery consisting of actin binding proteins that control the turnover of filaments in space and time. To study this complex orchestration, in vitro reconstitution approaches strive to project actin dynamics in ideal, minimal systems. To this extent we reconstitute a self-supplying, dense network of globally treadmilling filaments. In this system we analyze growth and intrinsic turnover by means of FRAP measurements and thereby demonstrate how the depletion of monomers and actin binding partners modulate the dynamics in active actin networks. The described effects occur only in dense networks, as single filament dynamics are unable to produce depletion effects to this extent. Furthermore, we demonstrate a synergistic relationship between the nucleators formin and Arp2/3 when branched networks and formin-induced networks are colocalized. As a result, the formin-enhanced filament turnover depletes cofilin at the surface and thus protects the dense, Arp2/3 polymerized network from debranching. Ultimately, these results may be key for understanding the maintenance of the two contradicting requirements of network stability and dynamics in cells.
Collapse
Affiliation(s)
- P Bleicher
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany
| | - A Sciortino
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany
| | - A R Bausch
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany.
| |
Collapse
|
27
|
Ortega-Ortega Y, Carrasco-Castilla J, Juárez-Verdayes MA, Toscano-Morales R, Fonseca-García C, Nava N, Cárdenas L, Quinto C. Actin Depolymerizing Factor Modulates Rhizobial Infection and Nodule Organogenesis in Common Bean. Int J Mol Sci 2020; 21:ijms21061970. [PMID: 32183068 PMCID: PMC7139724 DOI: 10.3390/ijms21061970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022] Open
Abstract
Actin plays a critical role in the rhizobium-legume symbiosis. Cytoskeletal rearrangements and changes in actin occur in response to Nod factors secreted by rhizobia during symbiotic interactions with legumes. These cytoskeletal rearrangements are mediated by diverse actin-binding proteins, such as actin depolymerization factors (ADFs). We examined the function of an ADF in the Phaseolus vulgaris-rhizobia symbiotic interaction (PvADFE). PvADFE was preferentially expressed in rhizobia-inoculated roots and nodules. PvADFE promoter activity was associated with root hairs harbouring growing infection threads, cortical cell divisions beneath root hairs, and vascular bundles in mature nodules. Silencing of PvADFE using RNA interference increased the number of infection threads in the transgenic roots, resulting in increased nodule number, nitrogen fixation activity, and average nodule diameter. Conversely, overexpression of PvADFE reduced the nodule number, nitrogen fixation activity, average nodule diameter, as well as NODULE INCEPTION (NIN) and EARLY NODULIN2 (ENOD2) transcript accumulation. Hence, changes in ADFE transcript levels affect rhizobial infection and nodulation, suggesting that ADFE is fine-tuning these processes.
Collapse
Affiliation(s)
- Yolanda Ortega-Ortega
- Departamento de Biociencias y Agrobiotecnología, Centro de Investigación en Química Aplicada-CONACYT, Saltillo 25294, Coahuila, Mexico;
| | - Janet Carrasco-Castilla
- Instituto Politécnico Nacional, Centro de Estudios Científicos y Tecnológicos 17 León, León 37358, Guanajuato, Mexico;
| | - Marco A. Juárez-Verdayes
- Departamento de Docencia, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico;
| | - Roberto Toscano-Morales
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA;
| | - Citlali Fonseca-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca 62210, Morelos, Mexico; (C.F.-G.); (N.N.); (L.C.)
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca 62210, Morelos, Mexico; (C.F.-G.); (N.N.); (L.C.)
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca 62210, Morelos, Mexico; (C.F.-G.); (N.N.); (L.C.)
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca 62210, Morelos, Mexico; (C.F.-G.); (N.N.); (L.C.)
- Correspondence:
| |
Collapse
|
28
|
Jermyn AS, Cao W, Elam WA, De La Cruz EM, Lin MM. Directional allosteric regulation of protein filament length. Phys Rev E 2020; 101:032409. [PMID: 32290018 PMCID: PMC7758089 DOI: 10.1103/physreve.101.032409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Cofilin and ADF are cytoskeleton remodeling proteins that cooperatively bind and fragment actin filaments. Bound cofilin molecules do not directly interact with each other, indicating that cooperative binding of cofilin is mediated by the actin filament lattice. Cofilactin is therefore a model system for studying allosteric regulation of self-assembly. How cofilin binding changes structural and mechanical properties of actin filaments is well established. Less is known about the interaction energies and the thermodynamics of filament fragmentation, which describes the collective manner in which the cofilin concentration controls mean actin filament length. Here, we provide a general thermodynamic framework for allosteric regulation of self-assembly, and we use the theory to predict the interaction energies of experimental actin filament length distributions over a broad range of cofilin binding densities and for multiple cofilactin variants. We find that bound cofilin induces changes in nearby actin-actin interactions, and that these allosteric effects are propagated along the filament to affect up to four neighboring cofilin-binding sites (i.e., beyond nearest-neighbor allostery). The model also predicts that cofilin differentially stabilizes and destabilizes longitudinal versus lateral actin-actin interactions, and that the magnitude, range, asymmetry, and even the sign of these interaction energies can be altered using different actin and cofilin mutational variants. These results demonstrate that the theoretical framework presented here can provide quantitative thermodynamic information governing cooperative protein binding and filament length regulation, thus revealing nanometer length-scale interactions from micron length-scale "wet-lab" measurements.
