1
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2025; 22:181-191. [PMID: 38908461 PMCID: PMC11662089 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
2
|
D’Elia S, Caputo A, Natale F, Pezzullo E, Limongelli G, Golino P, Cimmino G, Loffredo FS. The Desmoplakin Phenotype Spectrum: Is the Inflammation the "Fil Rouge" Linking Myocarditis, Arrhythmogenic Cardiomyopathy, and Uncommon Autoinflammatory Systemic Disease? Genes (Basel) 2024; 15:1234. [PMID: 39336825 PMCID: PMC11431300 DOI: 10.3390/genes15091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Myocarditis is an inflammatory condition of cardiac tissue presenting significant variability in clinical manifestations and outcomes. Its etiology is diverse, encompassing infectious agents (primarily viruses, but also bacteria, protozoa, and helminths) and non-infectious factors (autoimmune responses, toxins, and drugs), though often the specific cause remains unidentified. Recent research has highlighted the potential role of genetic susceptibility in the development of myocarditis (and in some cases the development of inflammatory dilated cardiomyopathy, i.e., the condition in which there is chronic inflammation (>3 months) and left ventricular dysfunction\dilatation), with several studies indicating a correlation between myocarditis and genetic backgrounds. Notably, pathogenic genetic variants linked to dilated or arrhythmic cardiomyopathy are found in 8-16% of myocarditis patients. Genetic predispositions can lead to recurrent myocarditis and a higher incidence of ventricular arrhythmias and heart failure. Moreover, the presence of DSP mutations has been associated with distinct pathological patterns and clinical outcomes in arrhythmogenic cardiomyopathy (hot phases). The interplay between genetic factors and environmental triggers, such as viral infections and physical stress, is crucial in understanding the pathogenesis of myocarditis. Identifying these genetic markers can improve the diagnosis, risk stratification, and management of patients with myocarditis, potentially guiding tailored therapeutic interventions. This review aims to synthesize current knowledge on the genetic underpinnings of myocarditis, with an emphasis on desmoplakin-related arrhythmogenic cardiomyopathy, to enhance clinical understanding and inform future research directions.
Collapse
Affiliation(s)
- Saverio D’Elia
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy;
| | - Adriano Caputo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.C.); (G.L.); (P.G.); (F.S.L.)
| | - Francesco Natale
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy; (F.N.); (E.P.)
| | - Enrica Pezzullo
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy; (F.N.); (E.P.)
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.C.); (G.L.); (P.G.); (F.S.L.)
- Inherited and Rare Cardiovascular Diseases, Monaldi Hospital, 80131 Naples, Italy
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.C.); (G.L.); (P.G.); (F.S.L.)
| | - Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.C.); (G.L.); (P.G.); (F.S.L.)
| | - Francesco S. Loffredo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.C.); (G.L.); (P.G.); (F.S.L.)
| |
Collapse
|
3
|
Andrysiak K, Ferdek PE, Sanetra AM, Machaj G, Schmidt L, Kraszewska I, Sarad K, Palus-Chramiec K, Lis O, Targosz-Korecka M, Krüger M, Lewandowski MH, Ylla G, Stępniewski J, Dulak J. Upregulation of utrophin improves the phenotype of Duchenne muscular dystrophy hiPSC-derived CMs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102247. [PMID: 39035791 PMCID: PMC11259739 DOI: 10.1016/j.omtn.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease. Although it leads to muscle weakness, affected individuals predominantly die from cardiomyopathy, which remains uncurable. Accumulating evidence suggests that an overexpression of utrophin may counteract some of the pathophysiological outcomes of DMD. The aim of this study was to investigate the role of utrophin in dystrophin-deficient human cardiomyocytes (CMs) and to test whether an overexpression of utrophin, implemented via the CRISPR-deadCas9-VP64 system, can improve their phenotype. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) lacking either dystrophin (DMD) or both dystrophin and utrophin (DMD KO/UTRN(+/-)). We carried out proteome analysis, which revealed considerable differences in the proteins related to muscle contraction, cell-cell adhesion, and extracellular matrix organization. Furthermore, we evaluated the role of utrophin in maintaining the physiological properties of DMD hiPSC-CMs using atomic force microscopy, patch-clamp, and Ca2+ oscillation analysis. Our results showed higher values of afterhyperpolarization and altered patterns of cytosolic Ca2+ oscillations in DMD; the latter was further disturbed in DMD KO/UTRN(+/-) hiPSC-CMs. Utrophin upregulation improved both parameters. Our findings demonstrate for the first time that utrophin maintains the physiological functions of DMD hiPSC-CMs, and that its upregulation can compensate for the loss of dystrophin.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Paweł E. Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna M. Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Gabriela Machaj
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Olga Lis
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Marian H. Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Vencato S, Romanato C, Rampazzo A, Calore M. Animal Models and Molecular Pathogenesis of Arrhythmogenic Cardiomyopathy Associated with Pathogenic Variants in Intercalated Disc Genes. Int J Mol Sci 2024; 25:6208. [PMID: 38892395 PMCID: PMC11172742 DOI: 10.3390/ijms25116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare genetic cardiac disease characterized by the progressive substitution of myocardium with fibro-fatty tissue. Clinically, ACM shows wide variability among patients; symptoms can include syncope and ventricular tachycardia but also sudden death, with the latter often being its sole manifestation. Approximately half of ACM patients have been found with variations in one or more genes encoding cardiac intercalated discs proteins; the most involved genes are plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmoplakin (DSP). Cardiac intercalated discs provide mechanical and electro-metabolic coupling among cardiomyocytes. Mechanical communication is guaranteed by the interaction of proteins of desmosomes and adheren junctions in the so-called area composita, whereas electro-metabolic coupling between adjacent cardiac cells depends on gap junctions. Although ACM has been first described almost thirty years ago, the pathogenic mechanism(s) leading to its development are still only partially known. Several studies with different animal models point to the involvement of the Wnt/β-catenin signaling in combination with the Hippo pathway. Here, we present an overview about the existing murine models of ACM harboring variants in intercalated disc components with a particular focus on the underlying pathogenic mechanisms. Prospectively, mechanistic insights into the disease pathogenesis will lead to the development of effective targeted therapies for ACM.
