1
|
Diana R, Caruso U, Di Costanzo L, Concilio S, Piotto S, Sessa L, Panunzi B. A Water Soluble 2-Phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazole Based Probe: Antimicrobial Activity and Colorimetric/Fluorescence pH Response. Molecules 2022; 27:1824. [PMID: 35335188 PMCID: PMC8952330 DOI: 10.3390/molecules27061824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
The growing demand of responsive tools for biological and biomedical applications pushes towards new low-cost probes easy to synthesize and versatile. Current optical probes are theranostic tools simultaneously responsive to biological parameters/analyte and therapeutically operating. Among the optical methods for pH monitoring, simple small organic molecules including multifunctional probes for simultaneous biological activity being highly desired by scientists and technicians. Here, we present a novel pH-responsive probe with a three-ring heteroaromatic pattern and a flexible cationic chain. The novel molecule shows real-time naked-eye colorimetric and fluorescence response in the slightly acidic pH range besides its excellent solubility both in the organic phase and in water. In addition, the small probe shows significant antibacterial activity, particularly against Escherichia coli. Single-crystal X-ray study and density functional theory (DFT) calculations rationalize the molecule spectroscopic response. Finally, molecular dynamics (MD) elucidate the interactions between the probe and a model cell membrane.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Naples Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy
| | - Luigi Di Costanzo
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Barbara Panunzi
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| |
Collapse
|
2
|
Nonappa. Luminescent gold nanoclusters for bioimaging applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:533-546. [PMID: 32280577 PMCID: PMC7136552 DOI: 10.3762/bjnano.11.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 05/27/2023]
Abstract
Luminescent nanomaterials have emerged as attractive candidates for sensing, catalysis and bioimaging applications in recent years. For practical use in bioimaging, nanomaterials with high photoluminescence, quantum yield, photostability and large Stokes shifts are needed. While offering high photoluminescence and quantum yield, semiconductor quantum dots suffer from toxicity and are susceptible to oxidation. In this context, atomically precise gold nanoclusters protected by thiol monolayers have emerged as a new class of luminescent nanomaterials. Low toxicity, bioavailability, photostability as well as tunable size, composition, and optoelectronic properties make them suitable for bioimaging and biosensing applications. In this review, an overview of the sensing of pathogens, and of in vitro and in vivo bioimaging using luminescent gold nanoclusters along with the limitations with selected examples are discussed.
Collapse
Affiliation(s)
- Nonappa
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
- Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Kemistintie 1, FI-02150, Espoo, Finland
| |
Collapse
|
3
|
Song MM, Xiang HH, Fei MY, Lu DP, Jiang TC, Yu YQ, Liu R, Shen YX. Facile fabrication of water-dispersible nanocomposites based on hexa-peri-hexabenzocoronene and Fe3O4 for dual mode imaging (fluorescent/MR) and drug delivery. RSC Adv 2018; 8:40554-40563. [PMID: 35557926 PMCID: PMC9091618 DOI: 10.1039/c8ra08425d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023] Open
Abstract
Water-dispersible, stable and biocompatible dandelion-like Fe3O4/HBC@F127 nanocomposites were facilely developed for dual mode imaging (fluorescent/MR) and drug delivery.
Collapse
Affiliation(s)
- Meng-Meng Song
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- Biopharmaceutical Research Institute
| | - Hui-Hui Xiang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- The First Affiliated Hospital
| | - Meng-Yu Fei
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- The First Affiliated Hospital
| | - Da-Peng Lu
- School of Pharmacy
- Anhui Medical University
- Hefei
- PR China
| | - Tong-Cui Jiang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- Biopharmaceutical Research Institute
| | - Yong-Qiang Yu
- The First Affiliated Hospital
- Anhui Medical University
- Hefei
- PR China
| | - Rui Liu
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
| | - Yu-Xian Shen
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- Biopharmaceutical Research Institute
| |
Collapse
|
4
|
Hense A, Nienhaus K, Nienhaus GU. Exploring color tuning strategies in red fluorescent proteins. Photochem Photobiol Sci 2015; 14:200-12. [PMID: 25597270 DOI: 10.1039/c4pp00212a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/31/2014] [Indexed: 01/01/2023]
Abstract
Red-emitting fluorescent proteins (RFPs) with fluorescence emission above 600 nm are advantageous for cell and tissue imaging applications for various reasons. Fluorescence from an RFP is well separated from cellular autofluorescence, which is in the green region of the spectrum, and red light is scattered less, which allows thicker specimens to be imaged. Moreover, the phototoxic response of cells is lower for red than blue or green light exposure. Further red-shifted FP variants can be obtained by genetic modifications causing an extension of the conjugated π-electron system of the chromophore, or by placing amino acids near the chromophore that stabilize its excited state or destabilize its ground state. We have selected the tetrameric RFP eqFP611 from Entacmaea quadricolor as a lead structure and discuss several rational design trials to generate RFP variants with improved photochemical properties.