Collapse
Affiliation(s)
- Adam S Jermyn
- Center for Computational Astrophysics,Flatiron Institute, New York, New York, 10010, USA
- Green Center for Molecular, Computational, and Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - W Austin Elam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Milo M Lin
- Green Center for Molecular, Computational, and Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
29
|
Lorenzo AM, De La Cruz EM, Koslover EF. Thermal fracture kinetics of heterogeneous semiflexible polymers. SOFT MATTER 2020; 16:2017-2024. [PMID: 31996875 PMCID: PMC7047574 DOI: 10.1039/c9sm01637f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The fracture and severing of polymer chains plays a critical role in the failure of fibrous materials and the regulated turnover of intracellular filaments. Using continuum wormlike chain models, we investigate the fracture of semiflexible polymers via thermal bending fluctuations, focusing on the role of filament flexibility and dynamics. Our results highlight a previously unappreciated consequence of mechanical heterogeneity in the filament, which enhances the rate of thermal fragmentation particularly in cases where constraints hinder the movement of the chain ends. Although generally applicable to semiflexible chains with regions of different bending stiffness, the model is motivated by a specific biophysical system: the enhanced severing of actin filaments at the boundary between stiff bare regions and mechanically softened regions that are coated with cofilin regulatory proteins. The results presented here point to a potential mechanism for disassembly of polymeric materials in general and cytoskeletal actin networks in particular by the introduction of locally softened chain regions, as occurs with cofilin binding.
Collapse
Affiliation(s)
- Alexander M Lorenzo
- Department of Physics, University of California San Diego, San Diego, California 92093, USA.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Elena F Koslover
- Department of Physics, University of California San Diego, San Diego, California 92093, USA.
| |
Collapse
|
30
|
Structures of cofilin-induced structural changes reveal local and asymmetric perturbations of actin filaments. Proc Natl Acad Sci U S A 2020; 117:1478-1484. [PMID: 31900364 DOI: 10.1073/pnas.1915987117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Members of the cofilin/ADF family of proteins sever actin filaments, increasing the number of filament ends available for polymerization or depolymerization. Cofilin binds actin filaments with positive cooperativity, forming clusters of contiguously bound cofilin along the filament lattice. Filament severing occurs preferentially at boundaries between bare and cofilin-decorated (cofilactin) segments and is biased at 1 side of a cluster. A molecular understanding of cooperative binding and filament severing has been impeded by a lack of structural data describing boundaries. Here, we apply methods for analyzing filament cryo-electron microscopy (cryo-EM) data at the single subunit level to directly investigate the structure of boundaries within partially decorated cofilactin filaments. Subnanometer resolution maps of isolated, bound cofilin molecules and an actin-cofilactin boundary indicate that cofilin-induced actin conformational changes are local and limited to subunits directly contacting bound cofilin. An isolated, bound cofilin compromises longitudinal filament contacts of 1 protofilament, consistent with a single cofilin having filament-severing activity. An individual, bound phosphomimetic (S3D) cofilin with weak severing activity adopts a unique binding mode that does not perturb actin structure. Cofilin clusters disrupt both protofilaments, consistent with a higher severing activity at boundaries compared to single cofilin. Comparison of these structures indicates that this disruption is substantially greater at pointed end sides of cofilactin clusters than at the barbed end. These structures, with the distribution of bound cofilin clusters, suggest that maximum binding cooperativity is achieved when 2 cofilins occupy adjacent sites. These results reveal the structural origins of cooperative cofilin binding and actin filament severing.
Collapse
|
31
|
Wioland H, Suzuki E, Cao L, Romet-Lemonne G, Jegou A. The advantages of microfluidics to study actin biochemistry and biomechanics. J Muscle Res Cell Motil 2019; 41:175-188. [PMID: 31749040 PMCID: PMC7109186 DOI: 10.1007/s10974-019-09564-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/26/2019] [Indexed: 11/24/2022]
Abstract
The regulated assembly of actin filaments is essential in nearly all cell types. Studying actin assembly dynamics can pose many technical challenges. A number of these challenges can be overcome by using microfluidics to observe and manipulate single actin filaments under an optical microscope. In particular, microfluidics can be tremendously useful for applying different mechanical stresses to actin filaments and determining how the physical context of the filaments affects their regulation by biochemical factors. In this review, we summarize the main features of microfluidics for the study of actin assembly dynamics, and we highlight some recent developments that have emerged from the combination of microfluidics and other techniques. We use two case studies to illustrate our points: the rapid assembly of actin filaments by formins and the disassembly of filaments by actin depolymerizing factor (ADF)/cofilin. Both of these protein families play important roles in cells. They regulate actin assembly through complex molecular mechanisms that are sensitive to the filaments’ mechanical context, with multiple activities that need to be quantified separately. Microfluidics-based experiments have been extremely useful for gaining insight into the regulatory actions of these two protein families.
Collapse
Affiliation(s)
- Hugo Wioland
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France
| | - Emiko Suzuki
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France
| | - Luyan Cao
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France
| | | | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France.