Collapse
Affiliation(s)
- Sara Vencato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Chiara Romanato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Alessandra Rampazzo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Martina Calore
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
5
|
Zhu Z, Zhang M, Qiu X. Functions and Clinical Significance of Myocardial Cell-Derived Immunoglobulins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:119-128. [PMID: 38967754 DOI: 10.1007/978-981-97-0511-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Immunoglobulins (Igs) have been widely accepted to be exclusively expressed by B cells. Nonetheless, this theory is challenged by mounting evidence which suggests that Igs can also be generated by non B cells (non B-Ig), including cardiomyocytes (CM). Non B-Ig exhibits unique physical and chemical characteristics, unique variable region sequences and functions, which diverge from those of B-Ig. For instance, non B-Ig demonstrates hydrophobicity, limited diversity in the variable region, and extracellular matrix protein activity. Likewise, cardiomyocytes can express different classes of Igs, including IgM, IgG, and free Igκ light chains (cardiomyocyte derived-Igs, CM-Igs). In particular, CM-Igs can be secreted into the extracellular space in various cardiovascular diseases, such as myocardial ischaemia and myocardial fibrosis where they might be involved in complement activation and direct damage to cardiomyocytes. Nevertheless, the precise pathological activity of CM-Igs remains unclear. Recently, Zhu et al. focused on studying the sequence characteristics and functions of CM-Igκ; they discovered that the CM-Igκ exhibits a unique VJ recombination pattern, high hydrophobicity, and is principally located on the intercalated discs and cross striations of the cardiomyocytes. Interestingly, loss of Igκ in cardiomyocytes results in structural disorders in intercalated discs and dysfunction in myocardial contraction and conduction. Mechanically, Igκ promotes the stabilisation of plectin, a cytoskeleton cross-linker protein that connects desmin to desomsome, to maintain the normal structure of the intercalated disc. This finding indicates that CM-Igκ plays an integral role in maintaining cytoskeleton structure. Consequently, it is imperative to reveal the physiological functions and mechanisms of pathological injury associated with CM-Igs.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Meng Zhang
- Department of Cardiology, Aerospace Center Hospital, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Kim SL, Trembley MA, Lee KY, Choi S, MacQueen LA, Zimmerman JF, de Wit LHC, Shani K, Henze DE, Drennan DJ, Saifee SA, Loh LJ, Liu X, Parker KK, Pu WT. Spatiotemporal cell junction assembly in human iPSC-CM models of arrhythmogenic cardiomyopathy. Stem Cell Reports 2023; 18:1811-1826. [PMID: 37595583 PMCID: PMC10545490 DOI: 10.1016/j.stemcr.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that causes life-threatening arrhythmias and myocardial dysfunction. Pathogenic variants in Plakophilin-2 (PKP2), a desmosome component within specialized cardiac cell junctions, cause the majority of ACM cases. However, the molecular mechanisms by which PKP2 variants induce disease phenotypes remain unclear. Here we built bioengineered platforms using genetically modified human induced pluripotent stem cell-derived cardiomyocytes to model the early spatiotemporal process of cardiomyocyte junction assembly in vitro. Heterozygosity for truncating variant PKP2R413X reduced Wnt/β-catenin signaling, impaired myofibrillogenesis, delayed mechanical coupling, and reduced calcium wave velocity in engineered tissues. These abnormalities were ameliorated by SB216763, which activated Wnt/β-catenin signaling, improved cytoskeletal organization, restored cell junction integrity in cell pairs, and improved calcium wave velocity in engineered tissues. Together, these findings highlight the therapeutic potential of modulating Wnt/β-catenin signaling in a human model of ACM.
Collapse
Affiliation(s)
- Sean L Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Keel Yong Lee
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Luke A MacQueen
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - John F Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Lousanne H C de Wit
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Douglas E Henze
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Daniel J Drennan
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Shaila A Saifee
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Li Jun Loh
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xujie Liu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Golubeva VA, Dorn LE, Gilbert CJ, Rabolli CP, Das AS, Wanasinghe VS, Veress R, Terentyev D, Accornero F. Loss of YTHDF2 Alters the Expression of m 6A-Modified Myzap and Causes Adverse Cardiac Remodeling. JACC Basic Transl Sci 2023; 8:1180-1194. [PMID: 37791304 PMCID: PMC10543918 DOI: 10.1016/j.jacbts.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 10/05/2023]
Abstract
How post-transcriptional regulation of gene expression, such as through N6-methyladenosine (m6A) messenger RNA methylation, impacts heart function is not well understood. We found that loss of the m6A binding protein YTHDF2 in cardiomyocytes of adult mice drove cardiac dysfunction. By proteomics, we found myocardial zonula adherens protein (MYZAP) within the top up-regulated proteins in knockout cardiomyocytes. We further demonstrated that YTHDF2 binds m6A-modified Myzap messenger RNA and controls its stability. Cardiac overexpression of MYZAP has been associated with cardiomyopathy. Thus, our findings provide an important new mechanism for the YTHDF2-dependent regulation of this target and therein its novel role in the maintenance of cardiac homeostasis.
