1
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Britt M, Sawasato K, Moller E, Kidd G, Bogdanov M, Sukharev S. On the lipid dependence of bacterial mechanosensitive channel gating in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576706. [PMID: 38328048 PMCID: PMC10849563 DOI: 10.1101/2024.01.22.576706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
For bacterial mechanosensitive channels acting as turgor-adjusting osmolyte release valves, membrane tension is the primary stimulus driving opening transitions. Because tension is transmitted through the surrounding lipid bilayer, it is possible that the presence or absence of different lipid species may influence the function of these channels. In this work, we characterize the lipid dependence of chromosome-encoded MscS and MscL in E. coli strains with genetically altered lipid composition. We use two previously generated strains that lack one or two major lipid species (PE, PG, or CL) and engineer a third strain that is highly enriched in CL due to the presence of hyperactive cardiolipin synthase ClsA. We characterize the functional behavior of these channels using patch-clamp and quantify the relative tension midpoints, closing rates, inactivation depth, and the rate of recovery back to the closed state. We also measure the osmotic survival of lipid-deficient strains, which characterizes the functional consequences of lipid-mediated channel function at the cell level. We find that the opening and closing behavior of MscS and MscL tolerate the absence of specific lipid species remarkably well. The lack of cardiolipin (CL), however, reduces the active MscS population relative to MscL and decreases the closing rate, slightly increasing the propensity of MscS toward inactivation and slowing the recovery process. The data points to the robustness of the osmolyte release system and the importance of cardiolipin for the adaptive behavior of MscS.
Collapse
|
3
|
Stankunas E, Köhler A. The interplay of nuclear pores and lipids. Curr Opin Cell Biol 2023; 85:102251. [PMID: 37804774 DOI: 10.1016/j.ceb.2023.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Nuclear pore complexes (NPCs) mediate the bidirectional transport of cargo across the nuclear envelope (NE). NPCs are also membrane remodeling machines with a capacity to curve and fuse the membranes of the NE. However, little is known about the interplay of NPCs and lipids at a mechanistic level. A full understanding of NPC structure and function needs to encompass how the NPC shapes membranes and is itself shaped by lipids. Here we attempt to connect recent findings in NPC research with the broader field of membrane biochemistry to illustrate how an interplay between NPCs and lipids may facilitate the conformational plasticity of NPCs and the generation of a unique pore membrane topology. We highlight the need to better understand the NPC's lipid environment and outline experimental avenues towards that goal.
Collapse
Affiliation(s)
- Edvinas Stankunas
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Alwin Köhler
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria.
| |
Collapse
|
4
|
Maymand VM, Bavi O, Karami A. Probing the mechanical properties of ORF3a protein, a transmembrane channel of SARS-CoV-2 virus: Molecular dynamics study. Chem Phys 2023; 569:111859. [PMID: 36852417 PMCID: PMC9946729 DOI: 10.1016/j.chemphys.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
SARS-CoV-2-encoded accessory protein ORF3a was found to be a conserved coronavirus protein that shows crucial roles in apoptosis in cells as well as in virus release and replications. To complete the knowledge and identify the unknown of this protein, further comprehensive research is needed to clarify the leading role of ORF3a in the functioning of the coronavirus. One of the efficient approaches to determining the functionality of this protein is to investigate the mechanical properties and study its structural dynamics in the presence of physical stimuli. Herein, performing all-atom steered molecular dynamics (SMD) simulations, the mechanical properties of the force-bearing components of the ORF3a channel are calculated in different physiological conditions. As variations occurring in ORF3a may lead to alteration in protein structure and function, the G49V mutation was also simulated to clarify the relationship between the mechanical properties and chemical stability of the protein by comparing the behavior of the wild-type and mutant Orf3a. From a physiological conditions point of view, it was observed that in the solvated system, the presence of water molecules reduces Young's modulus of TM1 by ∼30 %. Our results also show that by substitution of Gly49 with valine, Young's modulus of the whole helix increases from 1.61 ± 0.20 to 2.08 ± 0.15 GPa, which is consistent with the calculated difference in free energy of wild-type and mutant helices. In addition to finding a way to fight against Covid-19 disease, understanding the mechanical behavior of these biological nanochannels can lead to the development of the potential applications of the ORF3a protein channel, such as tunable nanovalves in smart drug delivery systems, nanofilters in the new generation of desalination systems, and promising applications in DNA sequencing.