| |
Collapse
|
32
|
Arzash S, McCall PM, Feng J, Gardel ML, MacKintosh FC. Stress relaxation in F-actin solutions by severing. SOFT MATTER 2019; 15:6300-6307. [PMID: 31342050 DOI: 10.1039/c9sm01263j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Networks of filamentous actin (F-actin) are important for the mechanics of most animal cells. These cytoskeletal networks are highly dynamic, with a variety of actin-associated proteins that control cross-linking, polymerization and force generation in the cytoskeleton. Inspired by recent rheological experiments on reconstituted solutions of dynamic actin filaments, we report a theoretical model that describes stress relaxation behavior of these solutions in the presence of severing proteins. We show that depending on the kinetic rates of assembly, disassembly, and severing, one can observe both length-dependent and length-independent relaxation behavior.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Patrick M McCall
- Department of Physics, University of Chicago, Chicago, IL 60637, USA and James Franck Institute, University of Chicago, Chicago, IL 60637, USA and Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany and Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - Jingchen Feng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Margaret L Gardel
- Department of Physics, University of Chicago, Chicago, IL 60637, USA and James Franck Institute, University of Chicago, Chicago, IL 60637, USA and Institute for Biophysical Dynamics, University of Chicago, IL 60637, USA
| | - Fred C MacKintosh
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA and Department of Chemistry, Rice University, Houston, TX 77005, USA and Department of Physics & Astronomy, Rice University, Houston, TX 77005, USA
| |
Collapse
|
33
|
Tam SW, Feng R, Lau WKW, Law ACK, Yeung PKK, Chung SK. Endothelin type B receptor promotes cofilin rod formation and dendritic loss in neurons by inducing oxidative stress and cofilin activation. J Biol Chem 2019; 294:12495-12506. [PMID: 31248984 DOI: 10.1074/jbc.ra118.005155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Endothelin-1 (ET-1) is a neuroactive peptide produced by neurons, reactive astrocytes, and endothelial cells in the brain. Elevated levels of ET-1 have been detected in the post-mortem brains of individuals with Alzheimer's disease (AD). We have previously demonstrated that overexpression of astrocytic ET-1 exacerbates memory deficits in aged mice or in APPK670/M671 mutant mice. However, the effects of ET-1 on neuronal dysfunction remain elusive. ET-1 has been reported to mediate superoxide formation in the vascular system via NADPH oxidase (NOX) and to regulate the actin cytoskeleton of cancer cell lines via the cofilin pathway. Interestingly, oxidative stress and cofilin activation were both reported to mediate one of the AD histopathologies, cofilin rod formation in neurons. This raises the possibility that ET-1 mediates neurodegeneration via oxidative stress- or cofilin activation-driven cofilin rod formation. Here, we demonstrate that exposure to 100 nm ET-1 or to a selective ET type B receptor (ETB) agonist (IRL1620) induces cofilin rod formation in dendrites of primary hippocampal neurons, accompanied by a loss of distal dendrites and a reduction in dendritic length. The 100 nm IRL1620 exposure induced superoxide formation and cofilin activation, which were abolished by pretreatment with a NOX inhibitor (5 μm VAS2870). Moreover, IRL1620-induced cofilin rod formation was partially abolished by pretreatment with a calcineurin inhibitor (100 nm FK506), which suppressed cofilin activation. In conclusion, our findings suggest a role for ETB in neurodegeneration by promoting cofilin rod formation and dendritic loss via NOX-driven superoxide formation and cofilin activation.
Collapse
Affiliation(s)
- Sze-Wah Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China.
| | - Rui Feng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Way Kwok-Wai Lau
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; Department of Special Education and Counseling, The Education University of Hong Kong, Hong Kong, China
| | - Andrew Chi-Kin Law
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; Department of Psychiatry, Royal College of Surgeons in Ireland at Perdana University, Selangor, Malaysia
| | | | - Sookja Kim Chung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
34
|
Abstract
The shape of most animal cells is controlled by the actin cortex, a thin network of dynamic actin filaments (F-actin) situated just beneath the plasma membrane. The cortex is held far from equilibrium by both active stresses and polymer turnover: Molecular motors drive deformations required for cell morphogenesis, while actin-filament disassembly dynamics relax stress and facilitate cortical remodeling. While many aspects of actin-cortex mechanics are well characterized, a mechanistic understanding of how nonequilibrium actin turnover contributes to stress relaxation is still lacking. To address this, we developed a reconstituted in vitro system of entangled F-actin, wherein the steady-state length and turnover rate of F-actin are controlled by the actin regulatory proteins cofilin, profilin, and formin, which sever, recycle, and assemble filaments, respectively. Cofilin-mediated severing accelerates the turnover and spatial reorganization of F-actin, without significant changes to filament length. We demonstrate that cofilin-mediated severing is a single-timescale mode of stress relaxation that tunes the low-frequency viscosity over two orders of magnitude. These findings serve as the foundation for understanding the mechanics of more physiological F-actin networks with turnover and inform an updated microscopic model of single-filament turnover. They also demonstrate that polymer activity, in the form of ATP hydrolysis on F-actin coupled to nucleotide-dependent cofilin binding, is sufficient to generate a form of active matter wherein asymmetric filament disassembly preserves filament number despite sustained severing.
