1
|
Raîche-Marcoux G, Méthot S, Tchatchouang A, Bettoli C, Maranda C, Loiseau A, Proulx S, Rochette PJ, Genin E, Boisselier É. Localization of fluorescent gold nanoparticles throughout the eye after topical administration. Front Med (Lausanne) 2025; 12:1557611. [PMID: 40177275 PMCID: PMC11961937 DOI: 10.3389/fmed.2025.1557611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
The human eye is a highly intricate sensory organ. When a condition requiring treatment occurs, eyedrops, which represent 90% of all ophthalmic treatments, are most frequently used. However, eyedrops are associated with low bioavailability, with less than 0.02% of therapeutic molecules reaching the anterior chamber. Thus, new delivery systems are required to ensure sufficient drug concentration over time at the target site. Gold nanoparticles are a promising avenue for drug delivery; however, they can be difficult to track in biological systems. Fluorescent gold nanoparticles, which have the same ultrastability and biocompatibility as their nonfluorescent counterpart, could act as an effective imaging tool to study their localization throughout the eye after administration. Thus, this study (1) synthesized and characterized fluorescent gold nanoparticles, (2) validated similar properties between nonfluorescent and fluorescent gold nanoparticles, and (3) determined their localization in the eye after topical application on ex vivo rabbit eyes. The fluorescent gold nanoparticles were synthesized, characterized, and identified in the cornea, iris, lens, and posterior segment of rabbit eyeballs, demonstrating tremendous potential for future drug delivery research.
Collapse
Affiliation(s)
- Gabrielle Raîche-Marcoux
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sébastien Méthot
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ange Tchatchouang
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Camille Bettoli
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, France
| | - Cloé Maranda
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Alexis Loiseau
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Stéphanie Proulx
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Patrick J. Rochette
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Emilie Genin
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, France
| | - Élodie Boisselier
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
2
|
Zeng Z, Xu B, Qiu J, Chen X, Huang Y, Xu C. Fluorescence super-resolution microscopy via fluctuation-based multi-route synergy. BIOMEDICAL OPTICS EXPRESS 2024; 15:5886-5900. [PMID: 39421781 PMCID: PMC11482186 DOI: 10.1364/boe.534067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Fluorescence fluctuation-based super-resolution microscopy (FF-SRM) is an economical and widely applicable technique that significantly enhances the spatial resolution of fluorescence imaging by capitalizing on fluorescence intermittency. However, each variant of FF-SRM imaging has inherent limitations. This study proposes a super-resolution reconstruction strategy (synSRM) by synergizing multiple variants of the FF-SRM approach to address the limitations and achieve high-quality and high-resolution imaging. The simulation and experimental results demonstrate that, compared to images reconstructed using single FF-SRM algorithms, by selecting suitable synSRM routes according to various imaging conditions, further improvements of the spatial resolution and image reconstruction quality can be obtained for super-resolution fluorescence imaging.
Collapse
Affiliation(s)
- Zhiping Zeng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Biqing Xu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jin Qiu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xinyi Chen
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yantang Huang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Canhua Xu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Booth E, Garre M, Wu D, Daly HC, O’Shea DF. A NIR-Fluorochrome for Live Cell Dual Emission and Lifetime Tracking from the First Plasma Membrane Interaction to Subcellular and Extracellular Locales. Molecules 2024; 29:2474. [PMID: 38893352 PMCID: PMC11174088 DOI: 10.3390/molecules29112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Molecular probes with the ability to differentiate between subcellular variations in acidity levels remain important for the investigation of dynamic cellular processes and functions. In this context, a series of cyclic peptide and PEG bio-conjugated dual near-infrared emissive BF2-azadipyrromethene fluorophores with maxima emissions at 720 nm (at pH > 6) and 790 nm (at pH < 5) have been developed and their aqueous solution photophysical properties determined. Their inter-converting emissions and fluorescence lifetime characteristics were exploited to track their spatial and temporal progression from first contact with the plasma membrane to subcellular locales to their release within extracellular vesicles. A pH-dependent reversible phenolate/phenol interconversion on the fluorophore controlled the dynamic changes in dual emission responses and corresponding lifetime changes. Live-cell confocal microscopy experiments in the metastatic breast cancer cell line MDA-MB-231 confirmed the usability of the dual emissive properties for imaging over prolonged periods. All three derivatives performed as probes capable of real-time continuous imaging of fundamental cellular processes such as plasma membrane interaction, tracking endocytosis, lysosomal/large acidic vesicle accumulation, and efflux within extracellular vesicles without perturbing cellular function. Furthermore, fluorescence lifetime imaging microscopy provided valuable insights regarding fluorophore progression through intracellular microenvironments over time. Overall, the unique photophysical properties of these fluorophores show excellent potential for their use as information-rich probes.