Collapse
Affiliation(s)
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Abbas Karami
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
5
|
Schmidpeter PAM, Petroff JT, Khajoueinejad L, Wague A, Frankfater C, Cheng WWL, Nimigean CM, Riegelhaupt PM. Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1. Nat Commun 2023; 14:1077. [PMID: 36841877 PMCID: PMC9968290 DOI: 10.1038/s41467-023-36765-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Tandem pore domain (K2P) potassium channels modulate resting membrane potentials and shape cellular excitability. For the mechanosensitive subfamily of K2Ps, the composition of phospholipids within the bilayer strongly influences channel activity. To examine the molecular details of K2P lipid modulation, we solved cryo-EM structures of the TREK1 K2P channel bound to either the anionic lipid phosphatidic acid (PA) or the zwitterionic lipid phosphatidylethanolamine (PE). At the extracellular face of TREK1, a PA lipid inserts its hydrocarbon tail into a pocket behind the selectivity filter, causing a structural rearrangement that recapitulates mutations and pharmacology known to activate TREK1. At the cytoplasmic face, PA and PE lipids compete to modulate the conformation of the TREK1 TM4 gating helix. Our findings demonstrate two distinct pathways by which anionic lipids enhance TREK1 activity and provide a framework for a model that integrates lipid gating with the effects of other mechanosensitive K2P modulators.
Collapse
Affiliation(s)
| | - John T Petroff
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Leila Khajoueinejad
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Aboubacar Wague
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Cheryl Frankfater
- Department of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - Paul M Riegelhaupt
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
6
|
Friston DA, Cuddihy J, Souza Luiz J, Truong AH, Ho L, Basra M, Santha P, Oszlacs O, de Sousa Valente J, Marczylo T, Junttila S, Laycock H, Collins D, Vizcaychipi M, Gyenesei A, Takats Z, Jancso G, Want E, Nagy I. Elevated 18:0 lysophosphatidylcholine contributes to the development of pain in tissue injury. Pain 2023; 164:e103-e115. [PMID: 36638307 PMCID: PMC9833116 DOI: 10.1097/j.pain.0000000000002709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Tissue injuries, including burns, are major causes of death and morbidity worldwide. These injuries result in the release of intracellular molecules and subsequent inflammatory reactions, changing the tissues' chemical milieu and leading to the development of persistent pain through activating pain-sensing primary sensory neurons. However, the majority of pain-inducing agents in injured tissues are unknown. Here, we report that, amongst other important metabolite changes, lysophosphatidylcholines (LPCs) including 18:0 LPC exhibit significant and consistent local burn injury-induced changes in concentration. 18:0 LPC induces immediate pain and the development of hypersensitivities to mechanical and heat stimuli through molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1, and member 2 at least partly via increasing lateral pressure in the membrane. As levels of LPCs including 18:0 LPC increase in other tissue injuries, our data reveal a novel role for these lipids in injury-associated pain. These findings have high potential to improve patient care.
Collapse
Affiliation(s)
- Dominic Anthony Friston
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Joshua Cuddihy
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Anaesthetics, Chelsea and Westminster NHS Trust, London, United Kingdom
| | - Jessica Souza Luiz
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - An Hoai Truong
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Laptin Ho
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Meirvaan Basra
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Peter Santha
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Orsolya Oszlacs
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Joao de Sousa Valente
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Research, BHF Cardiovascular Centre of Research Excellence, King's College London, London, United Kingdom
| | - Tim Marczylo
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards, Didcot, United Kingdom
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku, Turku, Finland
| | - Helen Laycock
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Declan Collins
- Department of Anaesthetics, Chelsea and Westminster NHS Trust, London, United Kingdom
| | - Marcela Vizcaychipi
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Anaesthetics, Chelsea and Westminster NHS Trust, London, United Kingdom
| | - Attila Gyenesei
- Szentagothai Research Centre, University of Pecs, Pécs, Hungary
| | - Zoltan Takats
- Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Gabor Jancso
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Elizabeth Want
- Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Istvan Nagy
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Sokolova A, Galic M. Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors. Biol Chem 2023; 404:417-425. [PMID: 36626681 DOI: 10.1515/hsz-2022-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Mechanical forces exerted to the plasma membrane induce cell shape changes. These transient shape changes trigger, among others, enrichment of curvature-sensitive molecules at deforming membrane sites. Strikingly, some curvature-sensing molecules not only detect membrane deformation but can also alter the amplitude of forces that caused to shape changes in the first place. This dual ability of sensing and inducing membrane deformation leads to the formation of curvature-dependent self-organizing signaling circuits. How these cell-autonomous circuits are affected by auxiliary parameters from inside and outside of the cell has remained largely elusive. Here, we explore how such factors modulate self-organization at the micro-scale and its emerging properties at the macroscale.