Collapse
|
35
|
Zhang XF, Ajeti V, Tsai N, Fereydooni A, Burns W, Murrell M, De La Cruz EM, Forscher P. Regulation of axon growth by myosin II-dependent mechanocatalysis of cofilin activity. J Cell Biol 2019; 218:2329-2349. [PMID: 31123185 PMCID: PMC6605792 DOI: 10.1083/jcb.201810054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
Synergism between myosin II contractility and cofilin activity modulates serotonin-dependent axon growth. Normally, cofilin-dependent decreases in actin density are compensated by increases in point contact density and traction force; however, myosin hyperactivation leads to catastrophic decreases in actin network density and neurite retraction. Serotonin (5-HT) is known to increase the rate of growth cone advance via cofilin-dependent increases in retrograde actin network flow and nonmuscle myosin II activity. We report that myosin II activity is regulated by PKC during 5-HT responses and that PKC activity is necessary for increases in traction force normally associated with these growth responses. 5-HT simultaneously induces cofilin-dependent decreases in actin network density and PKC-dependent increases in point contact density. These reciprocal effects facilitate increases in traction force production in domains exhibiting decreased actin network density. Interestingly, when PKC activity was up-regulated, 5-HT treatments resulted in myosin II hyperactivation accompanied by catastrophic cofilin-dependent decreases in actin filament density, sudden decreases in traction force, and neurite retraction. These results reveal a synergistic relationship between cofilin and myosin II that is spatiotemporally regulated in the growth cone via mechanocatalytic effects to modulate neurite growth.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| | - Visar Ajeti
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT.,Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT
| | - Nicole Tsai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT.,Department of Ophthalmology, University of California, San Francisco, California, CA
| | - Arash Fereydooni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| | - William Burns
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| | - Michael Murrell
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Paul Forscher
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| |
Collapse
|
36
|
Umeki N, Shibata K, Noguchi TQP, Hirose K, Sako Y, Uyeda TQP. K336I mutant actin alters the structure of neighbouring protomers in filaments and reduces affinity for actin-binding proteins. Sci Rep 2019; 9:5353. [PMID: 30926871 PMCID: PMC6441083 DOI: 10.1038/s41598-019-41795-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Mutation of the Lys-336 residue of actin to Ile (K336I) or Asp (K336E) causes congenital myopathy. To understand the effect of this mutation on the function of actin filaments and gain insight into the mechanism of disease onset, we prepared and biochemically characterised K336I mutant actin from Dictyostelium discoideum. Subtilisin cleavage assays revealed that the structure of the DNase-I binding loop (D-loop) of monomeric K336I actin, which would face the adjacent actin-protomer in filaments, differed from that of wild type (WT) actin. Although K336I actin underwent normal salt-dependent reversible polymerisation and formed apparently normal filaments, interactions of K336I filaments with alpha-actinin, myosin II, and cofilin were disrupted. Furthermore, co-filaments of K336I and WT actins also exhibited abnormal interactions with cofilin, implying that K336I actin altered the structure of the neighbouring WT actin protomers such that interaction between cofilin and the WT actin protomers was prevented. We speculate that disruption of the interactions between co-filaments and actin-binding proteins is the primary reason why the K336I mutation induces muscle disease in a dominant fashion.
Collapse
Affiliation(s)
- Nobuhisa Umeki
- Cellular Informatics Lab., RIKEN, Wako, Saitama, 351-0198, Japan. .,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8562, Japan.
| | - Keitaro Shibata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8562, Japan.,Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Hyogo, 651-2492, Japan
| | - Taro Q P Noguchi
- National Institute of Technology, Miyakonojo College, Miyakonojo, Miyazaki, 885-8567, Japan
| | - Keiko Hirose
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8562, Japan
| | - Yasushi Sako
- Cellular Informatics Lab., RIKEN, Wako, Saitama, 351-0198, Japan
| | - Taro Q P Uyeda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8562, Japan.,Department of Physics, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| |
Collapse
|
37
|
Isogai T, Danuser G. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0110. [PMID: 29632262 DOI: 10.1098/rstb.2017.0110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cell migration is driven by propulsive forces derived from polymerizing actin that pushes and extends the plasma membrane. The underlying actin network is constantly undergoing adaptation to new mechano-chemical environments and intracellular conditions. As such, mechanisms that regulate actin dynamics inherently contain multiple feedback loops and redundant pathways. Given the highly adaptable nature of such a system, studies that use only perturbation experiments (e.g. knockdowns, overexpression, pharmacological activation/inhibition, etc.) are challenged by the nonlinearity and redundancy of the pathway. In these pathway configurations, perturbation experiments at best describe the function(s) of a molecular component in an adapting (e.g. acutely drug-treated) or fully adapted (e.g. permanent gene silenced) cell system, where the targeted component now resides in a non-native equilibrium. Here, we propose how quantitative live-cell imaging and analysis of constitutive fluctuations of molecular activities can overcome these limitations. We highlight emerging actin filament barbed-end biology as a prime example of a complex, nonlinear molecular process that requires a fluctuation analytic approach, especially in an unperturbed cellular system, to decipher functional interactions of barbed-end regulators, actin polymerization and membrane protrusion.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Tadamoto Isogai
- Department of Cell Biology, Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
38
|
Torsional stress generated by ADF/cofilin on cross-linked actin filaments boosts their severing. Proc Natl Acad Sci U S A 2019; 116:2595-2602. [PMID: 30692249 PMCID: PMC6377502 DOI: 10.1073/pnas.1812053116] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Actin filaments assemble into ordered networks able to exert forces and shape cells. In response, filaments are exposed to mechanical stress which can potentially modulate their interactions with regulatory proteins. We developed in vitro tools to manipulate single filaments and study the impact of mechanics on the activity of actin depolymerizing factor (ADF)/cofilin, the central player in actin disassembly. While tension has almost no effect, curvature enhances severing by ADF/cofilin. We also discovered a mechanism that boosts the severing of anchored filaments: When binding to these filaments, ADF/cofilin locally increases their natural helicity, generating a torque that accelerates filament fragmentation up to 100-fold. As a consequence, interconnected filament networks are severed far more efficiently than independent filaments. Proteins of the actin depolymerizing factor (ADF)/cofilin family are the central regulators of actin filament disassembly. A key function of ADF/cofilin is to sever actin filaments. However, how it does so in a physiological context, where filaments are interconnected and under mechanical stress, remains unclear. Here, we monitor and quantify the action of ADF/cofilin in different mechanical situations by using single-molecule, single-filament, and filament network techniques, coupled to microfluidics. We find that local curvature favors severing, while tension surprisingly has no effect on cofilin binding and weakly enhances severing. Remarkably, we observe that filament segments that are held between two anchoring points, thereby constraining their twist, experience a mechanical torque upon cofilin binding. We find that this ADF/cofilin-induced torque does not hinder ADF/cofilin binding, but dramatically enhances severing. A simple model, which faithfully recapitulates our experimental observations, indicates that the ADF/cofilin-induced torque increases the severing rate constant 100-fold. A consequence of this mechanism, which we verify experimentally, is that cross-linked filament networks are severed by cofilin far more efficiently than nonconnected filaments. We propose that this mechanochemical mechanism is critical to boost ADF/cofilin’s ability to sever highly connected filament networks in cells.