Collapse
Affiliation(s)
- Volha A. Golubeva
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Lisa E. Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christopher J. Gilbert
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Charles P. Rabolli
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Anindhya Sundar Das
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Vishmi S. Wanasinghe
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Roland Veress
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Yoder MW, Wright NT, Borzok MA. Calpain Regulation and Dysregulation-Its Effects on the Intercalated Disk. Int J Mol Sci 2023; 24:11726. [PMID: 37511485 PMCID: PMC10380737 DOI: 10.3390/ijms241411726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The intercalated disk is a cardiac specific structure composed of three main protein complexes-adherens junctions, desmosomes, and gap junctions-that work in concert to provide mechanical stability and electrical synchronization to the heart. Each substructure is regulated through a variety of mechanisms including proteolysis. Calpain proteases, a class of cysteine proteases dependent on calcium for activation, have recently emerged as important regulators of individual intercalated disk components. In this review, we will examine how calcium homeostasis regulates normal calpain function. We will also explore how calpains modulate gap junctions, desmosomes, and adherens junctions activity by targeting specific proteins, and describe the molecular mechanisms of how calpain dysregulation leads to structural and signaling defects within the heart. We will then examine how changes in calpain activity affects cardiomyocytes, and how such changes underlie various heart diseases.
Collapse
Affiliation(s)
- Micah W Yoder
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, USA
| | - Maegen A Borzok
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| |
Collapse
|
9
|
Shabaan DA, Mostafa N, El-Desoky MM, Arafat EA. Coenzyme Q10 protects against doxorubicin-induced cardiomyopathy via antioxidant and anti-apoptotic pathway. Tissue Barriers 2023; 11:2019504. [PMID: 34939895 PMCID: PMC9870010 DOI: 10.1080/21688370.2021.2019504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Doxorubicin (Dox) is an anthracycline antibiotic that treats a variety of malignancies. Unfortunately, its cardiotoxicity limits its therapeutic usefulness. Coenzyme Q10 (CoQ10) has effectively treated and prevented various cardiac diseases and toxicities. This study aimed to evaluate the possible antioxidative and anti-apoptotic cardioprotective effects of CoQ10 against doxorubicin-induced histopathological and molecular changes in cardiomyocytes. Twenty-eight adult Wistar rats were divided into positive control, negative control, Dox-treated group, and Dox+CoQ10-treated. On the 16th day after the start of treatment, the hearts of all rats were dissected, and the left ventricles were processed for histological evaluation; immunohistochemical staining with caspase-3 and inducible nitric oxide synthase (iNOS); ultrastructural examination of cardiomyocytes; molecular assessment of proapoptotic gene Bax and anti-apoptotic gene expression Bcl-2; and biochemical study of malondialdehyde (MDA). The Dox-treated group had disorganized cardiomyocytes with increased interstitial space, vacuolated cytoplasm, and multiple small-sized pyknotic nuclei. A significant increase in caspase-3 and iNOS immunoexpression was observed. Ultrastructurally, the mitochondria were large with abnormal shapes, vacuolated cytoplasm, multiple vacuoles and autophagosomes, collagen fibril accumulation, and multiple small hyperchromatic nuclei. The intercalated discs were disorganized with loss of desmosome junction. The cardiomyocytes also showed significantly increased MDA levels and upregulation of Bax/Bcl-2 gene expression ratio. Co-administration of CoQ10 resulted in significant improvement in the histopathological picture, with a significant decrease in caspase-3 and iNOS immunoexpression and downregulation of the Bax/Bcl-2 gene expression ratio. In conclusion, CoQ10 protects against Dox-induced cardiotoxicity through the regulation of proapoptotic and anti-apoptotic gene expression.
Collapse
Affiliation(s)
- Dalia A. Shabaan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nora Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansurah, Egypt
| | - Manal M. El-Desoky
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansurah, Egypt
| | - Eetmad A. Arafat
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt,CONTACT Eetmad A. Arafat Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
11
|
Cedervall J, Herre M, Dragomir A, Rabelo-Melo F, Svensson A, Thålin C, Rosell A, Hjalmar V, Wallén H, Lindman H, Pejler G, Hagström E, Hultström M, Larsson A, Olsson AK. Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress. Oncoimmunology 2022; 11:2049487. [PMID: 35309730 PMCID: PMC8928831 DOI: 10.1080/2162402x.2022.2049487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer is associated with systemic pathologies that contribute to mortality, such as thrombosis and distant organ failure. The aim of this study was to investigate the potential role of neutrophil extracellular traps (NETs) in myocardial inflammation and tissue damage in treatment-naïve individuals with cancer. Mice with mammary carcinoma (MMTV-PyMT) had increased plasma levels of NETs measured as H3Cit-DNA complexes, paralleled with elevated coagulation, compared to healthy littermates. MMTV-PyMT mice displayed upregulation of pro-inflammatory markers in the heart, myocardial hypertrophy and elevated cardiac disease biomarkers in the blood, but not echocardiographic heart failure. Moreover, increased endothelial proliferation was observed in hearts from tumor-bearing mice. Removal of NETs by DNase I treatment suppressed the myocardial inflammation, expression of cardiac disease biomarkers and endothelial proliferation. Compared to a healthy control group, treatment-naïve cancer patients with different malignant disorders had increased NET formation, which correlated to plasma levels of the inflammatory marker CRP and the cardiac disease biomarkers NT-proBNP and sTNFR1, in agreement with the mouse data. Altogether, our data indicate that NETs contribute to inflammation and myocardial stress during malignancy. These findings suggest NETs as potential therapeutic targets to prevent cardiac inflammation and dysfunction in cancer patients.