Collapse
Affiliation(s)
- Anastasiia Sokolova
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Straße 31, 48149 Münster, Germany.,CiM-IMRPS Graduate Program, Schlossplatz 5, 48149 Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Straße 31, 48149 Münster, Germany.,'Cells in Motion' Interfaculty Centre, University of Münster, Röntgenstraße 16, 48149 Münster, Germany
| |
Collapse
|
8
|
Nakayama Y, Rohde PR, Martinac B. "Force-From-Lipids" Dependence of the MscCG Mechanosensitive Channel Gating on Anionic Membranes. Microorganisms 2023; 11:microorganisms11010194. [PMID: 36677485 PMCID: PMC9861469 DOI: 10.3390/microorganisms11010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Mechanosensory transduction in Corynebacterium glutamicum plays a major role in glutamate efflux for industrial MSG, whose production depends on the activation of MscCG-type mechanosensitive channels. Dependence of the MscCG channel activation by membrane tension on the membrane lipid content has to date not been functionally characterized. Here, we report the MscCG channel patch clamp recording from liposomes fused with C. glutamicum membrane vesicles as well as from proteoliposomes containing the purified MscCG protein. Our recordings demonstrate that mechanosensitivity of MscCG channels depends significantly on the presence of negatively charged lipids in the proteoliposomes. MscCG channels in liposome preparations fused with native membrane vesicles exhibited the activation threshold similar to the channels recorded from C. glutamicum giant spheroplasts. In comparison, the activation threshold of the MscCG channels reconstituted into azolectin liposomes was higher than the activation threshold of E. coli MscL, which is gated by membrane tension close to the bilayer lytic tension. The spheroplast-like activation threshold was restored when the MscCG channels were reconstituted into liposomes made of E. coli polar lipid extract. In liposomes made of polar lipids mixed with synthetic phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin, the activation threshold of MscCG was significantly reduced compared to the activation threshold recorded in azolectin liposomes, which suggests the importance of anionic lipids for the channel mechanosensitivity. Moreover, the micropipette aspiration technique combined with patch fluorometry demonstrated that membranes containing anionic phosphatidylglycerol are softer than membranes containing only polar non-anionic phosphatidylcholine and phosphatidylethanolamine. The difference in mechanosensitivity between C. glutamicum MscCG and canonical MscS of E. coli observed in proteoliposomes explains the evolutionary tuning of the force from lipids sensing in various bacterial membrane environments.
Collapse
Affiliation(s)
- Yoshitaka Nakayama
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
- Faculty of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney 2010, Australia
| | - Paul R. Rohde
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
- Faculty of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney 2010, Australia
- Correspondence: ; Tel.: +61-2-9295-8743
| |
Collapse
|
9
|
Flegler VJ, Rasmussen T, Böttcher B. How Functional Lipids Affect the Structure and Gating of Mechanosensitive MscS-like Channels. Int J Mol Sci 2022; 23:ijms232315071. [PMID: 36499396 PMCID: PMC9739000 DOI: 10.3390/ijms232315071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
The ability to cope with and adapt to changes in the environment is essential for all organisms. Osmotic pressure is a universal threat when environmental changes result in an imbalance of osmolytes inside and outside the cell which causes a deviation from the normal turgor. Cells have developed a potent system to deal with this stress in the form of mechanosensitive ion channels. Channel opening releases solutes from the cell and relieves the stress immediately. In bacteria, these channels directly sense the increased membrane tension caused by the enhanced turgor levels upon hypoosmotic shock. The mechanosensitive channel of small conductance, MscS, from Escherichia coli is one of the most extensively studied examples of mechanically stimulated channels. Different conformational states of this channel were obtained in various detergents and membrane mimetics, highlighting an intimate connection between the channel and its lipidic environment. Associated lipids occupy distinct locations and determine the conformational states of MscS. Not all these features are preserved in the larger MscS-like homologues. Recent structures of homologues from bacteria and plants identify common features and differences. This review discusses the current structural and functional models for MscS opening, as well as the influence of certain membrane characteristics on gating.