Collapse
|
39
|
Wioland H, Jegou A, Romet-Lemonne G. Quantitative Variations with pH of Actin Depolymerizing Factor/Cofilin's Multiple Actions on Actin Filaments. Biochemistry 2018; 58:40-47. [PMID: 30499293 PMCID: PMC6358128 DOI: 10.1021/acs.biochem.8b01001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Actin
depolymerizing factor (ADF)/cofilin is the main protein family
promoting the disassembly of actin filaments, which is essential for
numerous cellular functions. ADF/cofilin proteins disassemble actin
filaments through different reactions, as they bind to their sides,
sever them, and promote the depolymerization of the resulting ADF/cofilin-saturated
filaments. Moreover, the efficiency of ADF/cofilin is known to be
very sensitive to pH. ADF/cofilin thus illustrates two challenges
in actin biochemistry: separating the different regulatory actions
of a single protein and characterizing them as a function of specific
biochemical conditions. Here, we investigate the different reactions
of ADF/cofilin on actin filaments, at four different pH values ranging
from 6.6 to 7.8, using single-filament microfluidics techniques. We
show that decreasing the pH decreases the effective filament severing
rate by increasing the rate at which filaments become saturated by
ADF/cofilin, thereby reducing the number of ADF/cofilin domain boundaries,
where severing can occur. The severing rate per domain boundary, however,
remains unchanged at different pH values. The ADF/cofilin-decorated
filaments (“cofilactin” filaments) depolymerize from
both ends. We show here that, at physiological pH (7.0–7.4),
the pointed end depolymerization of cofilactin filaments is barely
faster than that of bare filaments. In contrast, cofilactin barbed
ends undergo an “unstoppable” depolymerization (depolymerizing
for minutes despite the presence of free actin monomers and capping
protein in solution), throughout our pH range. We thus show that,
at physiological pH, the main contribution of ADF/cofilin to filament
depolymerization is at the barbed end.
Collapse
Affiliation(s)
- Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris-Diderot , 75013 Paris , France
| | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université Paris-Diderot , 75013 Paris , France
| | | |
Collapse
|
40
|
Hayakawa K, Sekiguchi C, Sokabe M, Ono S, Tatsumi H. Real-Time Single-Molecule Kinetic Analyses of AIP1-Enhanced Actin Filament Severing in the Presence of Cofilin. J Mol Biol 2018; 431:308-322. [PMID: 30439520 DOI: 10.1016/j.jmb.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022]
Abstract
Rearrangement of actin filaments by polymerization, depolymerization, and severing is important for cell locomotion, membrane trafficking, and many other cellular functions. Cofilin and actin-interacting protein 1 (AIP1; also known as WDR1) are evolutionally conserved proteins that cooperatively sever actin filaments. However, little is known about the biophysical basis of the actin filament severing by these proteins. Here, we performed single-molecule kinetic analyses of fluorescently labeled AIP1 during the severing process of cofilin-decorated actin filaments. Results demonstrated that binding of a single AIP molecule was sufficient to enhance filament severing. After AIP1 binding to a filament, severing occurred with a delay of 0.7 s. Kinetics of binding and dissociation of a single AIP1 molecule to/from actin filaments followed a second-order and a first-order kinetics scheme, respectively. AIP1 binding and severing were detected preferentially at the boundary between the cofilin-decorated and bare regions on actin filaments. Based on the kinetic parameters explored in this study, we propose a possible mechanism behind the enhanced severing by AIP1.
Collapse
Affiliation(s)
- Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Carina Sekiguchi
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Shoichiro Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology (KIT), Ishikawa 924-0838, Japan.
| |
Collapse
|
41
|
Huehn A, Cao W, Elam WA, Liu X, De La Cruz EM, Sindelar CV. The actin filament twist changes abruptly at boundaries between bare and cofilin-decorated segments. J Biol Chem 2018; 293:5377-5383. [PMID: 29463680 DOI: 10.1074/jbc.ac118.001843] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Cofilin/ADF proteins are actin-remodeling proteins, essential for actin disassembly in various cellular processes, including cell division, intracellular transport, and motility. Cofilins bind actin filaments cooperatively and sever them preferentially at boundaries between bare and cofilin-decorated (cofilactin) segments. The cooperative binding to actin has been proposed to originate from conformational changes that propagate allosterically from clusters of bound cofilin to bare actin segments. Estimates of the lengths over which these cooperative conformational changes propagate vary dramatically, ranging from 2 to >100 subunits. Here, we present a general, structure-based method for detecting from cryo-EM micrographs small variations in filament geometry (i.e. twist) with single-subunit precision. How these variations correlate with regulatory protein occupancy reveals how far allosteric, conformational changes propagate along filaments. We used this method to determine the effects of cofilin on the actin filament twist. Our results indicate that cofilin-induced changes in filament twist propagate only 1-2 subunits from the boundary into the bare actin segment, independently of the boundary polarity (i.e. irrespective of whether or not the bare actin segment flanks the pointed or barbed-end side of the boundary) and the pyrene fluorophore labeling of actin. These observations indicate that the filament twist changes abruptly at boundaries between bare and cofilin-decorated segments, thereby constraining mechanistic models of cooperative actin filament interactions and severing by cofilin. The methods presented here extend the capability of cryo-EM to analyze biologically relevant deviations from helical symmetry in actin as well as other classes of linear polymers.