Collapse
Affiliation(s)
- Anika Hense
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.
| | | | | |
Collapse
|
5
|
Nienhaus K, Nienhaus GU. Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 2014; 43:1088-106. [PMID: 24056711 DOI: 10.1039/c3cs60171d] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent proteins (FPs) from the GFP family have become indispensable as marker tools for imaging live cells, tissues and entire organisms. A wide variety of these proteins have been isolated from natural sources and engineered to optimize their properties as genetically encoded markers. Here we review recent developments in this field. A special focus is placed on photoactivatable FPs, for which the fluorescence emission can be controlled by light irradiation at specific wavelengths. They enable regional optical marking in pulse-chase experiments on live cells and tissues, and they are essential marker tools for live-cell optical imaging with super-resolution. Photoconvertible FPs, which can be activated irreversibly via a photo-induced chemical reaction that either turns on their emission or changes their emission wavelength, are excellent markers for localization-based super-resolution microscopy (e.g., PALM). Patterned illumination microscopy (e.g., RESOLFT), however, requires markers that can be reversibly photoactivated many times. Photoswitchable FPs can be toggled repeatedly between a fluorescent and a non-fluorescent state by means of a light-induced chromophore isomerization coupled to a protonation reaction. We discuss the mechanistic origins of the effect and illustrate how photoswitchable FPs are employed in RESOLFT imaging. For this purpose, special FP variants with low switching fatigue have been introduced in recent years. Despite nearly two decades of FP engineering by many laboratories, there is still room for further improvement of these important markers for live cell imaging.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straβe 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
6
|
Hedde PN, Nienhaus GU. Super-resolution localization microscopy with photoactivatable fluorescent marker proteins. PROTOPLASMA 2014; 251:349-62. [PMID: 24162869 DOI: 10.1007/s00709-013-0566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/08/2013] [Indexed: 05/02/2023]
Abstract
Fluorescent proteins (FPs) have become popular imaging tools because of their high specificity, minimal invasive labeling and allowing visualization of proteins and structures inside living organisms. FPs are genetically encoded and expressed in living cells, therefore, labeling involves minimal effort in comparison to approaches involving synthetic dyes. Photoactivatable FPs (paFPs) comprise a subclass of FPs that can change their absorption/emission properties such as brightness and color upon irradiation. This methodology has found a broad range of applications in the life sciences, especially in localization-based super-resolution microscopy of cells, tissues and even entire organisms. In this review, we discuss recent developments and applications of paFPs in super-resolution localization imaging.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | | |
Collapse
|
7
|
Durst S, Hedde PN, Brochhausen L, Nick P, Nienhaus GU, Maisch J. Organization of perinuclear actin in live tobacco cells observed by PALM with optical sectioning. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:97-108. [PMID: 24331424 DOI: 10.1016/j.jplph.2013.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/20/2013] [Indexed: 05/21/2023]
Abstract
Actin performs a wide variety of different tasks. This functional diversity may be accomplished either by the formation of different isotypes or by suitable protein decoration that regulates structure and dynamics of actin filaments. To probe for such a potential differential decoration, the actin-binding peptide Lifeact was fused to different photoactivatable fluorescent proteins. These fusions were stably expressed in Nicotiana tabacum L. cv. Bright Yellow 2 cells to follow dynamic reorganization of the actin cytoskeleton during the cell cycle. The Lifeact-monomeric variant of IrisFP fusion protein was observed to indiscriminately label both, central and cortical, actin filaments, whereas the tetrameric Lifeact-photoswitchable red fluorescent protein fusion construct selectively labeled only a specific perinuclear sub-population of actin. By using photoactivated localization microscopy, we acquired super-resolution images with optical sectioning to obtain a 3D model of perinuclear actin. This novel approach revealed that the perinuclear actin basket wraps around the nuclear envelope in a lamellar fashion and repartitions toward the leading edge of the migrating nucleus. Based on these data, we suggest that actin that forms the perinuclear basket differs from other actin assemblies by a reduced decoration with actin binding proteins, which is consistent with the differential decoration model.