Collapse
|
10
|
Young M, Lewis AH, Grandl J. Physics of mechanotransduction by Piezo ion channels. J Gen Physiol 2022; 154:213231. [PMID: 35593732 PMCID: PMC9127981 DOI: 10.1085/jgp.202113044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/26/2022] Open
Abstract
Piezo ion channels are sensors of mechanical forces and mediate a wide range of physiological mechanotransduction processes. More than a decade of intense research has elucidated much of the structural and mechanistic principles underlying Piezo gating and its roles in physiology, although wide gaps of knowledge continue to exist. Here, we review the forces and energies involved in mechanical activation of Piezo ion channels and their functional modulation by other chemical and physical stimuli including lipids, voltage, and temperature. We compare the three predominant mechanisms likely to explain Piezo activation—the force-from-lipids mechanism, the tether model, and the membrane footprint theory. Additional sections shine light on how Piezo ion channels may affect each other through spatial clustering and functional cooperativity, and how substantial functional heterogeneity of Piezo ion channels arises as a byproduct of the precise physical environment each channel experiences. Finally, our review concludes by pointing out major research questions and technological limitations that future research can address.
Collapse
Affiliation(s)
- Michael Young
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
11
|
Ren M, Wang J. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. THE ISME JOURNAL 2022; 16:1491-1501. [PMID: 35091647 PMCID: PMC9123079 DOI: 10.1038/s41396-022-01199-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 04/29/2023]
Abstract
Thaumarchaeota (now the class Nitrososphaeria in the phylum Thermoproteota in GTDB taxonomy) are abundant across marine and soil habitats; however, their genomic diversity and evolutionary history in freshwater environments remain elusive. Here, we reconstructed 17 high-quality metagenome-assembled genomes of Nitrososphaeria from a deep lake and two great rivers, and compared all available genomes between freshwater and marine habitats regarding their phylogenetic positions, relative abundance, and genomic content. We found that freshwater Nitrososphaeria were dominated by the family Nitrosopumilaceae and could be grouped into three distinct clades closely related to the genera Nitrosopumilus, Nitrosoarchaeum, and Nitrosotenuis. The Nitrosopumilus-like clade was exclusively from deep lakes, while the Nitrosoarchaeum-like clade was dominated by species from deep lakes and rivers, and the Nitrosotenuis-like clade was mainly from rivers, deep lakes, and estuaries. Interestingly, there was vertical niche separation between two clades in deep lakes, showing that the Nitrosopumilus-like species dominated shallow layers, whereas the relative abundance of the Nitrosoarchaeum-like clade increased toward deep waters. Phylogenetic clustering patterns in the Nitrosopumilaceae supported at least one freshwater-to-marine and two marine-to-freshwater transitions, the former of which refined the potential terrestrial-to-marine evolutionary path as previously proposed. The occurrence of the two marine-to-freshwater transitions were accompanied by horizontal transfer of the genes involved in nutrition regulation, osmoregulation, and cell motility during their colonization to freshwater habitats. Specifically, the Nitrosopumilus-like clade showed losses of genes encoding flagella assembly and ion transport, whereas the Nitrosoarchaeum-like clade had losses of intact genes involved in urea uptake and utilization and gains of genes encoding osmolarity-mediated mechanosensitive channels. Collectively, our results reveal for the first time the high genomic diversity of the class Nitrososphaeria across freshwater ecosystems and provide novel insights into their adaptive mechanisms and evolutionary histories.
Collapse
Affiliation(s)
- Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Mechanisms of Pannexin 1 (PANX1) Channel Mechanosensitivity and Its Pathological Roles. Int J Mol Sci 2022; 23:ijms23031523. [PMID: 35163442 PMCID: PMC8836264 DOI: 10.3390/ijms23031523] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Pannexins (PANX) were cloned based on their sequence homology to innexins (Inx), invertebrate gap junction proteins. Although there is no sequence homology between PANX and connexins (Cx), these proteins exhibit similar configurations. The PANX family has three members, PANX1, PANX2 and PANX3. Among them, PANX1 has been the most extensively studied. The PANX1 channels are activated by many factors, including high extracellular K+ ([K+]e), high intracellular Ca2+ ([Ca2+]i), Src family kinase (SFK)-mediated phosphorylation, caspase cleavage and mechanical stimuli. However, the mechanisms mediating this mechanosensitivity of PANX1 remain unknown. Both force-from-lipids and force-from-filaments models are proposed to explain the gating mechanisms of PANX1 channel mechanosensitivity. Finally, both the physiological and pathological roles of mechanosensitive PANX1 are discussed.