Collapse
Affiliation(s)
- Andrew Huehn
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Wenxiang Cao
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - W Austin Elam
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Xueqi Liu
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Enrique M De La Cruz
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Charles V Sindelar
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
42
|
Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex. PLoS Comput Biol 2017. [DOI: 10.1371/journal.pcbi.1005811 doi:10.1371/journal.pcbi.1005811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Elam WA, Cao W, Kang H, Huehn A, Hocky GM, Prochniewicz E, Schramm AC, Negrón K, Garcia J, Bonello TT, Gunning PW, Thomas DD, Voth GA, Sindelar CV, De La Cruz EM. Phosphomimetic S3D cofilin binds but only weakly severs actin filaments. J Biol Chem 2017; 292:19565-19579. [PMID: 28939776 PMCID: PMC5712599 DOI: 10.1074/jbc.m117.808378] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Many biological processes, including cell division, growth, and motility, rely on rapid remodeling of the actin cytoskeleton and on actin filament severing by the regulatory protein cofilin. Phosphorylation of vertebrate cofilin at Ser-3 regulates both actin binding and severing. Substitution of serine with aspartate at position 3 (S3D) is widely used to mimic cofilin phosphorylation in cells and in vitro The S3D substitution weakens cofilin binding to filaments, and it is presumed that subsequent reduction in cofilin occupancy inhibits filament severing, but this hypothesis has remained untested. Here, using time-resolved phosphorescence anisotropy, electron cryomicroscopy, and all-atom molecular dynamics simulations, we show that S3D cofilin indeed binds filaments with lower affinity, but also with a higher cooperativity than wild-type cofilin, and severs actin weakly across a broad range of occupancies. We found that three factors contribute to the severing deficiency of S3D cofilin. First, the high cooperativity of S3D cofilin generates fewer boundaries between bare and decorated actin segments where severing occurs preferentially. Second, S3D cofilin only weakly alters filament bending and twisting dynamics and therefore does not introduce the mechanical discontinuities required for efficient filament severing at boundaries. Third, Ser-3 modification (i.e. substitution with Asp or phosphorylation) "undocks" and repositions the cofilin N terminus away from the filament axis, which compromises S3D cofilin's ability to weaken longitudinal filament subunit interactions. Collectively, our results demonstrate that, in addition to inhibiting actin binding, Ser-3 modification favors formation of a cofilin-binding mode that is unable to sufficiently alter filament mechanical properties and promote severing.
Collapse
Affiliation(s)
- W Austin Elam
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Wenxiang Cao
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Hyeran Kang
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Andrew Huehn
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Glen M Hocky
- the Department of Chemistry, University of Chicago, Chicago, Illinois 60637
| | - Ewa Prochniewicz
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Anthony C Schramm
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Karina Negrón
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Jean Garcia
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Teresa T Bonello
- the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Peter W Gunning
- the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - David D Thomas
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Gregory A Voth
- the Department of Chemistry, University of Chicago, Chicago, Illinois 60637
| | - Charles V Sindelar
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Enrique M De La Cruz
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520,
| |
Collapse
|
44
|
McFadden WM, McCall PM, Gardel ML, Munro EM. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex. PLoS Comput Biol 2017; 13:e1005811. [PMID: 29253848 PMCID: PMC5757993 DOI: 10.1371/journal.pcbi.1005811] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/08/2018] [Accepted: 10/09/2017] [Indexed: 11/23/2022] Open
Abstract
Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how local remodeling tunes stress production and dissipation, and how this in turn shapes long range flow, remains poorly understood. Here, we study a computational model for a cross-linked network with active motors based on minimal requirements for production and dissipation of contractile stress: Asymmetric filament compliance, spatial heterogeneity of motor activity, reversible cross-links and filament turnover. We characterize how the production and dissipation of network stress depend, individually, on cross-link dynamics and filament turnover, and how these dependencies combine to determine overall rates of cortical flow. Our analysis predicts that filament turnover is required to maintain active stress against external resistance and steady state flow in response to external stress. Steady state stress increases with filament lifetime up to a characteristic time τm, then decreases with lifetime above τm. Effective viscosity increases with filament lifetime up to a characteristic time τc, and then becomes independent of filament lifetime and sharply dependent on crosslink dynamics. These individual dependencies of active stress and effective viscosity define multiple regimes of steady state flow. In particular our model predicts that when filament lifetimes are shorter than both τc and τm, the dependencies of effective viscosity and steady state stress on filament turnover cancel one another, such that flow speed is insensitive to filament turnover, and shows a simple dependence on motor activity and crosslink dynamics. These results provide a framework for understanding how animal cells tune cortical flow through local control of network remodeling.