Collapse
Affiliation(s)
- J. Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - M. Herre
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - A. Dragomir
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - F. Rabelo-Melo
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - A. Svensson
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - C. Thålin
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A. Rosell
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - V. Hjalmar
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Diagnostic Centre, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - H. Wallén
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - H. Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - G. Pejler
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - E. Hagström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M. Hultström
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - A. Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - AK. Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
12
|
Heliö K, Mäyränpää MI, Saarinen I, Ahonen S, Junnila H, Tommiska J, Weckström S, Holmström M, Toivonen M, Nikus K, Hathaway J, Siivonen P, Muona M, Sistonen J, Salmenperä P, Gentile M, Paananen J, Myllykangas S, Alastalo TP, Heliö T, Koskenvuo J. GRINL1A Complex Transcription Unit Containing GCOM1, MYZAP, and POLR2M Genes Associates with Fully Penetrant Recessive Dilated Cardiomyopathy. Front Genet 2021; 12:786705. [PMID: 34899865 PMCID: PMC8656111 DOI: 10.3389/fgene.2021.786705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Familial dilated cardiomyopathy (DCM) is a monogenic disorder typically inherited in an autosomal dominant pattern. We have identified two Finnish families with familial cardiomyopathy that is not explained by a variant in any previously known cardiomyopathy gene. We describe the cardiac phenotype related to homozygous truncating GCOM1 variants. Methods and Results: This study included two probands and their relatives. All the participants are of Finnish ethnicity. Whole-exome sequencing was used to test the probands; bi-directional Sanger sequencing was used to identify the GCOM1 variants in probands' family members. Clinical evaluation was performed, medical records and death certificates were obtained. Immunohistochemical analysis of myocardial samples was conducted. A homozygous GCOM1 variant was identified altogether in six individuals, all considered to be affected. None of the nine heterozygous family members fulfilled any cardiomyopathy criteria. Heart failure was the leading clinical feature, and the patients may have had a tendency for atrial arrhythmias. Conclusions: This study demonstrates the significance of GCOM1 variants as a cause of human cardiomyopathy and highlights the importance of searching for new candidate genes when targeted gene panels do not yield a positive outcome.
Collapse
Affiliation(s)
- Krista Heliö
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Inka Saarinen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Saija Ahonen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Heidi Junnila
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | - Sini Weckström
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Miia Holmström
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mia Toivonen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Kjell Nikus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Heart Center, Tampere University Hospital, Tampere, Finland
| | - Julie Hathaway
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Pauli Siivonen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Mikko Muona
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | | | | | - Jussi Paananen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | | | - Tiina Heliö
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Koskenvuo
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| |
Collapse
|
13
|
Younis NN, Salama A, Shaheen MA, Eissa RG. Pachymic Acid Attenuated Doxorubicin-Induced Heart Failure by Suppressing miR-24 and Preserving Cardiac Junctophilin-2 in Rats. Int J Mol Sci 2021; 22:ijms221910710. [PMID: 34639051 PMCID: PMC8509247 DOI: 10.3390/ijms221910710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022] Open
Abstract
Defects in cardiac contractility and heart failure (HF) are common following doxorubicin (DOX) administration. Different miRs play a role in HF, and their targeting was suggested as a promising therapy. We aimed to target miR-24, a suppressor upstream of junctophilin-2 (JP-2), which is required to affix the sarcoplasmic reticulum to T-tubules, and hence the release of Ca2+ in excitation–contraction coupling using pachymic acid (PA) and/or losartan (LN). HF was induced with DOX (3.5 mg/kg, i.p., six doses, twice weekly) in 24 rats. PA and LN (10 mg/kg, daily) were administered orally for four weeks starting the next day of the last DOX dose. Echocardiography, left ventricle (LV) biochemical and histological assessment and electron microscopy were conducted. DOX increased serum BNP, HW/TL, HW/BW, mitochondrial number/size and LV expression of miR-24 but decreased EF, cardiomyocyte fiber diameter, LV content of JP-2 and ryanodine receptors-2 (RyR2). Treatment with either PA or LN reversed these changes. Combined PA + LN attained better results than monotherapies. In conclusion, HF progression following DOX administration can be prevented or even delayed by targeting miR-24 and its downstream JP-2. Our results, therefore, suggest the possibility of using PA alone or as an adjuvant therapy with LN to attain better management of HF patients, especially those who developed tolerance toward LN.