Collapse
|
13
|
Catalano C, Ben-Hail D, Qiu W, Blount P, des Georges A, Guo Y. Cryo-EM Structure of Mechanosensitive Channel YnaI Using SMA2000: Challenges and Opportunities. MEMBRANES 2021; 11:849. [PMID: 34832078 PMCID: PMC8621939 DOI: 10.3390/membranes11110849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/23/2023]
Abstract
Mechanosensitive channels respond to mechanical forces exerted on the cell membrane and play vital roles in regulating the chemical equilibrium within cells and their environment. High-resolution structural information is required to understand the gating mechanisms of mechanosensitive channels. Protein-lipid interactions are essential for the structural and functional integrity of mechanosensitive channels, but detergents cannot maintain the crucial native lipid environment for purified mechanosensitive channels. Recently, detergent-free systems have emerged as alternatives for membrane protein structural biology. This report shows that while membrane-active polymer, SMA2000, could retain some native cell membrane lipids on the transmembrane domain of the mechanosensitive-like YnaI channel, the complete structure of the transmembrane domain of YnaI was not resolved. This reveals a significant limitation of SMA2000 or similar membrane-active copolymers. This limitation may come from the heterogeneity of the polymers and nonspecific interactions between the polymers and the relatively large hydrophobic pockets within the transmembrane domain of YnaI. However, this limitation offers development opportunities for detergent-free technology for challenging membrane proteins.
Collapse
Affiliation(s)
- Claudio Catalano
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; (C.C.); (W.Q.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0113, USA
| | - Danya Ben-Hail
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10017, USA;
| | - Weihua Qiu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; (C.C.); (W.Q.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0113, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA;
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10017, USA;
- Department of Chemistry & Biochemistry, City College of New York, New York, NY 10017, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; (C.C.); (W.Q.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0113, USA
| |
Collapse
|
14
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
15
|
Barvitenko N, Aslam M, Lawen A, Saldanha C, Skverchinskaya E, Uras G, Manca A, Pantaleo A. Two Motors and One Spring: Hypothetic Roles of Non-Muscle Myosin II and Submembrane Actin-Based Cytoskeleton in Cell Volume Sensing. Int J Mol Sci 2021; 22:7967. [PMID: 34360739 PMCID: PMC8347689 DOI: 10.3390/ijms22157967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.
Collapse
Affiliation(s)
| | - Muhammad Aslam
- Department of Internal Medicine I, Experimental Cardiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Carlota Saldanha
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, 1649-028 Lisboa, Portugal;
| | | | - Giuseppe Uras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK;
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| |
Collapse
|
16
|
Ueki M, Iwamoto M. Fluorescent labeling in size-controlled liposomes reveals membrane curvature-induced structural changes in the KcsA potassium channel. FEBS Lett 2021; 595:1914-1919. [PMID: 34080704 DOI: 10.1002/1873-3468.14141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/06/2022]
Abstract
Biological structures with highly curved membranes, such as caveolae and transport vesicles, are essential for signal transduction and membrane trafficking. Although membrane proteins in these structures are subjected to physical stress due to the curvature of the lipid bilayers, the effect of this membrane curvature on protein structure and function remains unclear. In this study, we established an experimental procedure to evaluate membrane curvature-induced structural changes in the prototypical potassium channel KcsA. The effect of a large membrane curvature was estimated using fluorescently labeled KcsA by incorporating it into liposomes with a small diameter (< 30 nm). We found that a large membrane curvature significantly affects the activation gate conformation of the KcsA channel.
Collapse
Affiliation(s)
- Misuzu Ueki
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Japan
| | - Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Japan
| |
Collapse
|
17
|
Wang Y, Guo Y, Li G, Liu C, Wang L, Zhang A, Yan Z, Song C. The push-to-open mechanism of the tethered mechanosensitive ion channel NompC. eLife 2021; 10:58388. [PMID: 34101577 PMCID: PMC8186909 DOI: 10.7554/elife.58388] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/16/2021] [Indexed: 11/13/2022] Open
Abstract
NompC is a mechanosensitive ion channel responsible for the sensation of touch and balance in Drosophila melanogaster. Based on a resolved cryo-EM structure, we performed all-atom molecular dynamics simulations and electrophysiological experiments to study the atomistic details of NompC gating. Our results showed that NompC could be opened by compression of the intracellular ankyrin repeat domain but not by a stretch, and a number of hydrogen bonds along the force convey pathway are important for the mechanosensitivity. Under intracellular compression, the bundled ankyrin repeat region acts like a spring with a spring constant of ~13 pN nm-1 by transferring forces at a rate of ~1.8 nm ps-1. The linker helix region acts as a bridge between the ankyrin repeats and the transient receptor potential (TRP) domain, which passes on the pushing force to the TRP domain to undergo a clockwise rotation, resulting in the opening of the channel. This could be the universal gating mechanism of similar tethered mechanosensitive TRP channels, which enable cells to feel compression and shrinkage.