Collapse
Affiliation(s)
- William M. McFadden
- Biophysical Sciences Program, University of Chicago, Chicago, Illinois, United States of America
| | - Patrick M. McCall
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
| | - Margaret L. Gardel
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
- James Franck Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Edwin M. Munro
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
45
|
Wioland H, Guichard B, Senju Y, Myram S, Lappalainen P, Jégou A, Romet-Lemonne G. ADF/Cofilin Accelerates Actin Dynamics by Severing Filaments and Promoting Their Depolymerization at Both Ends. Curr Biol 2017; 27:1956-1967.e7. [PMID: 28625781 PMCID: PMC5505867 DOI: 10.1016/j.cub.2017.05.048] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/04/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilins contribute to cytoskeletal dynamics by promoting rapid actin filament disassembly. In the classical view, ADF/cofilin sever filaments, and capping proteins block filament barbed ends whereas pointed ends depolymerize, at a rate that is still debated. Here, by monitoring the activity of the three mammalian ADF/cofilin isoforms on individual skeletal muscle and cytoplasmic actin filaments, we directly quantify the reactions underpinning filament severing and depolymerization from both ends. We find that, in the absence of monomeric actin, soluble ADF/cofilin can associate with bare filament barbed ends to accelerate their depolymerization. Compared to bare filaments, ADF/cofilin-saturated filaments depolymerize faster from their pointed ends and slower from their barbed ends, resulting in similar depolymerization rates at both ends. This effect is isoform specific because depolymerization is faster for ADF- than for cofilin-saturated filaments. We also show that, unexpectedly, ADF/cofilin-saturated filaments qualitatively differ from bare filaments: their barbed ends are very difficult to cap or elongate, and consequently undergo depolymerization even in the presence of capping protein and actin monomers. Such depolymerizing ADF/cofilin-decorated barbed ends are produced during 17% of severing events. They are also the dominant fate of filament barbed ends in the presence of capping protein, because capping allows growing ADF/cofilin domains to reach the barbed ends, thereby promoting their uncapping and subsequent depolymerization. Our experiments thus reveal how ADF/cofilin, together with capping protein, control the dynamics of actin filament barbed and pointed ends. Strikingly, our results propose that significant barbed-end depolymerization may take place in cells.
Collapse
Affiliation(s)
- Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Berengere Guichard
- Institut Jacques Monod, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Yosuke Senju
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Sarah Myram
- Institut Jacques Monod, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Antoine Jégou
- Institut Jacques Monod, CNRS, Université Paris Diderot, 75013 Paris, France.
| | | |
Collapse
|
46
|
Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken) 2017; 74:450-464. [PMID: 28681410 DOI: 10.1002/cm.21384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
Regulatory systems in living cells are highly organized, enabling cells to response to various changes in their environments. Actin polymerization and depolymerization are crucial to establish cytoskeletal networks to maintain muscle contraction, cell motility, cell division, adhesion, organism development and more. To share and promote the biophysical understanding of such mechanisms in living creatures, the "Now in Actin Study: -Motor protein research reaching a new stage-" symposium was organized at Nagoya University, Japan on 12 and 13, December 2016. The organizers invited emeritus professor of Nagoya and Osaka Universities Fumio Oosawa and leading scientists worldwide as keynote speakers, in addition to poster presentations on cell motility studies by many researchers. Studies employing various biophysical, biochemical, cell and molecular biological and mathematical approaches provided the latest understanding of mechanisms of cell motility functions driven by actin, microtubules, actin-binding proteins, and other motor proteins.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| |
Collapse
|
47
|
Pennanen P, Alanne MH, Fazeli E, Deguchi T, Näreoja T, Peltonen S, Peltonen J. Diversity of actin architecture in human osteoclasts: network of curved and branched actin supporting cell shape and intercellular micrometer-level tubes. Mol Cell Biochem 2017; 432:131-139. [PMID: 28293874 PMCID: PMC5532409 DOI: 10.1007/s11010-017-3004-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
Abstract
Osteoclasts are multinucleated bone-resorbing cells with a dynamic actin cytoskeleton. Osteoclasts are derived from circulating mononuclear precursors. Confocal and stimulated emission depletion (STED) super-resolution microscopy was used to investigate peripheral blood-derived human osteoclasts cultured on glass surfaces. STED and confocal microscopy demonstrated that the actin was curved and branched, for instance, in the vicinity of membrane ruffles. The overall architecture of the curved actin network extended from the podosomes to the top of the cell. The other novel finding was that a micrometer-level tube containing actin bridged the osteoclasts well above the level of the culture glass. The actin filaments of the tubes originated from the network of curved actin often surrounding a group of nuclei. Furthermore, nuclei were occasionally located inside the tubes. Our findings demonstrated the accumulation of c-Src, cortactin, cofilin, and actin around nuclei suggesting their role in nuclear processes such as the locomotion of nuclei. ARP2/3 labeling was abundant at the substratum level of osteoclasts and in the branched actin network, where it localized to the branching points. We speculate that the actin-containing tubes of osteoclasts may provide a means of transportation of nuclei, e.g., during the fusion of osteoclasts. These novel findings can pave the way for future studies aiming at the elucidation of the differentiation of multinucleated osteoclasts.