Collapse
Affiliation(s)
- Nahla N. Younis
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: ; Tel.: +20-109-6635-165
| | - Alaa Salama
- Cardiology Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mohamed A. Shaheen
- Histology and Cell Biology Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Rana G. Eissa
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
14
|
Rouhi L, Cheedipudi SM, Chen SN, Fan S, Lombardi R, Chen X, Coarfa C, Robertson MJ, Gurha P, Marian AJ. Haploinsufficiency of Tmem43 in cardiac myocytes activates the DNA damage response pathway leading to a late-onset senescence-associated pro-fibrotic cardiomyopathy. Cardiovasc Res 2021; 117:2377-2394. [PMID: 33070193 PMCID: PMC8861264 DOI: 10.1093/cvr/cvaa300] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS Arrhythmogenic cardiomyopathy (ACM) encompasses a genetically heterogeneous group of myocardial diseases whose manifestations are sudden cardiac death, cardiac arrhythmias, heart failure, and in a subset fibro-adipogenic infiltration of the myocardium. Mutations in the TMEM43 gene, encoding transmembrane protein 43 (TMEM43) are known to cause ACM. The purpose of the study was to gain insights into the molecular pathogenesis of ACM caused by TMEM43 haploinsufficiency. METHODS AND RESULTS The Tmem43 gene was specifically deleted in cardiac myocytes by crossing the Myh6-Cre and floxed Tmem43 mice. Myh6-Cre:Tmem43W/F mice showed an age-dependent phenotype characterized by an increased mortality, cardiac dilatation and dysfunction, myocardial fibrosis, adipogenesis, and apoptosis. Sequencing of cardiac myocyte transcripts prior to and after the onset of cardiac phenotype predicted early activation of the TP53 pathway. Increased TP53 activity was associated with increased levels of markers of DNA damage response (DDR), and a subset of senescence-associated secretary phenotype (SASP). Activation of DDR, TP53, SASP, and their selected downstream effectors, including phospho-SMAD2 and phospho-SMAD3 were validated by alternative methods, including immunoblotting. Expression of SASP was associated with epithelial-mesenchymal transition and age-dependent expression of myocardial fibrosis and apoptosis in the Myh6-Cre:Tmem43W/F mice. CONCLUSION TMEM43 haploinsufficiency is associated with activation of the DDR and the TP53 pathways, which lead to increased expression of SASP and an age-dependent expression of a pro-fibrotic cardiomyopathy. Given that TMEM43 is a nuclear envelope protein and our previous data showing deficiency of another nuclear envelope protein, namely lamin A/C, activates the DDR/TP53 pathway, we surmise that DNA damage is a shared mechanism in the pathogenesis of cardiomyopathies caused by mutations involving nuclear envelope proteins.
Collapse
Affiliation(s)
- Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, TX 77030, USA
| | - Sirisha M Cheedipudi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, TX 77030, USA
| | - Suet Nee Chen
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, TX 77030, USA
| | - Siyang Fan
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, TX 77030, USA
| | - Raffaella Lombardi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, TX 77030, USA
| | - Xiaofan Chen
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Robertson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, TX 77030, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, TX 77030, USA
| |
Collapse
|
15
|
Chu Q, Xiao Y, Song X, Kang YJ. Extracellular matrix remodeling is associated with the survival of cardiomyocytes in the subendocardial region of the ischemic myocardium. Exp Biol Med (Maywood) 2021; 246:2579-2588. [PMID: 34515546 DOI: 10.1177/15353702211042020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A significant amount of cardiomyocytes in subendocardial region survive from ischemic insults. In order to understand the mechanism by which these cardiomyocytes survive, the present study was undertaken to examine changes in these surviving cardiomyocytes and their extracellular matrix. Male C57BL/6 mice aged 8-12 weeks old were subjected to a permanent left anterior descending coronary artery ligation to induce ischemic injury. The hearts were collected at 1, 4, 7, or 28 days after the surgery and examined by histology. At day 1 after left anterior descending ligation, there was a significant loss of cardiomyocytes through apoptosis, but a proportion of cardiomyocytes were surviving in the subendocardial region. The surviving cardiomyocytes were gradually changed from rod-shaped to round-shaped, and appeared disconnected. Connexin 43, an important gap junction protein, was significantly decreased, and collagen I and III deposition was significantly increased in the extracellular matrix. Furthermore, lysyl oxidase, a copper-dependent amine oxidase catalyzing the cross-linking of collagens, was significantly increased in the extracellular matrix, paralleled with the surviving cardiomyocytes. Inhibition of lysyl oxidase activity reduced the number of surviving cardiomyocytes. Thus, the extracellular matrix remodeling is correlated with the deformation of cardiomyocytes, and the electrical disconnection between the surviving cardiomyocytes due to connexin 43 depletion and the increase in lysyl oxidase would help these deformed cardiomyocytes survive under ischemic conditions.
Collapse
Affiliation(s)
- Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Xin Song
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.,Tennessee Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
16
|
Cheedipudi SM, Fan S, Rouhi L, Marian AJ. Pharmacological suppression of the WNT signaling pathway attenuates age-dependent expression of the phenotype in a mouse model of arrhythmogenic cardiomyopathy. THE JOURNAL OF CARDIOVASCULAR AGING 2021; 1. [PMID: 34447973 PMCID: PMC8386676 DOI: 10.20517/jca.2021.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction Arrhythmogenic cardiomyopathy (ACM) is a genetic disease of the myocardium, characterized by cardiac arrhythmias, dysfunction, and sudden cardiac death. The pathological hallmark of ACM is fibro-adipocytes replacing cardiac myocytes. The canonical WNT pathway is implicated in the pathogenesis of ACM. Aim The study aimed to determine the effects of the suppression of the WNT pathway on cardiac phenotype in a mouse model of ACM. Methods and Results One copy of the Dsp gene, a known cause of ACM in humans, was deleted specifically in cardiac myocytes (Myh6-Cre-Dsp W/F). Three-month-old wild type and Myh6-Cre-Dsp W/F mice, without a discernible phenotype, were randomized to either untreated or daily administration of a vehicle (placebo), or WNT974, the latter an established inhibitor of the WNT pathway, for three months. The Myh6-Cre-Dsp W/F mice in the untreated or placebo-treated groups exhibited cardiac dilatation and dysfunction, increased myocardial fibrosis, and apoptosis upon completion of the study, which was verified by complementary methods. Daily administration of WNT974 prevented and/or attenuated evolving cardiac dilatation and dysfunction, normalized myocardial fibrosis, and reduced apoptosis, compared to the untreated or placebo-treated groups. However, administration of WNT974 increased the number of adipocytes only in the Myh6-Cre-Dsp W/F hearts. There were no differences in the incidence of cardiac arrhythmias and survival rates. Conclusion Suppression of the WNT pathway imparts salutary phenotypic effects by preventing or attenuating age-dependent expression of cardiac dilatation and dysfunction, myocardial fibrosis, and apoptosis in a mouse model of ACM. The findings set the stage for large-scale studies and studies in larger animal models to test the beneficial effects of the suppression of the WNT pathway in ACM. One sentence summary Suppression of the WNT signaling pathway has beneficial effects on cardiac dysfunction, myocardial apoptosis, and fibrosis in a mouse model of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Sirisha M Cheedipudi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Siyang Fan
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
17
|
Abstract
Desmoplakin (DSP), encoded by the DSP gene, is the main desmosome component and is abundant in the myocardial tissue. There are three DSP isoforms that assume the role of supporting structural stability through intercellular adhesion. It has been found that DSP regulates the transcription of adipogenic and fibrogenic genes, and maintains appropriate electrical conductivity by regulating gap junctions and ion channels. DSP is essential for normal myocardial development and the maintenance of its structural functions. Studies have suggested that DSP gene mutations are associated with a variety of hereditary cardiomyopathy, such as arrhythmia cardiomyopathy, dilated cardiomyopathy (DCM), left ventricular noncompaction, and is also closely associated with the Carvajal syndrome, Naxos disease, and erythro-keratodermia-cardiomyopathy syndrome with skin and heart damage. The structure and function of DSP, as well as the clinical manifestations of DSP-related cardiomyopathy were reviewed in this article.