Collapse
Affiliation(s)
- Yang Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yifeng Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Guanluan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, School of Life Sciences, Fudan University, Shanghai, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chunhong Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lei Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Aihua Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiqiang Yan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, School of Life Sciences, Fudan University, Shanghai, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
18
|
Rasouli A, Jamali Y, Tajkhorshid E, Bavi O, Pishkenari HN. Mechanical properties of ester- and ether-DPhPC bilayers: A molecular dynamics study. J Mech Behav Biomed Mater 2021; 117:104386. [PMID: 33588213 PMCID: PMC8009841 DOI: 10.1016/j.jmbbm.2021.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/03/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
In addition to its biological importance, DPhPC lipid bilayers are widely used in droplet bilayers, study of integral membrane proteins, drug delivery systems as well as patch-clamp electrophysiology of ion channels, yet their mechanical properties are not fully measured. Herein, we examined the effect of the ether linkage on the mechanical properties of ester- and ether-DPhPC lipid bilayers using all-atom molecular dynamics simulation. The values of area per lipid, thickness, intrinsic lateral pressure profile, order parameter, and elasticity moduli were estimated using various computational frameworks and were compared with available experimental values. Overall, a good agreement was observed between the two. The global properties of the two lipid bilayers are vastly different, with ether bilayer being stiffer, less ordered, and thicker than ester bilayer. Moreover, ether linkage decreased the area per lipid in the ether lipid bilayer. Our computational framework and output demonstrate how ether modification changes the mechano-chemical properties of DPhPC bilayers.
Collapse
Affiliation(s)
- Ali Rasouli
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, And Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yousef Jamali
- School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, And Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| | | |
Collapse
|
19
|
Nakayama Y. Corynebacterium glutamicum Mechanosensing: From Osmoregulation to L-Glutamate Secretion for the Avian Microbiota-Gut-Brain Axis. Microorganisms 2021; 9:201. [PMID: 33478007 PMCID: PMC7835871 DOI: 10.3390/microorganisms9010201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
After the discovery of Corynebacterium glutamicum from avian feces-contaminated soil, its enigmatic L-glutamate secretion by corynebacterial MscCG-type mechanosensitive channels has been utilized for industrial monosodium glutamate production. Bacterial mechanosensitive channels are activated directly by increased membrane tension upon hypoosmotic downshock; thus; the physiological significance of the corynebacterial L-glutamate secretion has been considered as adjusting turgor pressure by releasing cytoplasmic solutes. In this review, we present information that corynebacterial mechanosensitive channels have been evolutionally specialized as carriers to secrete L-glutamate into the surrounding environment in their habitats rather than osmotic safety valves. The lipid modulation activation of MscCG channels in L-glutamate production can be explained by the "Force-From-Lipids" and "Force-From-Tethers" mechanosensing paradigms and differs significantly from mechanical activation upon hypoosmotic shock. The review also provides information on the search for evidence that C. glutamicum was originally a gut bacterium in the avian host with the aim of understanding the physiological roles of corynebacterial mechanosensing. C. glutamicum is able to secrete L-glutamate by mechanosensitive channels in the gut microbiota and help the host brain function via the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yoshitaka Nakayama
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; ; Tel.: +61-2-9295-8744
- St Vincent’s Clinical School, Faculty of Medicine, The University of New South Wales, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
20
|
Li S, Yan Z. Mechanotransduction Ion Channels in Hearing and Touch. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:371-385. [DOI: 10.1007/978-981-16-4254-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Ion Channels in Biophysics and Physiology: Methods & Challenges to Study Mechanosensitive Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:33-49. [DOI: 10.1007/978-981-16-4254-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Kawasaki H, Martinac B. Mechanosensitive channels of Corynebacterium glutamicum functioning as exporters of l-glutamate and other valuable metabolites. Curr Opin Chem Biol 2020; 59:77-83. [DOI: 10.1016/j.cbpa.2020.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2023]
|
23
|
Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020; 587:567-576. [PMID: 33239794 DOI: 10.1038/s41586-020-2933-1] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023]
Abstract
The ability to sense physical forces is conserved across all organisms. Cells convert mechanical stimuli into electrical or chemical signals via mechanically activated ion channels. In recent years, the identification of new families of mechanosensitive ion channels-such as PIEZO and OSCA/TMEM63 channels-along with surprising insights into well-studied mechanosensitive channels have driven further developments in the mechanotransduction field. Several well-characterized mechanosensory roles such as touch, blood-pressure sensing and hearing are now linked with primary mechanotransducers. Unanticipated roles of mechanical force sensing continue to be uncovered. Furthermore, high-resolution structures representative of nearly every family of mechanically activated channel described so far have underscored their diversity while advancing our understanding of the biophysical mechanisms of pressure sensing. Here we summarize recent discoveries in the physiology and structures of known mechanically activated ion channel families and discuss their implications for understanding the mechanisms of mechanical force sensing.