Collapse
Affiliation(s)
- Paula Pennanen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Maria Helena Alanne
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Elnaz Fazeli
- Laboratory of Biophysics, Department of Cell Biology and Anatomy and Medicity Research Laboratories, University of Turku, P.O. Box 123, 20521, Turku, Finland
| | - Takahiro Deguchi
- Laboratory of Biophysics, Department of Cell Biology and Anatomy and Medicity Research Laboratories, University of Turku, P.O. Box 123, 20521, Turku, Finland
| | - Tuomas Näreoja
- Laboratory of Biophysics, Department of Cell Biology and Anatomy and Medicity Research Laboratories, University of Turku, P.O. Box 123, 20521, Turku, Finland
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| |
Collapse
|
48
|
Christensen JR, Hocky GM, Homa KE, Morganthaler AN, Hitchcock-DeGregori SE, Voth GA, Kovar DR. Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks. eLife 2017; 6. [PMID: 28282023 PMCID: PMC5404920 DOI: 10.7554/elife.23152] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks. DOI:http://dx.doi.org/10.7554/eLife.23152.001 Cells use a protein called actin to provide shape, to generate the forces needed for cells to divide, and for many other essential processes. Inside a cell, individual actin proteins join up to form long filaments. These actin filaments are organized in different ways to make networks that have distinct properties, each tailored for a specific process. For instance, bundles of straight actin filaments help a cell to divide, whereas a network of branched actin filaments allows cells to move. The different proteins that bind to actin filaments influence how quickly actin filaments are assembled and organized into networks. Therefore, many of the properties of an actin filament network are due to the actin binding proteins that are associated with it. Two actin binding proteins called fimbrin and cofilin associate with a type of actin filament network known as the actin patch. A third actin binding protein called tropomyosin associates with a different network that forms a ring. It is not known how particular actin binding proteins choose to associate with one actin network instead of another. Christensen et al. used a fluorescence microscopy technique to study how fimbrin, cofilin and tropomyosin associate with different actin networks in a single-celled organism called fission yeast. This technique involved incubating actin and actin binding proteins together in a microscope chamber. The experiments show that some actin binding proteins, like tropomyosin, cooperate to bind to actin. Individual tropomyosin molecules find it difficult to bind actin filaments on their own, but once one tropomyosin molecule is attached to the filament, others rapidly join to coat the filament. On the other hand, some actin-binding proteins compete for binding to filaments. For example, the binding of fimbrin to actin filaments causes tropomyosin to be removed from the actin network. Further experiments revealed that fimbrin and cofilin work with each other to rapidly generate a dense actin network and displace tropomyosin. Together, the findings of Christensen et al. suggest that competitions between actin binding proteins determine which actin binding proteins are associated with an actin network. The next challenge is to understand how the most competitive actin-binding proteins are kept off actin networks where they do not belong. Further studies will shed light on how these interactions cause large changes in how the cell is organized. DOI:http://dx.doi.org/10.7554/eLife.23152.002
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Glen M Hocky
- Department of Chemistry, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Alisha N Morganthaler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Sarah E Hitchcock-DeGregori
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, United States
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States.,Computation Institute, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
49
|
Xue Z, Sokac AM. -Back-to-back mechanisms drive actomyosin ring closure during Drosophila embryo cleavage. J Cell Biol 2016; 215:335-344. [PMID: 27799369 PMCID: PMC5100295 DOI: 10.1083/jcb.201608025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 12/30/2022] Open
Abstract
The mechanisms mediating actomyosin ring contraction during Drosophila cellularization, a developmental division that resembles cytokinesis, are unclear. Xue and Sokac delineate the contribution of cytoskeletal motors and actin-binding proteins to actomyosin ring constriction as Drosophila embryos undergo cleavage. Contraction of actomyosin rings during cytokinesis is typically attributed to actin filaments sliding toward each other via Myosin-2 motor activity. However, rings constrict in some cells in the absence of Myosin-2 activity. Thus, ring closure uses Myosin-2–dependent and –independent mechanisms. But what the Myosin-2–independent mechanisms are, and to what extent they are sufficient to drive closure, remains unclear. During cleavage in Drosophila melanogaster embryos, actomyosin rings constrict in two sequential and mechanistically distinct phases. We show that these phases differ in constriction speed and are genetically and pharmacologically separable. Further, Myosin-2 activity is required for slow constriction in “phase 1” but is largely dispensable for fast constriction in “phase 2,” and F-actin disassembly is only required for fast constriction in phase 2. Switching from phase 1 to phase 2 seemingly relies on the spatial organization of F-actin as controlled by Cofilin, Anillin, and Septin. Our work shows that fly embryos present a singular opportunity to compare separable ring constriction mechanisms, with varying Myosin-2 dependencies, in one cell type and in vivo.
Collapse
Affiliation(s)
- Zenghui Xue
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Anna Marie Sokac
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
50
|
Ostrowska Z, Robaszkiewicz K, Moraczewska J. Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:88-98. [PMID: 27693909 DOI: 10.1016/j.bbapap.2016.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022]
Abstract
Tropomyosin and cofilin are actin-binding proteins which control dynamics of actin assembly and disassembly. Tropomyosin isoforms can either inhibit or enhance cofilin activity, but the mechanism of this diverse regulation is not well understood. In this work mechanisms of actin dynamics regulation by four cytoskeletal tropomyosin isoforms and cofilin-1 were studied with the use of biochemical and fluorescent microscopy assays. The recombinant tropomyosin isoforms were products of two genes: TPM1 (Tpm1.6 and Tpm1.8) and TPM3 (Tpm3.2 and Tpm3.4). Tpm1.6/1.8 bound to F-actin with higher apparent binding constants and lower cooperativities than Tpm3.2/3.4. In consequence, subsaturating concentrations of cofilin-1 removed 50% of Tpm3.2/3.4 from F-actin. By contrast, 2 and 5.5 molar excess of cofilin-1 over actin was required to dissociate 50% of Tpm1.6/1.8. All tropomyosins inhibited the rate of spontaneous polymerization of actin, which was reversed by cofilin-1. Products of TPM1 favored longer filaments and protected them from cofilin-induced depolymerization. This was in contrast to the isoforms derived from TPM3, which facilitated depolymerization. Tpm3.4 was the only isoform, which increased frequency of the filament severing by cofilin-1. Tpm1.6/1.8 inhibited, but Tpm3.2/3.4 enhanced cofilin-induced conformational changes leading to accelerated release of rhodamine-phalloidin from the filament. We concluded that the effects were executed through different actin affinities of tropomyosin isoforms and cooperativities of tropomyosin and cofilin-1 binding. The results obtained in vitro were in good agreement with localization of tropomyosin isoforms in stable or highly dynamic filaments demonstrated before in various cells.
Collapse
Affiliation(s)
- Zofia Ostrowska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland
| | - Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland.
| |
Collapse
|