Collapse
Affiliation(s)
- Steffen Durst
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Per Niklas Hedde
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany
| | - Linda Brochhausen
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jan Maisch
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 2, D-76131 Karlsruhe, Germany.
| |
Collapse
|
8
|
Ishitsuka Y, Nienhaus K, Nienhaus GU. Photoactivatable fluorescent proteins for super-resolution microscopy. Methods Mol Biol 2014; 1148:239-60. [PMID: 24718806 DOI: 10.1007/978-1-4939-0470-9_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Super-resolution fluorescence microscopy techniques such as simulated emission depletion (STED) microscopy and photoactivated localization microscopy (PALM) allow substructures, organelles or even proteins within a cell to be imaged with a resolution far below the diffraction limit of ~200 nm. The development of advanced fluorescent proteins, especially photoactivatable fluorescent proteins of the GFP family, has greatly contributed to the successful application of these techniques to live-cell imaging. Here, we will illustrate how two fluorescent proteins with different photoactivation mechanisms can be utilized in high resolution dual color PALM imaging to obtain insights into a cellular process that otherwise would not be accessible. We will explain how to set up and perform the experiment and how to use our latest software "a-livePALM" for fast and efficient data analysis.
Collapse
Affiliation(s)
- Yuji Ishitsuka
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, Karlsruhe, 76131, Germany
| | | | | |
Collapse
|
9
|
Shang L, Stockmar F, Azadfar N, Nienhaus GU. Intracellular Thermometry by Using Fluorescent Gold Nanoclusters. Angew Chem Int Ed Engl 2013; 52:11154-7. [DOI: 10.1002/anie.201306366] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 12/12/2022]
|
10
|
Shang L, Stockmar F, Azadfar N, Nienhaus GU. Intrazelluläre Thermometrie mithilfe fluoreszierender Gold-Nanocluster. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Gayda S, Nienhaus K, Nienhaus GU. Mechanistic insights into reversible photoactivation in proteins of the GFP family. Biophys J 2012; 103:2521-31. [PMID: 23260054 DOI: 10.1016/j.bpj.2012.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022] Open
Abstract
Light-controlled modification of the fluorescence emission properties of proteins of the GFP family is of crucial importance for many imaging applications including superresolution microscopy. Here, we have studied the reversibly photoswitchable fluorescent protein mIrisGFP using optical spectroscopy. By analyzing the pH dependence of isomerization and protonation equilibria and the isomerization kinetics, we have obtained insight into the coupling of the chromophore to the surrounding protein moiety and a better understanding of the photoswitching mechanism. A different acid-base environment of the chromophore's protonating group in its two isomeric forms, which can be inferred from the x-ray structures of IrisFP, is key to the photoswitching function and ensures that isomerization and protonation are correlated. Amino acids near the chromophore, especially Glu212, rearrange upon isomerization, and Glu212 protonation modulates the chromophore pK(a). In mIrisGFP, the cis chromophore protonates in two steps, with pK(cis) of 5.3 and 6, which is much lower than pK(trans) (>10). Based on these results, we have put forward a mechanistic scheme that explains how the combination of isomeric and acid-base properties of the chromophore in its protein environment can produce negative and positive photoswitching modes.