Collapse
|
18
|
Hoover CA, Ott KL, Manring HR, Dew T, Borzok MA, Wright NT. Creating a 'Molecular Band-Aid'; Blocking an Exposed Protease Target Site in Desmoplakin. J Pers Med 2021; 11:jpm11050401. [PMID: 34065787 PMCID: PMC8151963 DOI: 10.3390/jpm11050401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Desmoplakin (DSP) is a large (~260 kDa) protein found in the desmosome, a subcellular complex that links the cytoskeleton of one cell to its neighbor. A mutation ‘hot-spot’ within the NH2-terminal third of the DSP protein (specifically, residues 299–515) is associated with both cardiomyopathies and skin defects. In select DSP variants, disease is linked specifically to the uncovering of a previously-occluded calpain target site (residues 447–451). Here, we partially stabilize these calpain-sensitive DSP clinical variants through the addition of a secondary single point mutation—tyrosine for leucine at amino acid position 518 (L518Y). Molecular dynamic (MD) simulations and enzymatic assays reveal that this stabilizing mutation partially blocks access to the calpain target site, resulting in restored DSP protein levels. This ‘molecular band-aid’ provides a novel way to maintain DSP protein levels, which may lead to new strategies for treating this subset of DSP-related disorders.
Collapse
Affiliation(s)
- Catherine A. Hoover
- Department of Natural Sciences, Mansfield University of Pennsylvania, Mansfield, PA 16933, USA;
| | - Kendahl L. Ott
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA;
| | - Heather R. Manring
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (H.R.M.); (T.D.)
| | - Trevor Dew
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (H.R.M.); (T.D.)
| | - Maegen A. Borzok
- Department of Natural Sciences, Mansfield University of Pennsylvania, Mansfield, PA 16933, USA;
- Correspondence: (M.A.B.); (N.T.W.)
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA;
- Correspondence: (M.A.B.); (N.T.W.)
| |
Collapse
|
19
|
Balatskyi VV, Palchevska OL, Bortnichuk L, Gan AM, Myronova A, Macewicz LL, Navrulin VO, Tumanovska LV, Olichwier A, Dobrzyn P, Piven OO. β-Catenin Regulates Cardiac Energy Metabolism in Sedentary and Trained Mice. Life (Basel) 2020; 10:life10120357. [PMID: 33348907 PMCID: PMC7766208 DOI: 10.3390/life10120357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
The role of canonical Wnt signaling in metabolic regulation and development of physiological cardiac hypertrophy remains largely unknown. To explore the function of β-catenin in the regulation of cardiac metabolism and physiological cardiac hypertrophy development, we used mice heterozygous for cardiac-specific β-catenin knockout that were subjected to a swimming training model. β-Catenin haploinsufficient mice subjected to endurance training displayed a decreased β-catenin transcriptional activity, attenuated cardiomyocytes hypertrophic growth, and enhanced activation of AMP-activated protein kinase (AMPK), phosphoinositide-3-kinase-Akt (Pi3K-Akt), and mitogen-activated protein kinase/extracellular signal-regulated kinases 1/2 (MAPK/Erk1/2) signaling pathways compared to trained wild type mice. We further observed an increased level of proteins involved in glucose aerobic metabolism and β-oxidation along with perturbed activity of mitochondrial oxidative phosphorylation complexes (OXPHOS) in trained β-catenin haploinsufficient mice. Taken together, Wnt/β-catenin signaling appears to govern metabolic regulatory programs, sustaining metabolic plasticity in adult hearts during the adaptation to endurance training.