Collapse
Affiliation(s)
| | | | | | | | - Donal F. O’Shea
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), D02 PN40 Dublin, Ireland
| |
Collapse
|
4
|
Luu P, Fraser SE, Schneider F. More than double the fun with two-photon excitation microscopy. Commun Biol 2024; 7:364. [PMID: 38531976 PMCID: PMC10966063 DOI: 10.1038/s42003-024-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Falk Schneider
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Senthil N, Pacifici N, Cruz-Acuña M, Diener A, Han H, Lewis JS. An Image Processing Algorithm for Facile and Reproducible Quantification of Vomocytosis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:831-842. [PMID: 38155727 PMCID: PMC10751783 DOI: 10.1021/cbmi.3c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023]
Abstract
Vomocytosis is a process that occurs when internalized fungal pathogens escape from phagocytes without compromising the viability of the pathogen and the host cell. Manual quantification of time-lapse microscopy videos is currently used as the standard to study pathogen behavior and vomocytosis incidence. However, human-driven quantification of vomocytosis (and the closely related phenomenon, exocytosis) is incredibly burdensome, especially when a large volume of cells and interactions needs to be analyzed. In this study, we designed a MATLAB algorithm that measures the extent of colocalization between the phagocyte and fungal cell (Cryptococcus neoformans; CN) and rapidly reports the occurrence of vomocytosis in a high throughput manner. Our code processes multichannel, time-lapse microscopy videos of cocultured CN and immune cells that have each been fluorescently stained with unique dyes and provides quantitative readouts of the spatiotemporally dynamic process that is vomocytosis. This study also explored metrics, such as the rate of change of pathogen colocalization with the host cell, that could potentially be used to predict vomocytosis occurrence based on the quantitative data collected. Ultimately, the algorithm quantifies vomocytosis events and reduces the time for video analysis from over 1 h to just 10 min, a reduction in labor of 83%, while simultaneously minimizing human error. This tool significantly minimizes the vomocytosis analysis pipeline, accelerates our ability to elucidate unstudied aspects of this phenomenon, and expedites our ability to characterize CN strains for the study of their epidemiology and virulence.
Collapse
Affiliation(s)
- Neeraj Senthil
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Noah Pacifici
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Melissa Cruz-Acuña
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Agustina Diener
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Hyunsoo Han
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Jamal S. Lewis
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Eminizer M, Nagy M, Engle EL, Soto-Diaz S, Jorquera A, Roskes JS, Green BF, Wilton R, Taube JM, Szalay AS. Comparing and Correcting Spectral Sensitivities between Multispectral Microscopes: A Prerequisite to Clinical Implementation. Cancers (Basel) 2023; 15:3109. [PMID: 37370719 PMCID: PMC10296646 DOI: 10.3390/cancers15123109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Multispectral, multiplex immunofluorescence (mIF) microscopy has been used to great effect in research to identify cellular co-expression profiles and spatial relationships within tissue, providing a myriad of diagnostic advantages. As these technologies mature, it is essential that image data from mIF microscopes is reproducible and standardizable across devices. We sought to characterize and correct differences in illumination intensity and spectral sensitivity between three multispectral microscopes. We scanned eight melanoma tissue samples twice on each microscope and calculated their average tissue region flux intensities. We found a baseline average standard deviation of 29.9% across all microscopes, scans, and samples, which was reduced to 13.9% after applying sample-specific corrections accounting for differences in the tissue shown on each slide. We used a basic calibration model to correct sample- and microscope-specific effects on overall brightness and relative brightness as a function of the image layer. We tested the generalizability of the calibration procedure and found that applying corrections to independent validation subsets of the samples reduced the variation to 2.9 ± 0.03%. Variations in the unmixed marker expressions were reduced from 15.8% to 4.4% by correcting the raw images to a single reference microscope. Our findings show that mIF microscopes can be standardized for use in clinical pathology laboratories using a relatively simple correction model.
Collapse
Affiliation(s)
- Margaret Eminizer
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Melinda Nagy
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Elizabeth L. Engle
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sigfredo Soto-Diaz
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew Jorquera
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeffrey S. Roskes
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Benjamin F. Green
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Richard Wilton
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Janis M. Taube
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (E.L.E.); (S.S.-D.); (A.J.); (B.F.G.); (J.M.T.)
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander S. Szalay
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA; (M.N.); (J.S.R.); (R.W.); (A.S.S.)
- Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21210, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21210, USA
| |
Collapse
|
7
|
Chiriboga L, Callis GM, Wang Y, Chlipala E. Guide for collecting and reporting metadata on protocol variables and parameters from slide-based histotechnology assays to enhance reproducibility. J Histotechnol 2022; 45:132-147. [DOI: 10.1080/01478885.2022.2134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- NYULH Center for Biospecimen Research and Development, New York, NY, USA
| | | | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas, MO, USA
| | | |
Collapse
|
8
|
Hall D. Biophysical Reviews: from the umbra of 2020-2021 into the antumbra of 2022. Biophys Rev 2022; 14:3-12. [PMID: 35222731 PMCID: PMC8864210 DOI: 10.1007/s12551-022-00938-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
This sub-Editorial for Volume 14 Issue 1 (2022) first makes comment on the current issue and then describes matters of interest related to the journal's activities in 2022-chief among which are (i.) the announcement of the winner of the 2022 Michèle Auger Award for Young Scientists' Independent Research, (ii.) an outline of this year's finalized Special Issue (SI) lineup, (iii.) a description of a new production service offered by Springer to those submitting to the Biophysical Reviews journal, and (iv.) an introduction of newly appointed members of the Biophysical Reviews' Editorial Board.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|