Collapse
Affiliation(s)
- Susan Gayda
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
12
|
Shang L, Yang L, Stockmar F, Popescu R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. NANOSCALE 2012; 4:4155-60. [PMID: 22460520 DOI: 10.1039/c2nr30219e] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A microwave-assisted strategy for synthesizing dihydrolipoic acid (DHLA) capped fluorescent gold nanoclusters (AuNCs) has been developed. Irradiation with microwaves during synthesis enhanced the fluorescence quantum yield (QY) of AuNCs by about five-fold and shortened the reaction time from hours to several minutes. The as-synthesized DHLA-AuNCs possessed bright near-infrared fluorescence (QY: 2.9%), ultrasmall hydrodynamic diameter (3.3 nm), good colloidal stability over the physiologically relevant pH range of 5-10 as well as low cytotoxicity toward HeLa cells. Moreover, these DHLA-AuNCs were capable of sensing Hg(2+) through the specific interaction between Hg(2+) and Au(+) on the surface of AuNCs; the limit of detection (LOD) was 0.5 nM. A potential application in imaging intracellular Hg(2+) in HeLa cells was demonstrated by using spinning disc confocal microscopy.
Collapse
Affiliation(s)
- Li Shang
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, Šarić T, Klauke B, Gummert J, Anselmetti D, Heilemann M, Nienhaus GU, Milting H. Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants. J Biol Chem 2012; 287:16047-57. [PMID: 22403400 PMCID: PMC3346104 DOI: 10.1074/jbc.m111.313841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/27/2012] [Indexed: 11/06/2022] Open
Abstract
Mutations in the DES gene coding for the intermediate filament protein desmin may cause skeletal and cardiac myopathies, which are frequently characterized by cytoplasmic aggregates of desmin and associated proteins at the cellular level. By atomic force microscopy, we demonstrated filament formation defects of desmin mutants, associated with arrhythmogenic right ventricular cardiomyopathy. To understand the pathogenesis of this disease, it is essential to analyze desmin filament structures under conditions in which both healthy and mutant desmin are expressed at equimolar levels mimicking an in vivo situation. Here, we applied dual color photoactivation localization microscopy using photoactivatable fluorescent proteins genetically fused to desmin and characterized the heterozygous status in living cells lacking endogenous desmin. In addition, we applied fluorescence resonance energy transfer to unravel short distance structural patterns of desmin mutants in filaments. For the first time, we present consistent high resolution data on the structural effects of five heterozygous desmin mutations on filament formation in vitro and in living cells. Our results may contribute to the molecular understanding of the pathological filament formation defects of heterozygous DES mutations in cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- From the E. & H. Klessmann Institute for Cardiovascular Research & Development and
| | - Per Niklas Hedde
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Mareike Dieding
- the Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, 33615 Bielefeld, Germany
| | - Azra Fatima
- the Institute for Neurophysiology, Medical Center, University of Cologne, 50931 Cologne, Germany
| | - Volker Walhorn
- the Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, 33615 Bielefeld, Germany
| | - Susan Gayda
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Tomo Šarić
- the Institute for Neurophysiology, Medical Center, University of Cologne, 50931 Cologne, Germany
| | - Bärbel Klauke
- From the E. & H. Klessmann Institute for Cardiovascular Research & Development and
| | - Jan Gummert
- the Clinic of Cardio-Thoracic Surgery, Heart and Diabetes Center NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Dario Anselmetti
- the Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, 33615 Bielefeld, Germany
| | - Mike Heilemann
- the Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany, and
| | - Gerd Ulrich Nienhaus
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
- the Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Hendrik Milting
- From the E. & H. Klessmann Institute for Cardiovascular Research & Development and
| |
Collapse
|
14
|
Shang L, Nienhaus GU. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys Rev 2012; 4:313-322. [PMID: 28510207 DOI: 10.1007/s12551-012-0076-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/21/2012] [Indexed: 12/22/2022] Open
Abstract
Fluorescent probes play an important role in the development of fluorescence-based imaging techniques for life sciences research. Gold nanoclusters (AuNCs) are a novel type of fluorescent nanomaterials which have attracted great interest in recent years. Composed of only a few atoms, these ultrasmall AuNCs exhibit quantum confinement effects and molecule-like properties. Fluorescent AuNCs have an attractive set of features including ultrasmall size, good biocompatibility and photostability, and tunable emission in the red to near-infrared spectral region, which make them promising as fluorescent labels for biological imaging. Examples of their application include live cell labeling, cancer cell targeting, cellular apoptosis monitoring, and in vivo tumor imaging. Here, we present a brief overview of recent advances in utilizing these emissive ultrasmall AuNCs as optical probes for in vitro and in vivo fluorescence imaging.