Collapse
Affiliation(s)
- Volodymyr V. Balatskyi
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Oksana L. Palchevska
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 46-580 Warsaw, Poland
| | - Lina Bortnichuk
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Ana-Maria Gan
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Anna Myronova
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Larysa L. Macewicz
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Viktor O. Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Lesya V. Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024 Kyiv, Ukraine;
| | - Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
- Correspondence: (P.D.); (O.O.P.); Tel.: +48-022-589-24-59 (P.D.); +38-044-526-07-39 (O.O.P.); Fax: +48-022-822-53-42 (P.D.); +38-044-526-07-59 (O.O.P.)
| | - Oksana O. Piven
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Correspondence: (P.D.); (O.O.P.); Tel.: +48-022-589-24-59 (P.D.); +38-044-526-07-39 (O.O.P.); Fax: +48-022-822-53-42 (P.D.); +38-044-526-07-59 (O.O.P.)
| |
Collapse
|
20
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
21
|
Salvage SC, Huang CLH, Jackson AP. Cell-Adhesion Properties of β-Subunits in the Regulation of Cardiomyocyte Sodium Channels. Biomolecules 2020; 10:biom10070989. [PMID: 32630316 PMCID: PMC7407995 DOI: 10.3390/biom10070989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression of neuronal Nav channels. Four distinct regulatory β-subunits (β1–4) bind to the Nav channel α-subunits. Previous work has emphasised the β-subunits as direct Nav channel gating modulators. However, there is now increasing appreciation of additional roles played by these subunits. In this review, we focus on β-subunits as homophilic and heterophilic cell-adhesion molecules and the implications for cardiomyocyte function. Based on recent cryogenic electron microscopy (cryo-EM) data, we suggest that the β-subunits interact with Nav1.5 in a different way from their binding to other Nav channel isoforms. We believe this feature may facilitate trans-cell-adhesion between β1-associated Nav1.5 subunits on the intercalated disc and promote ephaptic conduction between cardiomyocytes.
Collapse
Affiliation(s)
- Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| |
Collapse
|
22
|
Yeruva S, Kempf E, Egu DT, Flaswinkel H, Kugelmann D, Waschke J. Adrenergic Signaling-Induced Ultrastructural Strengthening of Intercalated Discs via Plakoglobin Is Crucial for Positive Adhesiotropy in Murine Cardiomyocytes. Front Physiol 2020; 11:430. [PMID: 32508670 PMCID: PMC7253624 DOI: 10.3389/fphys.2020.00430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
Intercalated discs (ICDs), which connect adjacent cardiomyocytes, are composed of desmosomes, adherens junctions (AJs) and gap junctions (GJs). Previous data demonstrated that adrenergic signaling enhances cardiac myocyte cohesion, referred to as positive adhesiotropy, via PKA-mediated phosphorylation of plakoglobin (PG). However, it was unclear whether positive adhesiotropy caused ultrastructural modifications of ICDs. Therefore, we further investigated the role of PG in adrenergic signaling-mediated ultrastructural changes in the ICD of cardiomyocytes. Quantitative transmission electron microscopy (TEM) analysis of ICD demonstrated that cAMP elevation caused significant elongation of area composita and thickening of the ICD plaque, paralleled by enhanced cardiomyocyte cohesion, in WT but not PG-deficient cardiomyocytes. STED microscopy analysis supported that cAMP elevation ex vivo enhanced overlap of desmoglein-2 (Dsg2) and N-cadherin (N-cad) staining in ICDs of WT but not PG-deficient cardiomyocytes. For dynamic analyses, we utilized HL-1 cardiomyocytes, in which cAMP elevation induced translocation of Dsg2 and PG but not of N-cad to cell junctions. Nevertheless, depletion of N-cad but not of Dsg2 resulted in a decrease in basal cell cohesion whereas positive adhesiotropy was abrogated in monolayers depleted for either Dsg2 or N-cad. In the WT mice, ultrastrutural changes observed after cAMP elevation were paralleled by phosphorylation of PG at serine 665. Our data demonstrate that in murine hearts adrenergic signaling enhanced N-cad and Dsg2 in the ICD paralleled by ultrastrutural strengthening of ICDs and that effects induced by positive adhesiotropy were strictly dependent on Pg.
Collapse
Affiliation(s)
- Sunil Yeruva
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ellen Kempf
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Desalegn Tadesse Egu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | | | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
23
|
Jiang W, Hu X, Li F, Li G, Wang Y. Adrenoceptor Responses in Human Embryonic Stem Cell-Derived Cardiomyocytes: a Special Focus on Electrophysiological Property. J Pharmacol Exp Ther 2020; 373:429-437. [PMID: 32217769 DOI: 10.1124/jpet.120.265686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 01/16/2023] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have become a promising cell source for cardiovascular research. The electrophysiological characteristic of hESC-CMs has been generally studied, but little is known about electrophysiological response to adrenergic receptor (AR) activation. This study aims to characterize electrophysiological response of hESC-CMs to adrenergic stimulation in terms of the conduction velocity (CV) and action potential (AP) shape. The H9 hESC-CMs were acquired by a classic differentiation protocol and cultured to achieve confluent cell monolayers. The AP shape and CV among the monolayers were recorded using optical mapping during electrophysiological and pharmacological stimulation experiments. Quantitative real-time polymerase chain reaction and Western blot were adopted to determine the expression levels of Connexin and ion channel gene and protein. Chronic β-AR stimulation by isoproterenol for 24 hours in hESC-CM monolayers increased CV by approximately 50%, whereas α-AR or acute β-AR stimulation had no significant effect; chronic β-AR stimulation resulted in a significant Connexin (Cx) 43 and Nav1.5 upregulation at both protein and mRNA level. Isoproterenol-induced CV accelerating and Cx43 and Nav1.5 upregulation in hESC-CMs, which was attenuated by selective β1-adrenoceptor antagonist CGP 20712A but not selective β2-antagonist ICI 118551. Moreover, pretreatment with protein kinase A (PKA) inhibitor H89, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (MEK) inhibitor SB203580, and MAPK inhibitor PD98059 suppressed the isoproterenol-induced CV accelerating and Cx43 upregulation, whereas it had no significant effect on Nav1.5 upregulation. The AP shape in hESC-CM monolayers was less susceptible by either β-AR or α-AR stimulation. It was β1-AR not β2-AR contributing to the modification of conduction velocity among hESC-CM monolayers. Chronic β1-AR stimulation accelerates CV by upregulating Cx43 via PKA/MEK/MAPK pathway. SIGNIFICANCE STATEMENT: These data provide new insight into the electrophysiological characteristics of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and depict a concise signaling pathway in the adrenergic receptor (AR) regulation of action potential shape and electrical propagation across hESC-CM monolayer. It is β1-AR not β2-AR contributing to the modification of conduction velocity in hESC-CMs and accelerating conduction velocity by upregulating Connexin 43 via protein kinase A/ mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase/MAPK pathway.