Collapse
|
24
|
Cox CD, Bavi N, Martinac B. Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction. Cell Rep 2020; 29:1-12. [PMID: 31577940 DOI: 10.1016/j.celrep.2019.08.075] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/09/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Recent rapid progress in the field of mechanobiology has been driven by novel emerging tools and methodologies and growing interest from different scientific disciplines. Specific progress has been made toward understanding how cell mechanics is linked to intracellular signaling and the regulation of gene expression in response to a variety of mechanical stimuli. There is a direct link between the mechanoreceptors at the cell surface and intracellular biochemical signaling, which in turn controls downstream effector molecules. Among the mechanoreceptors in the cell membrane, mechanosensitive (MS) ion channels are essential for the ultra-rapid (millisecond) transduction of mechanical stimuli into biologically relevant signals. The three decades of research on mechanosensitive channels resulted in the formulation of two basic principles of mechanosensitive channel gating: force-from-lipids and force-from-filament. In this review, we revisit the biophysical principles that underlie the innate force-sensing ability of mechanosensitive channels as contributors to the force-dependent evolution of life forms.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
25
|
Li Y, Hu Y, Wang J, Liu X, Zhang W, Sun L. Structural Insights into a Plant Mechanosensitive Ion Channel MSL1. Cell Rep 2020; 30:4518-4527.e3. [DOI: 10.1016/j.celrep.2020.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 02/08/2023] Open
|
26
|
Martinac B, Nikolaev YA, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac AD, Rohde P, Bavi O, Cox CD. Cell membrane mechanics and mechanosensory transduction. CURRENT TOPICS IN MEMBRANES 2020; 86:83-141. [DOI: 10.1016/bs.ctm.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Mammalian Mechanoelectrical Transduction: Structure and Function of Force-Gated Ion Channels. Cell 2019; 179:340-354. [PMID: 31585078 DOI: 10.1016/j.cell.2019.08.049] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
The conversion of force into an electrical cellular signal is mediated by the opening of different types of mechanosensitive ion channels (MSCs), including TREK/TRAAK K2P channels, Piezo1/2, TMEM63/OSCA, and TMC1/2. Mechanoelectrical transduction plays a key role in hearing, balance, touch, and proprioception and is also implicated in the autonomic regulation of blood pressure and breathing. Thus, dysfunction of MSCs is associated with a variety of inherited and acquired disease states. Significant progress has recently been made in identifying these channels, solving their structure, and understanding the gating of both hyperpolarizing and depolarizing MSCs. Besides prototypical activation by membrane tension, additional gating mechanisms involving channel curvature and/or tethered elements are at play.