Collapse
Affiliation(s)
- Li Shang
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede Strasse 1, 76131, Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede Strasse 1, 76131, Karlsruhe, Germany. .,Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Wang L, Wang Y, Ragauskas AJ. Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy. Analyst 2012; 137:1319-24. [PMID: 22311108 DOI: 10.1039/c2an15938d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The determination of cellulase distribution on the surface of cellulose fiber is an important parameter to understand when determining the interaction between cellulase and cellulose and/or the cooperation of different types of cellulases during the enzymatic hydrolysis of cellulose. In this communication, a strategy is presented to quantitatively determine the cellulase colocalization using the fluorescence resonance energy transfer (FRET) methodology, which is based on acceptor photobleaching and spectrally unmixing fluorescence microscopy. FRET monitoring of cellulase colocalization was achieved by labeling cellulases with an appropriate pair of FRET dyes and by adopting an appropriate FRET model. We describe here that the adapted acceptor photobleaching FRET method can be successfully used to quantify cellulase colocalization regarding their binding to a cellulose fiber at a resolution <10 nm. This developed quantitative FRET method is promising for further studying the interactions between cellulase and cellulose and between different types of cellulases.
Collapse
Affiliation(s)
- Liqun Wang
- BioEnergy Science Center, Institute of Paper Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
16
|
Nienhaus GU. Ein ermüdungsarmes photoschaltbares fluoreszierendes Protein für die optische Nanoskopie. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Nienhaus GU. A Fatigue-Resistant Photoswitchable Fluorescent Protein for Optical Nanoscopy. Angew Chem Int Ed Engl 2012; 51:1312-4. [DOI: 10.1002/anie.201108036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Indexed: 01/27/2023]
|
18
|
Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K, Bourgeois D, Nienhaus GU. From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. JOURNAL OF BIOPHOTONICS 2011; 4:377-90. [PMID: 21319305 DOI: 10.1002/jbio.201000122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 05/11/2023]
Abstract
Fluorescent proteins from the GFP family have become indispensable imaging tools in life sciences research. In recent years, a wide variety of these proteins were discovered in non-bioluminescent anthozoa. Some of them feature exciting new properties, including the possibility to change their fluorescence quantum yield and/or color by irradiating with light of specific wavelengths. These photoactivatable fluorescent proteins enable many interesting applications including pulse-chase experiments and super-resolution imaging. In this review, we discuss the development of advanced variants, using a structure-function based, molecular biophysics approach, of the photoactivatable fluorescent protein EosFP, which can be photoconverted from green to red fluorescence by ~400 nm light. A variety of applications are presented that demonstrate the versatility of these marker proteins in live-cell imaging.
Collapse
Affiliation(s)
- Jörg Wiedenmann
- National Oceanography Centre, University of Southampton, Southampton SO143ZH, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Jiang X, Musyanovych A, Röcker C, Landfester K, Mailänder V, Nienhaus GU. Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells. NANOSCALE 2011; 3:2028-35. [PMID: 21409242 DOI: 10.1039/c0nr00944j] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanoparticle uptake by living cells is governed by chemical interactions between functional groups on the nanoparticle as well as the receptors on cell surfaces. Here we have investigated the uptake of anionic polystyrene (PS) nanoparticles of ∼100 nm diameter by mesenchymal stem cells (MSCs) using spinning-disk confocal optical microscopy combined with a quantitative analysis of the fluorescence images. Two types of anionic PS nanoparticles with essentially identical sizes and ζ-potentials were employed in this study, carboxyl-functionalized nanoparticles (CPS) and plain PS nanoparticles, both coated with anionic detergent for stabilization. CPS nanoparticles were observed to internalize more rapidly and accumulate to a much higher level than plain PS nanoparticles. The relative importance of different uptake mechanisms for the two types of nanoparticles was investigated by using specific inhibitors. CPS nanoparticles were internalized mainly via the clathrin-mediated mechanism, whereas plain PS nanoparticles mainly utilized the macropinocytosis pathway. The pronounced difference in the internalization behavior of CPS and plain PS nanoparticles points to a specific interaction of the carboxyl group with receptors on the cell surface.
Collapse
Affiliation(s)
- Xiue Jiang
- Institute of Biophysics, University of Ulm, Albert Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|