Collapse
Affiliation(s)
- Weiwei Jiang
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| | - Xingjian Hu
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| | - Fei Li
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| | - Geng Li
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| | - Yin Wang
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| |
Collapse
|
24
|
Zhao G, Zhang HM, Qiu Y, Ye X, Yang D. Cleavage of Desmosomal Cadherins Promotes γ-Catenin Degradation and Benefits Wnt Signaling in Coxsackievirus B3-Induced Destruction of Cardiomyocytes. Front Microbiol 2020; 11:767. [PMID: 32457708 PMCID: PMC7225294 DOI: 10.3389/fmicb.2020.00767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is the primary etiologic agent of viral myocarditis, a major heart disease that occurs predominantly in children and young adolescents. In the heart, intercalated disks (ICD) are important structural formations that connect adjacent cardiomyocytes to maintain cardiac architecture and mediate signal communication. Deficiency in ICD components, such as desmosome proteins, leads to heart dysfunction. γ-catenin, a component protein of desmosomes, normally binds directly to desmocollin-2 and desmoglein-2. In this study, we found that CVB3 infection downregulated γ-catenin at the protein level but not the mRNA level in mouse HL-1 cardiomyocytes. We further found that this reduction of γ-catenin protein is a result of ubiquitin proteasome-mediated degradation, since the addition of proteasome inhibitor MG132 inhibited γ-catenin downregulation. In addition, we found that desmocollin-2 and desmoglein-2 were cleaved by both viral protease 3C and virus-activated cellular caspase, respectively. These cleavages led to the release of bound γ-catenin from the desmosome into the cytosol, resulting in rapid degradation of γ-catenin. Since γ-catenin shares high sequence homology with β-catenin in binding the TCF/LEF transcription factor, we further studied the effect of γ-catenin degradation on Wnt/β-catenin signaling. Luciferase assay showed that γ-catenin expression inhibited Wnt/β-catenin signaling. This finding was substantiated by qPCR to show that overexpression of γ-catenin downregulated transcription of Wnt signal target genes, c-myc and MMP9, while silencing γ-catenin upregulated these target genes. Finally, we demonstrated that γ-catenin expression inhibited CVB3 replication. In search for the underlying mechanism, we found that silencing γ-catenin caused down-regulation of interferon-β and its stimulated antiviral genes MDA5, MAVS, and ISG15. Taken together, our results indicate, for the first time, that CVB3 infection causes cardiomyocyte death through, at least in part, direct damage to the desmosome structure and reduction of γ-catenin protein, which in return promotes Wnt/β-catenin signaling and downregulates interferon-β stimulated immune responses.
Collapse
Affiliation(s)
- Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Huifang M Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Ye Qiu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,College of Biology, Hunan University, Changsha, China
| | - Xin Ye
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
25
|
Abstract
Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Collapse
|
26
|
Abstract
Nanoparticulate materials displaying enzyme-like properties, so-called nanozymes, are explored as substitutes for natural enzymes in several industrial, energy-related, and biomedical applications. Outstanding high stability, enhanced catalytic activities, low cost, and availability at industrial scale are some of the fascinating features of nanozymes. Furthermore, nanozymes can also be equipped with the unique attributes of nanomaterials such as magnetic or optical properties. Due to the impressive development of nanozymes during the last decade, their potential in the context of tissue engineering and regenerative medicine also started to be explored. To highlight the progress, in this review, we discuss the two most representative nanozymes, namely, cerium- and iron-oxide nanomaterials, since they are the most widely studied. Special focus is placed on their applications ranging from cardioprotection to therapeutic angiogenesis, bone tissue engineering, and wound healing. Finally, current challenges and future directions are discussed.
Collapse
|
27
|
Grogan A, Kontrogianni-Konstantopoulos A. Unraveling obscurins in heart disease. Pflugers Arch 2018; 471:735-743. [PMID: 30099631 DOI: 10.1007/s00424-018-2191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
Abstract
Obscurins, expressed from the single OBSCN gene, are a family of giant, modular, cytoskeletal proteins that play key structural and regulatory roles in striated muscles. They were first implicated in the development of heart disease in 2007 when two missense mutations were found in a patient diagnosed with hypertrophic cardiomyopathy (HCM). Since then, the discovery of over a dozen missense, frameshift, and splicing mutations that are linked to various forms of cardiomyopathy, including HCM, dilated cardiomyopathy (DCM), and left ventricular non-compaction (LVNC), has highlighted OBSCN as a potential disease-causing gene. At this time, the functional consequences of the identified mutations remain largely elusive, and much work has yet to be done to characterize the disease mechanisms of pathological OBSCN variants. Herein, we describe the OBSCN mutations known to date, discuss their potential impact on disease development, and provide future directions in order to better understand the involvement of obscurins in heart disease.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD, 21201, USA
| | | |
Collapse
|