Collapse
|
28
|
Le Roux AL, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P. The plasma membrane as a mechanochemical transducer. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180221. [PMID: 31431176 PMCID: PMC6627014 DOI: 10.1098/rstb.2018.0221] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Cells are constantly submitted to external mechanical stresses, which they must withstand and respond to. By forming a physical boundary between cells and their environment that is also a biochemical platform, the plasma membrane (PM) is a key interface mediating both cellular response to mechanical stimuli, and subsequent biochemical responses. Here, we review the role of the PM as a mechanosensing structure. We first analyse how the PM responds to mechanical stresses, and then discuss how this mechanical response triggers downstream biochemical responses. The molecular players involved in PM mechanochemical transduction include sensors of membrane unfolding, membrane tension, membrane curvature or membrane domain rearrangement. These sensors trigger signalling cascades fundamental both in healthy scenarios and in diseases such as cancer, which cells harness to maintain integrity, keep or restore homeostasis and adapt to their external environment. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Xarxa Quiroga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Nikhil Walani
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| |
Collapse
|
29
|
The membrane environment of cadherin adhesion receptors: a working hypothesis. Biochem Soc Trans 2019; 47:985-995. [DOI: 10.1042/bst20180012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Classical cadherin cell adhesion receptors are integral membrane proteins that mediate cell–cell interactions, tissue integrity and morphogenesis. Cadherins are best understood to function as membrane-spanning molecular composites that couple adhesion to the cytoskeleton. On the other hand, the membrane lipid environment of the cadherins is an under-investigated aspect of their cell biology. In this review, we discuss two lines of research that show how the membrane can directly or indirectly contribute to cadherin function. Firstly, we consider how modification of its local lipid environment can potentially influence cadherin signalling, adhesion and dynamics, focusing on a role for phosphoinositide-4,5-bisphosphate. Secondly, we discuss how caveolae may indirectly regulate cadherins by modifying either the lipid composition and/or mechanical tension of the plasma membrane. Thus, we suggest that the membrane is a frontier of cadherin biology that is ripe for re-exploration.
Collapse
|
30
|
Nakayama Y, Hashimoto KI, Kawasaki H, Martinac B. "Force-From-Lipids" mechanosensation in Corynebacterium glutamicum. Biophys Rev 2019; 11:327-333. [PMID: 31055761 PMCID: PMC6557938 DOI: 10.1007/s12551-019-00524-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Since the mechanosensitive channel MscCG has been identified as the major glutamate efflux system in Corynebacterium glutamicum, studies of mechanotransduction processes in this bacterium have helped to unpuzzle a long-unresolved mystery of glutamate efflux that has been utilised for industrial monosodium glutamate production. The patch clamp recording from C. glutamicum giant spheroplasts revealed the existence of three types of mechanosensitive (MS) channels in the cell membrane of this bacterium. The experiments demonstrated that the MS channels could be activated by membrane tension, indicating that the channel gating by mechanical force followed the "Force-From-Lipids (FFL)" principle characteristic of ion channels inherently sensitive to transbilayer pressure profile changes in the mechanically stressed membrane bilayer. Mechanical properties of the C. glutamicum membrane are characteristics of very soft membranes, which in the C. glutamicum membrane are due to negatively charged lipids as its exclusive constituents. Given that membrane lipids are significantly altered during the fermentation process in the monosodium glutamate production, MS channels seem to respond to changes in force transmission through the membrane bilayer due to membrane lipid dynamics. In this review, we describe the recent results describing corynebacterial FFL-dependent mechanosensation originating from the particular lipid composition of the C. glutamicum membrane and unique structure of MscCG-type channels.
Collapse
Affiliation(s)
- Yoshitaka Nakayama
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia
| | - Ken-Ichi Hashimoto
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hisashi Kawasaki
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
31
|
Ozu M, Galizia L, Acuña C, Amodeo G. Aquaporins: More Than Functional Monomers in a Tetrameric Arrangement. Cells 2018; 7:E209. [PMID: 30423856 PMCID: PMC6262540 DOI: 10.3390/cells7110209] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/27/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) function as tetrameric structures in which each monomer has its own permeable pathway. The combination of structural biology, molecular dynamics simulations, and experimental approaches has contributed to improve our knowledge of how protein conformational changes can challenge its transport capacity, rapidly altering the membrane permeability. This review is focused on evidence that highlights the functional relationship between the monomers and the tetramer. In this sense, we address AQP permeation capacity as well as regulatory mechanisms that affect the monomer, the tetramer, or tetramers combined in complex structures. We therefore explore: (i) water permeation and recent evidence on ion permeation, including the permeation pathway controversy-each monomer versus the central pore of the tetramer-and (ii) regulatory mechanisms that cannot be attributed to independent monomers. In particular, we discuss channel gating and AQPs that sense membrane tension. For the latter we propose a possible mechanism that includes the monomer (slight changes of pore shape, the number of possible H-bonds between water molecules and pore-lining residues) and the tetramer (interactions among monomers and a positive cooperative effect).
Collapse
Affiliation(s)
- Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Luciano Galizia
- Instituto de investigaciones Médicas A. Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
| | - Cynthia Acuña
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| |
Collapse
|